Math. 4581, Homework assignment, due on November 19, 2018.

1. (5 pts) Find the Fourier series for the function

$$
f(x)= \begin{cases}2 x & -\frac{\pi}{2}<x<\frac{\pi}{2} \\ 0 & -\pi<x<-\frac{\pi}{2}, \frac{\pi}{2}<x<\pi\end{cases}
$$

2.(5 pts) Solve the boundary value problem

$$
\left\{\begin{array}{l}
u_{x x}+u_{y y}=0 \text { for } 0<x, y<1 \\
u_{x}(0, y)=0, u(1, y)=0 \text { for } 0<y<1 \\
u(x, 0)=1, u_{y}(x, 1)=0 \text { for } 0<x<1
\end{array}\right.
$$

3. (5 pts) Find the bounded solution of Laplace's equation in the region $\Omega=\{(r, \theta): r>$ $1,0<\theta<\pi\}$ subject to the boundary conditions $u(r, \pi)=u(r, 0)=0$ for $r>1$ and $u(1, \theta)=1$ for $0<\theta<\pi$.
4. (5 pts) Let $D>0$. Find u satisfying

$$
\left\{\begin{array}{l}
u_{t}(t, x)=D u_{x x}(t, x) \text { for } 0<x<1, t>0 \\
u(0, x)= \begin{cases}2 x & 0<x<\frac{1}{2} \\
1 & \frac{1}{2}<x<1\end{cases} \\
u(t, 0)=0, \quad u_{x}(t, 1)=0 \quad \text { for } t>0
\end{array}\right.
$$

5.(5 pts) Solve the initial boundary value problem

$$
\left\{\begin{array}{l}
u_{t}=D u_{x x}+\alpha u \quad 0<x<1, t>0 \\
u(0, x)=x(1-x) \quad 0<x<1 \\
u(t, 0)=0, \quad u_{x}(t, 1)=0 \quad t>0
\end{array}\right.
$$

where $D, \alpha>0$.
6.(5 pts) Let u satisfy

$$
\left\{\begin{array}{l}
u_{t t}=a^{2} u_{x x} \quad 0<x<1, t>0 \\
u(0, x)=x^{2}(1-x)^{2}, \quad u_{t}(0, x)=0 \quad 0<x<1 \\
u_{x}(t, 0)=0, \quad u_{x}(t, 1)=0 \quad t>0
\end{array}\right.
$$

Evaluate $u(t, 0.3)$ at $t=5 / a, t=7 / a$, and $t=10 / a$.
7.(5 pts) Solve the initial boundary value problem

$$
\left\{\begin{array}{l}
u_{t t}=4 u_{x x} \quad x>0, t>0 \\
u(x, 0)=\frac{x^{2}}{8}, u_{t}(x, 0)=x \quad x \geq 0 \\
u(0, t)=t^{2} \quad t \geq 0
\end{array}\right.
$$

8.(5 pts) Use the parallelogram rule to evaluate $u(1,0.3)$ and $u(1.3,0.3)$ if u satisfies

$$
\left\{\begin{array}{l}
u_{t t}=4 u_{x x} \quad 0<x<1, t>0 \\
u(0, x)=x(x-1), u_{t}(0, x)=0 \quad 0<x<1 \\
u(t, 0)=4 t^{2}, \quad u(t, 1)=0 \quad t>0
\end{array}\right.
$$

9.(5 pts) Use Laplace transforms to solve the boundary value problem

$$
\left\{\begin{array}{l}
Y_{x x}(t, x)-2 Y_{t x}(t, x)+Y_{t t}(t, x)=0, \quad 0<x<1, t>0 \\
Y(0, x)=Y_{t}(0, x)=0, \quad 0<x<1 \\
Y(t, 0)=0, Y(t, 1)=F(t), \quad t>0
\end{array}\right.
$$

