Math. 4347, Homework assignment, due on November 20, 2017.

1. (6 pts) Solve the following initial value problem. Find the shock curves and check that the entropy condition is satisfied. Draw a picture depicting what happens for all times $t \geq 0$ that include characteristics and the shock curves.

$$
\begin{aligned}
& u_{t}+\left(u^{2}\right)_{x}=0 \\
& u(x, 0)= \begin{cases}1-|x| & |x|<1 \\
0 & |x|>1 .\end{cases}
\end{aligned}
$$

2. (5 pts) Find the general solution of

$$
u_{x x}+2 u_{x y}-3 u_{y y}-u_{x}+u_{y}=0 .
$$

3. (5 pts) Find Green's function for $\Omega=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2}<r^{2}, y>0\right\}$.
4. (6 pts) Let u be a harmonic function in \mathbb{R}^{3} and let $a>0$. Show that the function v defined in spherical coordinates by

$$
v(r, \theta, \psi)=\frac{a}{r} u\left(\frac{a^{2}}{r}, \theta, \psi\right)
$$

is harmonic in $\mathbb{R}^{3} \backslash\{0\}$.
5. (6 pts) Solve the initial boundary value problem

$$
\begin{aligned}
& u_{t t}=4 u_{x x} \quad x>0, t>0 \\
& u(x, 0)=\frac{x^{2}}{8}, u_{t}(x, 0)=x \quad x \geq 0 \\
& u(0, t)=t^{2} \quad t \geq 0
\end{aligned}
$$

6. (6 pts) Use separation of variables to solve the wave equation

$$
\left\{\begin{array}{l}
u_{t t}=a^{2} u_{x x} \text { for } 0<x<1, t>0, \\
u(x, 0)=0, u_{t}(x, 0)=\cos \pi x \text { for } 0<x<1, \\
u_{x}(0, t)=u_{x}(1, t)=0 \text { for } 0<t .
\end{array}\right.
$$

7. (6 pts) Let $u \in C^{2}(\mathbb{R} \times[0,+\infty))$ be the solution of

$$
\begin{aligned}
& u_{t t}-u_{x x}=0 \quad x \in \mathbb{R}, t>0 \\
& u(x, 0)=f(x), u_{t}(x, 0)=g(x) \quad x \in \mathbb{R} .
\end{aligned}
$$

Suppose that the functions f, g are equal to 0 for $|x|>K$ for some $K>0$. Show that the "kinetic energy" of the solution

$$
k(t)=\frac{1}{2} \int_{-\infty}^{+\infty} u_{t}^{2}(x, t) d x
$$

is equal to the "potential energy" of the solution

$$
p(t)=\frac{1}{2} \int_{-\infty}^{+\infty} u_{x}^{2}(x, t) d x
$$

for all large enough times t. (Hint: Use D'Alembert's solution formula.)

