Math. 4581, Test 2
Name: Solutions

1. Solve the following boundary value problem:

$$
\left\{\begin{array}{l}
\nabla^{2} u(x, y)=x \quad \text { for } 0<x, y<1 \\
u_{x}(0, y)=u(1, y)=0 \quad \text { for } 0<y<1 \\
u(x, 0)=u(x, 1)=0 \quad \text { for } 0<x<1
\end{array}\right.
$$

We first find an orthogonal approximating basis of $L^{2}((0,1) \times(0,1))$ composed of the eigenfunctions of the Laplacian with the required boundary conditions. This is done by doing separation of variables, i.e. by looking for eigenfunctions of the form $X(x) Y(y)$. We then have two Sturm-Liouville problems

$$
X^{\prime \prime}+\mu X=0, \quad X^{\prime}(0)=X(1)=0
$$

and

$$
Y^{\prime \prime}+\lambda Y=0, \quad Y(0)=Y(1)=0 .
$$

The first has solutions

$$
\mu_{m}=\left(\frac{2 m+1}{2} \pi\right)^{2}, m=0,1,2, \ldots, \quad X_{m}=\cos \left(\frac{2 m+1}{2} \pi x\right)
$$

and the second

$$
\lambda_{n}=(n \pi)^{2}, n=1,2, \ldots, \quad Y_{n}=\sin (n \pi y)
$$

The family $\left\{\cos \left(\frac{2 m+1}{2} \pi x\right)\right\}_{m=0}^{\infty}$ is an orthogonal approximating basis of $L^{2}(0,1)$ and the family $\{\sin (n \pi y)\}_{n=1}^{\infty}$ is also an orthogonal approximating basis of $L^{2}(0,1)$. Thus the products of functions of these families

$$
\cos \left(\frac{2 m+1}{2} \pi x\right) \sin (n \pi y), m=0,1,2, \ldots, n=1,2, \ldots
$$

create an orthogonal approximating basis of $L^{2}((0,1) \times(0,1))$, which is composed of the eigenfunctions of the Laplacian with the required boundary conditions.

We now expand the solution u in terms of the elements of this basis to get

$$
u(x, y)=\sum_{m=0, n=1}^{\infty} A_{n m} \cos \left(\frac{2 m+1}{2} \pi x\right) \sin (n \pi y) .
$$

It remains to find the $A_{n m}$. To do this we expand

$$
x=\sum_{m=0, n=1}^{\infty} B_{n m} \cos \left(\frac{2 m+1}{2} \pi x\right) \sin (n \pi y)
$$

where

$$
\begin{gathered}
B_{n m}=\frac{\int_{0}^{1} \int_{0}^{1} x \cos \left(\frac{2 m+1}{2} \pi x\right) \sin (n \pi y) d x d y}{\int_{0}^{1} \int_{0}^{1} \cos ^{2}\left(\frac{2 m+1}{2} \pi x\right) \sin ^{2}(n \pi y) d x d y} \\
=\frac{\int_{0}^{1} x \cos \left(\frac{2 m+1}{2} \pi x\right) d x \int_{0}^{1} \sin (n \pi y) d y}{\frac{1}{2} \cdot \frac{1}{2}} \\
=\frac{4}{n \pi}\left(1-(-1)^{n}\right) \int_{0}^{1} x \cos \left(\frac{2 m+1}{2} \pi x\right) d x \\
=\frac{4}{n \pi}\left(1-(-1)^{n}\right)\left(\frac{(-1)^{m}}{\left(m+\frac{1}{2}\right) \pi}-\frac{1}{\left(m+\frac{1}{2}\right)^{2} \pi^{2}}\right) .
\end{gathered}
$$

Now

$$
\nabla^{2} u=\sum_{m=0, n=1}^{\infty}-A_{n m}\left(n^{2}+\left(m+\frac{1}{2}\right)^{2}\right) \pi^{2} \cos \left(\frac{2 m+1}{2} \pi x\right) \sin (n \pi y)
$$

and so plugging this into the equation we obtain
$\sum_{m=0, n=1}^{\infty}-A_{n m}\left(n^{2}+\left(m+\frac{1}{2}\right)^{2}\right) \pi^{2} \cos \left(\frac{2 m+1}{2} \pi x\right) \sin (n \pi y)=\sum_{m=0, n=1}^{\infty} B_{n m} \cos \left(\frac{2 m+1}{2} \pi x\right) \sin (n \pi y)$.
This gives

$$
A_{n m}=\frac{-\frac{4}{n \pi}\left(1-(-1)^{n}\right)\left(\frac{(-1)^{m}}{\left(m+\frac{1}{2}\right) \pi}-\frac{1}{\left(m+\frac{1}{2}\right)^{2} \pi^{2}}\right)}{\left(n^{2}+\left(m+\frac{1}{2}\right)^{2}\right) \pi^{2}}
$$

and we are done.
2. Solve the initial boundary value problem

$$
\left\{\begin{array}{l}
u_{t}=D u_{x x} \quad \text { for } 0<x<L, t>0 \\
u(t, 0)=T_{0}, u(t, L)=T_{1} \quad \text { for } t>0 \\
u(0, x)=0 \quad \text { for } 0<x<L
\end{array}\right.
$$

where T_{0} and T_{1} are constants.
We first find the steady state solution of our heat equation, i.e. the function v satisfying

$$
\left\{\begin{array}{l}
v^{\prime \prime}=0 \quad \text { for } 0<x<L \\
v(0)=T_{0}, v(L)=T_{1}
\end{array}\right.
$$

We get

$$
v(x)=T_{0}+\left(T_{1}-T_{0}\right) \frac{x}{L}
$$

Therefore u satisfies the original equation if and only if $w=u-v$ satisfies

$$
\left\{\begin{array}{l}
w_{t}=D w_{x x} \quad \text { for } 0<x<L, t>0 \\
w(t, 0)=0, w(t, L)=0 \quad \text { for } t>0 \\
w(0, x)=-T_{0}-\left(T_{1}-T_{0}\right) \frac{x}{L} \quad \text { for } 0<x<L
\end{array}\right.
$$

Separation of variables for this problem gives

$$
X_{n}(x)=\sin \frac{n \pi x}{L}, \quad T_{n}(t)=e^{-\left(\frac{n \pi}{L}\right)^{2} D t}, \quad n=1,2, \ldots
$$

Thus we are looking for the solution w of the form

$$
w(t, x)=\sum_{n=1}^{\infty} A_{n} e^{-\left(\frac{n \pi}{L}\right)^{2} D t} \sin \frac{n \pi x}{L} .
$$

We must have

$$
\sum_{n=1}^{\infty} A_{n} \sin \frac{n \pi x}{L}=-T_{0}-\left(T_{1}-T_{0}\right) \frac{x}{L}
$$

and thus

$$
\begin{gathered}
A_{n}=\frac{\int_{0}^{L}\left[-T_{0}-\left(T_{1}-T_{0}\right) \frac{x}{L}\right] \sin \frac{n \pi x}{L} d x}{\int_{0}^{L} \sin ^{2} \frac{n \pi x}{L} d x} \\
=\frac{2}{L} \int_{0}^{L}\left[-T_{0}-\left(T_{1}-T_{0}\right) \frac{x}{L}\right] \sin \frac{n \pi x}{L} d x=\frac{2}{n \pi}\left(T_{1}(-1)^{n}-T_{0}\right) .
\end{gathered}
$$

Therefore,

$$
u(t, x)=T_{0}+\left(T_{1}-T_{0}\right) \frac{x}{L}+\frac{2}{\pi} \sum_{n=1}^{\infty} \frac{\left(T_{1}(-1)^{n}-T_{0}\right)}{n} e^{-\left(\frac{n \pi}{L}\right)^{2} D t} \sin \frac{n \pi x}{L} .
$$

