Math. 4581, Practice Final

1. Find the bounded solution of

$$
\nabla^{2} u(x, y)=0 \quad \text { in } D=\left\{(x, y): x^{2}+y^{2} \leq 1\right\}
$$

assuming that on the boundary of $D, \frac{\partial u}{\partial n}$ (when written in polar coordinates) is equal to $f(\theta)=4 \cos \theta-\cos 2 \theta+\cos 3 \theta$. (Hint: Write the problem in polar coordinates (r, θ) and use the fact that $\frac{\partial u}{\partial n}=u_{r}$.)
2. Find the eigenfunctions and eigenvalues for the problem

$$
\begin{cases}\nabla^{2} u(x, y)=\mu u(x, y) & \text { for } 0<x, y<1 \\ u_{x}(0, y)=u(1, y)=0 & \text { for } 0<y<1 \\ u(x, 0)=u_{y}(x, 1)=0 & \text { for } 0<x<1\end{cases}
$$

3. Solve the heat equation

$$
\left\{\begin{array}{l}
u_{t}(x, t)=D u_{x x}(x, t) \quad \text { for } 0<x<1, t>0 \\
u(x, 0)=T_{1} \quad \text { for } 0<x<1 \\
u(0, t)=T_{0}, u_{x}(1, t)=0 \quad \text { for } 0<t
\end{array}\right.
$$

4. Solve the wave equation

$$
\left\{\begin{array}{l}
u_{t t}(x, t)=a^{2} u_{x x}(x, t)+\sin \pi x \text { for } 0<x<1, t>0 \\
u(x, 0)=0, u_{t}(x, 0)=\cos \pi x \text { for } 0<x<1 \\
u_{x}(0, t)=u_{x}(1, t)=0 \text { for } 0<t
\end{array}\right.
$$

5. Let u solve

$$
\left\{\begin{array}{lc}
u_{t t}(x, t)=4 u_{x x}(x, t) & 0<x<1, t>0 \\
u(0, t)=u_{x}(1, t)=0, & t>0 \\
u(x, 0)=x, u_{t}(x, 0)=1 & 0<x<1 .
\end{array}\right.
$$

Find $u(0.5,3)$.
6. Solve

$$
\left\{\begin{array}{l}
t Y^{\prime \prime}(t)+2(t-1) Y^{\prime}(t)+(t-2) Y(t)=0 \\
Y(0)=1
\end{array}\right.
$$

7. Use Laplace transform to solve the heat conduction problem

$$
\left\{\begin{array}{l}
u_{t}(x, t)=u_{x x}(x, t)-\gamma^{2}(u(x, t)-T), \quad 0<x<1, t>0 \\
u_{x}(0, t)=u_{x}(1, t)=0, \quad t>0 \\
u(x, 0)=T_{0} \quad 0<x<1
\end{array}\right.
$$

