Math. 4581, Test 1
Name: SOLUTIONS

1. Let

$$
f(x)=\left\{\begin{array}{l}
2 x \quad \text { for } 0<x<\frac{1}{2} \\
2(1-x) \quad \text { for } \frac{1}{2}<x<1
\end{array}\right.
$$

(a) (6 pts) Find the (half-range) Fourier cosine series for $f(x)$.

For a function defined on $(0, L)$ the coefficients of the Fourier cosine series are

$$
a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x \quad \text { for } n=0,1,2, \ldots
$$

Here $L=1$ and so

$$
a_{0}=2\left(\int_{0}^{\frac{1}{2}} 2 x d x+\int_{\frac{1}{2}}^{1} 2(1-x) d x\right)=1
$$

For $n>0$

$$
\left.\begin{array}{c}
a_{n}=2\left(\int_{0}^{\frac{1}{2}} 2 x \cos n \pi x d x+\int_{\frac{1}{2}}^{1} 2(1-x) \cos n \pi x d x\right) \\
=4\left(\left.\frac{x}{n \pi} \sin n \pi x\right|_{0} ^{\frac{1}{2}}-\int_{0}^{\frac{1}{2}} \frac{\sin n \pi x}{n \pi} d x\right)+4\left(\left.\frac{1-x}{n \pi} \sin n \pi x\right|_{\frac{1}{2}} ^{1}+\int_{\frac{1}{2}}^{1} \frac{\sin n \pi x}{n \pi} d x\right) \\
=2 \frac{\sin \frac{n \pi}{2}}{n \pi}+\left.\frac{4 \cos n \pi x}{(n \pi)^{2}}\right|_{0} ^{\frac{1}{2}}-2 \frac{\sin \frac{n \pi}{2}}{n \pi}-\left.\frac{4 \cos n \pi x}{(n \pi)^{2}}\right|_{\frac{1}{2}} ^{1}
\end{array}\right\} \begin{aligned}
& 0 \quad \frac{4}{(n \pi)^{2}}\left(2 \cos \frac{n \pi}{2}-1-\cos n \pi\right)= \begin{cases}-\frac{8}{(n \pi)^{2}}\left[1-(-1)^{\frac{n}{2}}\right] & \text { if } n \text { is even. }\end{cases}
\end{aligned}
$$

Therefore the Fourier cosine series is

$$
S(x)=\frac{1}{2}+\sum_{n=1}^{\infty} a_{n} \cos n \pi x
$$

(b) (3 pts) Sketch the graph on the interval $(-2,2)$ of the function $\tilde{f}(x)$ to which the series converges and the graph of its derivative.
$S(x)$ converges to the 2-periodic even extension \tilde{f} of f.
(c)(3 pts) Does the differentiated Fourier series for $f(x)$ converge to $[\tilde{f}(x)]^{\prime}$?

Since \tilde{f} is continuous and \tilde{f}^{\prime} and $\tilde{f}^{\prime \prime}$ are piecewise continuous, the differentiated Fourier series $S^{\prime}(x)$ converges to

$$
\frac{\tilde{f}^{\prime}\left(x^{+}\right)+\tilde{f}^{\prime}\left(x^{-}\right)}{2}= \begin{cases}0 & \text { if } x= \pm \frac{n}{2}, n=0,1,2, \ldots \\ \tilde{f}^{\prime}(x) & \text { otherwise }\end{cases}
$$

2. (8 pts) Is $\{x, \cos x, \cos 2 x, \cos 3 x, \cos 4 x, \cos 5 x\}$ an orthonormal family in $L^{2}(-\pi, \pi)$? Does $f(x)=\sin 2 x$ belong to the space spanned by the family?

The family is not orthonormal since for $f(x)=x$ we have

$$
\|f\|^{2}=\int_{-\pi}^{\pi} x^{2} d x=\frac{2}{3} \pi^{3} \neq 1
$$

However the family is orthogonal.
Suppose that there are constants c_{1}, \ldots, c_{6} such that

$$
\sin 2 x=c_{1} x+c_{2} \cos x+\ldots+c_{6} \cos 5 x .
$$

Then

$$
\sin 2 x-c_{1} x=c_{2} \cos x+\ldots+c_{6} \cos 5 x .
$$

The left-hand side is an odd function while the right-hand side is an even one. Therefore they both have to be 0 and then we get that

$$
\sin 2 x=c_{1} x
$$

This is impossible and therefore $\sin 2 x$ does not belong to the space spanned by the family.
3.(a)(6 pts) Compute all the eigenvalues and the corresponding eigenfunctions for the Sturm-Liouville problem

$$
u^{\prime \prime}(x)+\lambda u(x)=0, \quad u^{\prime}\left(-\frac{\pi}{2}\right)=u(0)=0
$$

It is easy to check that if $\lambda \leq 0$ then λ is not an eigenvalue. If $\lambda>0$ the general solution has the form

$$
u(x)=c_{1} \sin \sqrt{\lambda} x+c_{2} \cos \sqrt{\lambda} x
$$

Then $u(0)=0$ implies that $c_{2}=0$ and therefore $u^{\prime}(x)=c_{1} \sqrt{\lambda} \cos \sqrt{\lambda} x$. Therefore

$$
0=u^{\prime}\left(-\frac{\pi}{2}\right)=c_{1} \sqrt{\lambda} \cos \left(\sqrt{\lambda} \frac{\pi}{2}\right)
$$

This implies that

$$
\sqrt{\lambda} \frac{\pi}{2}=\left(n+\frac{1}{2}\right) \pi
$$

and so the eigenvalues are

$$
\lambda_{n}=(2 n+1)^{2} \quad n=0,1,2, \ldots
$$

and the corresponding eigenfunctions

$$
u_{n}(x)=\sin (2 n+1) x .
$$

(b) (4 pts) Write the first two terms of the generalized Fourier series expansion in $L^{2}\left(-\frac{\pi}{2}, 0\right)$ for

$$
f(x)= \begin{cases}0 & \text { for }-\frac{\pi}{2}<x<-\frac{\pi}{3} \\ 1 & \text { for }-\frac{\pi}{3}<x<0\end{cases}
$$

in terms of the orthonormal approximating basis of eigenfunctions of the Sturm-Liouville problem (i.e the two terms involving the eigenfunctions corresponding to the two smallest eigenvalues).

The first two eigenfunctions are $u_{0}(x)=\sin x$ and $u_{1}(x)=\sin 3 x$. Therefore the first two terms of the generalized Fourier series expansion in terms of the eigenfunctions of the Sturm-Liouville problem for f are

$$
\begin{gathered}
\frac{\left(f, u_{0}\right)}{\left\|u_{0}\right\|^{2}} u_{0}+\frac{\left(f, u_{1}\right)}{\left\|u_{1}\right\|^{2}} u_{1} \\
=\frac{\int_{-\frac{\pi}{3}}^{0} \sin x d x}{\int_{-\frac{\pi}{2}}^{0} \sin ^{2} x d x} \sin x+\frac{\int_{-\frac{\pi}{3}}^{0} \sin 3 x d x}{\int_{-\frac{\pi}{2}}^{0} \sin ^{2} 3 x d x} \sin 3 x=-\frac{2}{\pi} \sin x-\frac{8}{3 \pi} \sin 3 x
\end{gathered}
$$

