1. Prove the simple case of Erdős-Ko-Rado theorem: if \(k = n/2 \), then the number of \(k \)-sets in any intersecting family is at most \(\frac{1}{2} \binom{n}{k} \).

2. Let \(X = \{1, 2, \ldots, 7\} \), and let \(\mathcal{B} \) be the following family of seven subsets of \(X \):

\[
\mathcal{B} = \{\{1, 2, 3\}, \{1, 4, 5\}, \{1, 6, 7\}, \{2, 4, 6\}, \{2, 5, 7\}, \{3, 4, 7\}, \{3, 5, 6\}\}.
\]

Then let \(\mathcal{F} = \{A \subset X : A \text{ contains } B \text{ for some } B \in \mathcal{B}\} \). Show that \(\mathcal{F} \) is intersecting and \(|\mathcal{F}| = 2^7 - 1 = 64 \).

3. Let \(G = (V, E) \) be a graph on \(n \) vertices and let \(t(G) \) be the number of triangles in it. Show that

\[
t(G) \geq \frac{|E|}{3n} (4 \cdot |E| - n^2).
\]

Sketch: For an edge \(e = \{x, y\} \), let \(t(e) \) be the number of triangles containing \(e \). Let \(B = V \setminus \{x, y\} \). Among the vertices in \(B \) there are precisely \(t(e) \) vertices which are adjacent to both \(x \) and \(y \). Every other vertex in \(B \) is adjacent to at most one of these two vertices. We thus obtain \(d(x) + d(y) - t(e) \leq n \). Summing over all edges \(e = \{x, y\} \) we obtain

\[
\sum_{e \in E} (d(x) + d(y)) - \sum_{e \in E} t(e) \leq n \cdot |E|.
\]

Apply the Cauchy-Schwarz inequality to estimate the first sum.

Comment: This implies that a graph on an even number \(n \) of vertices with \(n^2/4 + 1 \) edges not only contains one triangle (as it must be by Mantel’s theorem), but more than \(n/3 \).

Optional Problems.

4. Let \(G = (V, E) \) be a graph. Let \(d(x) \) denote the degree of \(x \), for each \(x \in V \). Explain why the following holds:

\[
\sum_{x \in V} d(x)^2 = \sum_{\{x, y\} \in E} (d(x) + d(y)).
\]

5. A family of subsets of \(X \) is said to be 2-colorable, if it is possible to assign one of two colors (RED and BLUE, say) to the elements of \(X \) so that no set in the family is monochromatic – meaning no set should be all RED or all BLUE. Is the family \(\mathcal{B} \) in Problem 2 above 2-colorable?