
Unique Coloring of Planar Graphs

A Thesis
Presented to

The Faculty of the Division of Graduate Studies

by

Thomas George Fowler

In Partial Fulfillment
of the Requirements for the Degree of
Doctor of Philosophy in Mathematics

Georgia Institute of Technology
November, 1998



Unique Coloring of Planar Graphs

Approved:

Robin Thomas, Chairman

Richard Duke

Xingxing Yu

Dana Randall

Craig Tovey, ISYE

Date Approved by Chairman



Dedication

This Thesis is Dedicated to the Everlasting Trinity,

God of the Old and New Testaments.

iii



Acknowledgements

First and foremost I would like to thank the God of the Old and New Testaments,

for “from Him and through Him and to Him are all things” (Romans 11:36). Indeed,

without His continued kind providence, I would not exist let alone have enjoyed the

many favorable circumstances that have made it possible for me to pursue to near-

completion a Ph.D. in mathematics.

I must also give hearty thanks to my thesis adviser Professor Robin Thomas.

Without his ideas, expertise and talent, it would have been well nigh impossible for

me to have produced a thesis which proves the Four Color Theorem as a corollary. I

also want to thank him for his patience with me as well as many quarters of financial

support as a Research Assistant.

I also want to acknowledge my parents for their loyal and financial support of

various stages of my academic career. They sacrificed from the beginning to make

education a priority in my life. They have also provided encouragement and patience

throughout, and put up with many vacations during which their son was focussed on

studying.

Thanks are also due to Professor Richard Duke who has willingly given up his

time to offer advice, to write recommendations, to listen to rehearsals of job talks

and various other services.

I also want to thank my reading committee and defense committee which was

comprised of Professor Xingxing Yu, Professor Dana Randall and Professor Craig

iv



Tovey as well as Professor Duke and Professor Thomas. They have been willing to give

of their limited time to serve in this capacity. Special thanks are also due to Professor

Yu and Professor Tovey, for their assistance in the past writing recommendations.
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Summary

Unique Coloring of Planar Graphs

A graph G is said to be uniquely k−vertex colorable if there is exactly one partition

of the vertices of G into k independent sets, and uniquely edge k−colorable if there is

exactly one partition of the edges of G into k matchings. This thesis explores unique

coloring and positively resolves a 1977 conjecture of Fiorini, Wilson and independently

Fisk, that a uniquely edge 3-colorable cubic planar graph with at least four vertices

always contains a triangle. This is equivalent to the statement that every uniquely

vertex 4-colorable planar graph has a vertex of degree three and implies that every

such graph can be constructed from the complete graph on four vertices by repeatedly

adding vertices of degree three. We give a computer-assisted proof of the conjecture.

More precisely, using the techniques employed in the proof of the Four-Color Theorem

we prove from first principles that every “internally 6-connected” planar triangulation

has at least two 4-colorings. The Four-Color Theorem is a corollary.

xii



Chapter 1

Introduction, Overview and Notation

1.1 Statement of the Principal Result

A graph is cubic if every vertex has degree three. Two functions f and g with

identical domain and finite range B = {1, 2, . . . , k} are said to be equivalent if

{f−1({1}), f−1({2}), . . . , f−1({k})} = {g({1}), g−1({2}), . . . , g−1({k})}. An edge-coloring

of a graph is a function c from the edges of a graph to a set of colors having the prop-

erty that if two edges share a common vertex as an endpoint, then c assigns them

different colors. An edge-k-coloring is an edge-coloring in which k colors are used. A

graph G is uniquely edge-k-colorable if there is an edge-k-coloring c such that every

other edge-k-coloring of G is equivalent to c. It is equivalent to say that G is uniquely

edge-k-colorable if there is exactly one partition of the edges of G into exactly k

matchings. In 1977 Fiorini and Wilson ([1]) conjectured the following:

Conjecture 1.1.1 Every uniquely edge-3-colorable cubic planar graph on at least 4

vertices contains a triangle.

In the same year an equivalent form of this was posed as an unsolved problem

by Fisk in [2]. Heretofore this problem will be referred to as the Fiorini-Wilson-Fisk

Conjecture.
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There have been many references to this problem in the literature, (see [1], [2],

[3], [4], [5]. [6], [7]), and some partial results concerning the structure of a minimum

counterexample were discovered as recently as 1995 [5]. These partial results as well as

the technique used to prove the Four Color Theorem (see [8]) have been combined to

produce a positive proof of the Fiorini-Wilson-Fisk Conjecture. This is the principal

result of this thesis.

This result also gives a characterization of all uniquely edge-3-colorable planar

graphs having at least 4 vertices. Specifically, every uniquely edge-3-colorable cubic

planar graph with at least 4 vertices can be obtained from K4, (the complete graph

on 4 vertices) by repeatedly replacing a vertex w with neighbors x1, x2 and x3 by

a triangle with vertex set {w1, w2, w3} where wi is joined to xi by an edge for

every 1 ≤ i ≤ 3. The proof that this characterizes all uniquely edge-3-colorable

graphs on more than 4 vertices follows easily from the truth of the Fiorini-Wilson-Fisk

Conjecture. To see this, note first that K4 is uniquely edge-3-colorable, and that the

above operation applied to a uniquely edge-3-colorable cubic graph results in another

uniquely edge-3-colorable cubic graph. Conversely, given a cubic planar uniquely

edge-3-colorable graph, the Fiorini-Wilson-Fisk Conjecture implies the existence of a

triangle whose contraction (the reverse of the operation above) results in a uniquely

edge-3-colorable cubic planar graph with fewer vertices. By induction, this smaller

graph can be constructed in the prescribed manner and thus the original graph can

also be constructed in the prescribed manner.
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1.2 Overview of how the proof proceeds

A vertex-k-coloring of a graph G is a function c : V (G) → {1, . . . , k} such that

if two vertices x, y are joined by an edge, then c(x) 6= c(y). A graph is uniquely

vertex-k-colorable if it has one exactly one vertex-k-coloring up to permutation of

colors. In this section we state the main theorems to give the reader a broad overview

of the method used to prove the Fiorini-Wilson-Fisk Conjecture. We first translate

the Fiorini-Wilson-Fisk Conjecture to an equivalent statement concerning vertex-4-

colorings.

Conjecture 1.2.1 A uniquely vertex-4-colorable simple planar graph has a vertex of

degree three.

This conjecture stated in terms of vertex colorings appeared as early as 1977 as

an open problem in a paper of Fisk. (Section I, problem 11 in [2]).

Theorem 1.2.1 The above formulation is equivalent to the Fiorini-Wilson-Fisk Con-

jecture.

A more exciting but equivalent version of conjecture 1.2.1 follows in conjecture

1.2.1.

Conjecture 1.2.2 Every uniquely vertex-4-colorable simple planar graph G arises

from a sequence of planar uniquely vertex-4-colorable graphs G0,G1,. . .,Gk where G0 =

K4, G = Gk and Gi is formed by taking some embedding of Gi−1 in the plane and

adding a vertex x into some triangular face of Gi−1 and putting x adjacent to the

three vertices incident to that triangular face.
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Theorem 1.2.2 Conjecture 1.2.1 is equivalent to conjecture 1.2.1.

A proof of this theorem, although essentially done in Section 1.1 in the context of

the edge formulation of the Fiorini-Wilson-Fisk conjecture, is given in Section 2.8.3.

Instead of proving Conjecture 1.2.1 directly, we prove the following theorem which

says that “highly connected” planar graphs (the sense of which will be defined in

Chapter 3) always have at least two vertex-4-colorings. More precisely, we prove

using the same techniques that were used to prove the Four Color Theorem:

Theorem 1.2.3 Every internally six connected planar triangulation has at least two

non-equivalent vertex-4-colorings.

Theorem 1.2.3, combined with the following two theorems, the first of which will

be proved in Chapter 3, has two important corollaries:

Theorem 1.2.4 (Goldwasser and Zhang, [5]) Every minimal counterexample to the

Fiorini-Wilson-Fisk Conjecture is internally six connected.

Theorem 1.2.5 (Birkhoff, 1913, [9]) Every minimal counterexample to the four

color theorem is internally six connected.

Corollary 1.2.1 (The Vertex Fiorini-Wilson-Fisk Conjecture) Every simple uniquely

vertex-4-colorable planar graph has a vertex of degree 3.

Corollary 1.2.2 (The Four Color Theorem) Every loopless planar graph admits a

vertex-4-coloring.
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The proof of Theorem 1.2.3 is split into two components, proving reducibility and

proving unavoidability. The ideas of reducibility and unavoidability presuppose the

idea of a configuration, which is defined in Chapter 4. The definition of what it

means for a configuration to appear in a triangulation will also be defined in Chapter

4. Let K be the set of configurations in Appendix A. The proof of Theorem 1.2.3

then amounts to proving the next two theorems.

Theorem 1.2.6 (Reducibility) No configuration in K can appear in a minimum

counterexample to Theorem 1.2.3.

This we prove in Chapter 5 with the aid of a computer. In Chapter 7 and again

with the aid of a computer, we prove:

Theorem 1.2.7 (Unavoidability) For every internally 6-connected triangulation G,

there is a configuration in K that appears in G.

The recent proof of the Four Color Theorem in Robertson et. al. in [8], uses

the same techniques of reducibility and unavoidability. Their proof shows that every

internally six-connected triangulation has at least one vertex-4-coloring, whereas in

this thesis it is shown that every such graph has at least two vertex-4-colorings.

1.3 Notation

We will use standard set theoretic notation. For the difference of two sets we write

A− B, and mean this to be the set of all elements of A that do not belong to B. A

multi-set will be a set in which individual elements can appear more than once. Unless

explicitly stated, sets should be interpreted as regular sets rather than multi-sets.
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A graph G is an ordered pair (V,E) where E is a multi-set of two element subsets

of V . Thus we allow a graph to have multiple edges but forbid loops. Here V will be

referred to as the set of vertices of G and E will be known as the set of edges of G. We

will also denote V by V (G) and E by E(G). An edge e ∈ E of the form e = {x, y}

is said to have endpoints x and y. If two or more edges have the same vertices as

endpoints, they are said to be parallel edges. A graph with no parallel edges is called

a simple graph. If H is a graph in which V (H) ⊂ V (G) and E(H) ⊂ E(G), then we

say H is a subgraph of G. If every edge of G with both endpoints in V (H) is also

an edge of H, then we say that H is an induced subgraph of G. From this definition,

it can be seen that for each subset A ⊂ V (G) there is a unique induced subgraph

of G whose vertex set is A, namely the graph H with V (H) = A and with edge set

consisting of every edge in G with both endpoints in A. We will call this subgraph the

subgraph of G induced by A. The notation G−A will denote the subgraph induced by

the vertex set V (G)−A. If A = {v} consists of the single vertex v, we will sometimes

write G− v in place of G−{v}. If F ⊂ E(G), then the graph G−F will refer to the

subgraph of G with vertex set V (G) and edge set E(G)− F .

A walk in a graph G is a sequence of the form v0, e1, v1, e2, v2, . . . , ek, vk, where

vi ∈ V (G) for i = 0, 1, . . . , k and ei is an edge of G having endpoints vi−1 and vi. If

v0 = vk then W is called a closed walk. If v0 = vk, and every other pair of vertices

W is pairwise distinct, then W is a circuit of G provided there is at least one edge in

W . The vertices v0, v1, . . ., vk of W are not necessarily distinct but if they are, W

is also called a path. If W is a path and x = v0, y = vk, then W is also called a x-y

path or a path joining x to y. The length of a path W is defined to be the number of

edges in the path, that is, k. If for every pair of vertices x, y ∈ V (G), there is an x-y
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path in G, then G is said to be connected. If G is not connected, then we say that G

is disconnected. A disconnected graph G can be partitioned into maximal connected

subgraphs H1, H2, . . ., Hk. The graphs H1, H2, . . ., Hk, are known as connected

components, or just components of G. If there is a vertex x in a connected graph G

such that the graph G− x is disconnected, then x is said to be a cut-vertex of G or

just a cut-vertex. If G has no cut vertex, then G is said to be 2−connected. More

generally, if G−X is connected for each X ⊂ V (G) with |X| < k, then we say that

G is k-connected. A vertex coloring of a graph is a function from the vertices of a

graph to a set of colors such that if two vertices are joined by an edge they receive

different colors. A unique vertex-k-coloring of a graph G is a vertex coloring c using

exactly k distinct colors and having the property that every other vertex-coloring of

G using exactly k colors can be obtained from c by permuting colors. An independent

set of a graph G is a subset A of V (G), such that no edge of G has both endpoints

in A. Every vertex-k-coloring of G partitions V (G) into k non-empty independent

sets, and so a graph is uniquely vertex-k-colorable if and only if there is exactly one

partition of the vertices of G into k non-empty independent sets.

An edge-coloring of a graph is a function c from the edges of a graph to a set of

colors having the property that if two edges share a common vertex as an endpoint,

then c assigns them different colors.
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1.3.1 Planar Graphs and Topology

1.3.1.1 Underlying Topology

Let Σ be the sphere {(x, y, z) : x2 + y2 + z2 = 1} ⊂ R3 considered as a topological

space. For X ⊂ Σ, X̄ will denote the closure of X in Σ. A line of Σ is a subspace

h([0, 1]), where h is a homeomorphism of [0, 1] onto h([0, 1]). The endpoints of a line

h[0, 1] are the points x = h(0) and y = h(1). A subspace A ⊂ Σ is arc-wise connected

if any pair of points x, y ∈ A are the endpoints of some line, all of whose points are in

A. If h([0, 1]) is a line and x1, x2 are two points such that h(t1) = x1 and h(t2) = x2

for some t1, t2 ∈ [0, 1], then we will let h[x1, x2] denote the line in Σ that consists of

the set h([min{t1, t2}, max{t1, t2}]). A curve of Σ is a homeomorphism C mapping

{(x, y) : x2 + y2 = 1} onto a subset of Σ.

Let C be a curve in Σ. We will make frequent use of the Jordan Curve Theorem,

which states that Σ−C consists of two disjoint arc-wise connected sets. An open disc

is a subset of Σ that is homeomorphic to {(x, y) ∈ R2 : x2 + y2 < 1} and a closed disc

is a subset of Σ that is homeomorphic to {(x, y) ∈ R2 : x2 + y2 ≤ 1}. For u ∈ Σ and

ε > 0, D(u, ε) will denote the open disc in Σ centered at u and having radius ε > 0.

The set D(u, ε)−D(u, ε) will be referred to as the circle centered at u of radius ε and

will be denoted by C(u, ε). If A ⊂ Σ then the boundary of A, denoted by bd(A), is

defined to be the set A− A.

1.3.1.2 Planar Graphs

Intuitively, a graph G is planar if it can be “drawn” in the plane in such a way that

no two edges “cross” each other. Having laid the necessary topological foundation,

8



we follow Massey ([10]) in making this precise.

A drawing is a pair (U, V ) where U is a closed subspace of Σ, V ⊂ U is a finite

set of points of Σ, and

(i) U(G) − V (G) has only finitely many arc-wise connected components, called

edges

(ii) for each edge e, the closure of each edge e is a line, and ē− e consists of two

points in V (G), called endpoints of e.

A drawing (U, V ) naturally gives rise to a corresponding graph G with vertex set

V (G) = V , and edge set E(G) = U − V (G). The set Σ − U(G) is a set of arc-wise

connected components which will be called faces of (U, V ). A drawing of a graph

G is a drawing whose corresponding graph is isomorphic to G. Not all graphs have

drawings; if a graph G is isomorphic to a graph which has a drawing, then we say

that G is planar. Property (ii) excludes graphs with loops. A vertex v and an edge e

are incident if the edge e has v as an endpoint. A vertex v and a face f are incident

if v ∈ f̄ , and an edge e and f are incident if e ⊂ f̄ . Two vertices are adjacent if

they are the endpoints of some edge. Two edges are adjacent if they are incident to a

common vertex. Two faces are adjacent if they are both incident to a common edge.

The degree of a vertex v in G, denoted dG(v) or d(v), equals the number of edges of

G that are incident to v. If (U(H), V (H)) is another drawing in which V (H) ⊂ V (G)

and E(H) ⊂ E(G), then H is a subdrawing of G. If every edge of G which has both

endpoints in V (H) is an edge of H, then H is an induced subdrawing of G.

A drawing is said to be planar if one of the faces is designated as infinite. A

drawing is a triangulation if every face is incident to exactly three edges. A face

which is incident to exactly 3 edges called a triangle or is said to be triangular. A
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planar drawing is a near triangulation if every face, except possibly the one designated

as infinite, is a triangle.
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Chapter 2

Survey of Results in Unique Coloring

There is a wealth of literature about the topic of unique coloring. We will split our

discussion of it into various categories, discussing the origin of unique coloring, results

about unique coloring in general, computational complexity of unique coloring, crit-

icality and unique coloring, uniquely vertex-k-colorable graphs with no small cycles,

unique vertex-3-coloring in the plane, unique edge coloring, and the history of the

Fiorini-Wilson-Fisk Conjecture as well extensions of it and conjectures related to it.

2.1 Origin of Unique Coloring

The origin of unique coloring appears to have been, perhaps surprisingly, in the field

of psychology. There the problem of a signed graph was introduced, together with

a coloring of signed graphs, to model a problem in that field [11]. A signed graph

S is a ordered pair (G, φ), where G is an undirected graph and φ is a function

φ : E(G) → {−1, 1}. These signed graphs are used in psychology to model the

idea of clusterings. From there the idea of colorings and unique colorings a signed

graph, closely related to the normal notion of coloring a graph arose in a 1968 paper

of Cartwright and Harary [12]. A coloring c of a signed graph is a function from the

vertex set of G to {1, 2, . . . , k} having the property that if x and y are two adjacent
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vertices in G, then

1) If φ({x, y}) = 1 then c(x) = c(y).

2) If φ({x, y}) = −1 then c(x) 6= c(y).

As usual the set {c−1({i}) : i ∈ {1, 2, . . . , k}} defines a partition of the vertices of

S into color classes. This paper of Cartwright and Harary, as well as a 1967 paper

of Gleason and Cartwright [11], established conditions for a signed graph to have a

coloring, and introduced the notion of a unique coloring of a signed graph. To wit, a

signed graph S is uniquely colorable if there is exactly one partition of S into color

classes. Both papers gave fairly simple criterion for a signed graph to be uniquely

colorable. In addition, [12] introduced the notion of unique coloring of a “normal”

(unsigned) graph G, which is the topic of interest in this thesis.

Under the usual notion of a coloring c of a graph G being a function from the

set of vertices to a set of integers (colors) having the property that adjacent vertices

receive a different assignment under c, Cartwright and Harary defined a graph G to be

uniquely colorable if either G is complete or G has a unique partition of the vertices

of G into t < |V (G)| color classes. In this same paper, they showed that if G has a

unique coloring with say t colors, then, in fact t = χ(G), where χ(G) is the chromatic

number of G, that is, the smallest positive integer s for which there is a coloring of

G using exactly s colors.
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2.2 General Results About Unique Vertex Color-

ings

2.2.1 Necessary Conditions for a Graph to be Uniquely Col-

orable

To warm up our understandings of unique coloring we mention some easy necessary

consequences of a graph being uniquely vertex-colorable. The first is that the number

of colors used in a unique coloring is unique and equals the chromatic number of G.

Proposition 2.2.1 (Cartwright, Harary) If G has a unique coloring with t colors

then t = χ(G).

Proof: We may assume that G is not the complete graph on χ(G) vertices. Clearly

χ(G) ≤ t ≤ |V (G)|, since a unique coloring is also a proper coloring. If t >

χ(G) then |V (G)| > χ(G) and for any χ(G)-coloring c of G, pick a set of ver-

tices {x1, x2, . . . , xχ(G)} having the property that c(xi) = i. There are at least

t − χ(G) vertices in G other than {x1, . . . , xχ(G)} and these can be assigned colors

from {χ(G) + 1, χ(G) + 2, . . . , t}, to get two distinct t-colorings of G.

By this proposition, we may say unambiguously that G is uniquely vertex col-

orable, and mean that G is uniquely vertex-χ(G)-colorable.

Let G be a graph and let c : V (G) → {1, 2, . . ., k} be a unique vertex-k-coloring

of G. For i, j ∈ {1, 2, . . ., k}, define Gi,j to be the subgraph of G induced by the

vertices which c assigns the colors i or j. A very useful necessary condition for G to
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be uniquely vertex-k-colorable was noticed by Harary et. al. in the following theorem

which appears in [13].

Theorem 2.2.1 (Harary, Hedetniemi, Robinson, 1969) If c : V (G) → {1, 2, . . .,

k} is a unique vertex-k-coloring of G, then for all i 6= j, i, j ∈ {1, 2, . . ., k}, the

graph Gi,j is connected.

Proof: If some Gi,j had two or more components, then by interchanging the colors i

and j in exactly one of these components, we would arrive at a valid coloring different

than c.

Corollary 2.2.1 Let c be a unique vertex-k-coloring of G, let x be a vertex in V (G)

and let i ∈ {1, . . . , k}. If i 6= c(x) then there is a vertex y ∈ V (G) such that x is

adjacent to y and c(y) = i. In particular, every vertex of G has degree at least k− 1.

Proof: Let v ∈ V (G), let c be a unique vertex-k-coloring of G and let i be a color

different from c(x). By Theorem 2.2.1, Gi,c(x) is a connected graph, and in particular,

x is not an isolated vertex in Gi,c(x) because Proposition 2.2.1 insures that some vertex

receives the color i. Since there are k−1 other colors besides c(x), the minimum degree

of G must be at least k − 1. This completes the proof of Corollary 2.2.1.

Corollary 2.2.2 (Harary et al.) If G is a uniquely vertex-k-colorable, then G has at

least (k − 1)n−
(
k
2

)
edges.

Proof: Let Vi be the set of vertices colored i. Theorem 2.2.1 insures that for 1 ≤

i < j ≤ k, the graph Gi,j with vertex set Vi
⋃
Vj is connected. Thus |E(Gi,j)| ≥
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|Vi| + |Vj| − 1. Summing this inequality over all pairs i 6= j, we have that |E(G)| ≥
∑

1≤i<j≤k |Vi|+ |Vj| − 1 = (k− 1)(|V1 + V2 + . . . Vk|)−
(
k
2

)
= (k− 1)n−

(
k
2

)
, which is

the desired result.

Corollary 2.2.3 (Geller, Chartrand) If G is a uniquely vertex-4-colorable simple

planar graph, then any drawing of the graph G is a triangulation. Moreover, for i 6= j

and i, j ∈ {1, 2, 3, 4}, each subgraph Gi,j is a tree.

Proof: By Euler’s formula |E(G)| ≤ 3|V (G)|−6, and from Corollary 2.2.2, |E(G)| ≥

3|V (G)| − 6, so |E(G)| = 3|V (G)| − 6. This implies that any drawing of G must be

a triangulation. It also implies that equality holds throughout in the proof of the

Corollary 2.2.2, so |E(Gi,j)| = |Vi|+ |Vj| − 1 = |V (Gi,j)| − 1. Since Gi,j is connected,

it follows that Gi,j is a tree. This completes the proof of the corollary.

2.2.2 Assorted Results About Uniquely Colorable Graphs

A function φ : V (G) → V (G′) is said to be a homomorphism of the graph G into

the graph G′ if it preserves adjacency of vertices, that is, if {x, y} ∈ E(G) implies

{φ(x), φ(y)} ∈ E(G′). If it is true that for every pair of vertices x′, y′ ∈ V (G′), x′ is

adjacent to y′ in G′ if and only if there is a pair x, y of adjacent vertices in G such

that φ(x) = x′ and φ(y) = y′, then φ is said to be a homomorphism of G onto G′,

and G′ is said to be a homomorphic image of G. The following propositions appear

in [13].

Proposition 2.2.2 If G is uniquely vertex-k-colorable and H is a homomorphic im-

age of G such that χ(H) = k, then H is uniquely vertex-k-colorable .
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Proposition 2.2.3 If G is uniquely vertex-k-colorable then G is (k − 1)-connected.

Proof: Let A be a set with |A| ≤ k − 2, let c be a unique vertex-k-coloring of G,

and let x, y ∈ V (G)−A. There are two distinct colors i, j ∈ {1, . . . , k} such that no

vertex of A has a vertex colored i or j by c. Therefore, V (Gi,j)
⋂
A = ∅. By Corollary

2.2.1, there are vertices ux and uy such that x is adjacent to ux, y is adjacent to uy

and c(ux) = c(uy) = i. Since Gi,j is connected, there is a path P in Gi,j joining ux

to uy and thus there is a path in G− A joining x and y. Thus, G− A is connected.

This completes the proof of the proposition.

2.3 Complexity Results for Unique Coloring

The following proposition is obvious.

Proposition 2.3.1 A graph is uniquely vertex-1-colorable if and only if it consists of

isolated vertices. A graph is uniquely vertex-2-colorable if and only if it is a connected

bipartite graph.

Beyond this there is not much hope of finding a “good” characterization of arbi-

trary uniquely vertex-k-colorable graphs when k ≥ 3 because of the following com-

plexity results contained in or implied by the work of Dailey in 1981 [14].

Theorem 2.3.1 The following decision problems are NP-Complete:

1) Given a graph G and a vertex-k-coloring c of G, is there a vertex-k-coloring c′

of G that is not equivalent to c?

2) Given an integer k and a graph G, does G have either 0 or at least 2 vertex-k-

colorings?
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The result of Dailey probably dooms any possibility of a polynomial time algorithm

for problems 1) or 2) above. In [7], the authors pose the question of whether there

is a polynomial time algorithm for deciding whether a given planar graph is uniquely

vertex-3-colorable. This problem is still open as far as this author knows.

2.4 A Sufficient Condition for Determining Unique

Vertex-k-Colorability

The following sufficient condition for a graph to be uniquely vertex-k-colorable was

given by Bollobas in [15].

Theorem 2.4.1 Let k be an integer greater than one, let G be a vertex-k-colorable

graph on n vertices, and let δ(G) denote the minimum degree of G. If δ(G) > (3k−5)n
(3k−2)

then G is uniquely vertex-k-colorable . Moreover, if G has a vertex-k-coloring in which

Gi,j is connected for every 1 ≤ i < j ≤ k, and δ(G) > (k−2)n
(k−1)

, then G is uniquely

vertex-k-colorable. These results are best possible.

This was generalized by Dmitriev according to a review of [16]. As we can see,

this condition will apply only to very dense graphs.

2.5 Critical Uniquely Colorable Graphs and For-

bidden Subgraphs

A graph G is said to be k-critical if χ(G) = k but χ(G−A) ≤ k−1 for every nonempty

subset A ⊂ V (G). A graph is k-edge-critical if χ(G) = k and χ(G − e) ≤ k − 1 for
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every e ∈ E(G). Harary et. al. pointed out in [13] that the only graph which

is both k-critical and uniquely vertex-k-colorable is Kk, the complete graph on k

vertices. This follows because for any two nonadjacent vertices x and y in a k-

critical graph G, there is a vertex-k-coloring of G in which x and y receive the same

color and there is a different vertex-k-coloring in which they receive different colors.

This shows a fundamental difference between critical graphs and uniquely vertex-k-

colorable graphs.

We can also extend the above concepts of critical and edge-critical to unique

coloring, and both of these extensions have been considered in the literature on unique

coloring. We will say that a graph G is critically-uniquely vertex-colorable if it is

uniquely vertex-colorable and no proper induced subgraph of G is uniquely vertex-

colorable. Nešetřil studied this problem in 1972 in [17]. The following theorems

appear in this paper.

Theorem 2.5.1 If G is a critically uniquely vertex-k-colorable graph then either G

is isomorphic to Kk or δ(G) ≥ k.

Theorem 2.5.2 If G is a critically uniquely vertex-3-colorable graph then G is 3-

connected.

Theorem 2.5.3 The subgraph induced by a cutset of a critically uniquely vertex-

colorable graph contains two non-adjacent vertices.

Theorem 2.5.3 has a related counterpart for critical graphs which appears in [13].

Theorem 2.5.4 (Harary, Hedetniemi, and Robinson, 1969) No cutset of a k-critical

graph induces a uniquely vertex-(k − 1)-colorable graph.
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Nešetřil also showed in the following theorem of [17] that the class of induced

subgraphs of uniquely vertex colorable graphs is quite rich.

Theorem 2.5.5 (Nešetřil, 1972) Let H be any graph and let c be any χ(H)-coloring

of H. There is a uniquely vertex-χ(G)-colorable graph G such that H is an induced

subgraph of G and the unique coloring of G restricted to V (H) equals c.

Investigations about edge-critical uniquely vertex-colorable graphs were carried

out by Müller in [18], Aksionov in [19] and Steinberg and Mel’nikov in [20]. A

uniquely vertex-k-colorable graph G is said to be uniquely edge-critical if for every

edge e ∈ E(G), the graph G − e is not uniquely vertex-k-colorable. Corollary 2.2.2

shows that every uniquely vertex-k-colorable graph on exactly (k − 1)n −
(
k
2

)
edges

is uniquely edge-critical. Aksionov conjectured in [19] that if G was an edge-critical

uniquely vertex-3-colorable planar graph on n vertices then |E(G)| = 2n−3, the value

of the above formula when k = 3. This was disproved the same year by Steinberg

and Mel’nikov in [20]. They posed the following problem: Find an exact upper

bound for the number of edges in a planar, edge-critical uniquely vertex-3-colorable

graph. Note that when vertex-3-coloring is replaced by vertex-4-coloring, then Euler’s

formula implies that every edge critical uniquely vertex-4-colorable planar graph G

on n vertices has exactly 3n− 6 edges.

Results of Müller in [18] characterize all induced subgraphs of edge critical uniquely

vertex-colorable graphs.

Theorem 2.5.6 (Müller, 1979) A graph G is an induced subgraph of some uniquely

edge-critical graph with chromatic number k if and only if χ(G) ≤ k, and for every
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edge e = {x, y} ∈ E(G), there is a homomorphism fe : G − e → Kk satisfying

fe(x) = fe(y).

He also proved a similar characterization for induced subgraphs of edge-critical

uniquely vertex colorable graphs with large girth.

Theorem 2.5.7 (Müller, 1979) Let k and r be positive integers. The graph G is

an induced subgraph of some uniquely edge-critical graph G having χ(G) = k and

minimum circuit length at least r if and only if the minimum circuit length of G is at

least r, χ(G) ≤ k, and for every edge e = {x, y} ∈ E(G), there is a homomorphism

fe : G− e → Kk satisfying fe(x) = fe(y).

2.6 Uniquely Colorable Graphs with Large Girth

The complete graph on k vertices is uniquely vertex-k-colorable . For various reasons

it becomes tempting to conjecture that every uniquely vertex-k-colorable graph has

a subgraph isomorphic to Kk. In fact, the results of Chartrand and Geller in [21]

and this thesis show that this is the case for any integer k and any uniquely vertex-k-

colorable planar graph G. However in general it is not true as the following theorem

of Harary et. al. in [13, 22] shows:

Theorem 2.6.1 For every k ≥ 3, there is a uniquely vertex-k-colorable graph with

no subgraph isomorphic to Kk.

A number of even stronger results that generalize a classic result of Erdős soon

followed. In [17, 18, 23], it was shown that for every k ≥ 3 and every positive integer
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g there are uniquely vertex-k-colorable graphs with no circuits of length g or less. We

cite one of these results, due to Müller, which appears in [18].

Theorem 2.6.2 (Müller, 1979) Let g and k be positive integers and let H be any

k-vertex-colorable graph which has no circuits of length less than g. Then there is a

uniquely vertex-k-colorable graph G with no circuits of length less than g which has

an induced subgraph isomorphic to H.

Another desirable structure in a uniquely vertex-k-colorable graph G is a vertex of

degree exactly k − 1. When such a vertex exists, one can make induction arguments

because G− x is uniquely vertex-k-colorable. Of course, this can not be expected in

general because if G 6= Kk and G is uniquely vertex-k-colorable then it is possible to

add edges to G and preserve the unique vertex-k-colorability of G. One might then

conjecture that if G has a minimum (= (k − 1)n−
(
k
2

)
by Corollary 2.2.2 in Section

2.2) number of edges then G has a vertex of degree k − 1. This is true when k = 4

and G is a planar graph, and is the central result of this thesis. In general this fails

according to an English summary of a paper written by Dmitriev in Russian [24].

Theorem 2.6.3 (Dmitriev, 1982) Let G be a uniquely vertex-k-colorable graph on

n vertices with exactly (k − 1)n −
(
k
2

)
edges. Then the minimum degree δ(G) of G

satisfies k− 1 ≤ δ(G) ≤ 2k− 3. Moreover, for every δ ∈ {k− 1, k, . . ., 2k− 3}, there

is a uniquely colorable graph with exactly (k − 1)n −
(
k
2

)
edges and with minimum

degree δ.

A 1990 conjecture of Xu in [25] asks if a uniquely vertex-k-colorable graph G with

the minimum number of edges always contains a Kk.

To this we add the weaker conjecture:
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Conjecture 2.6.1 Every uniquely vertex-k-colorable graph with exactly (k−1)n−
(
k
2

)

edges has either a subgraph isomorphic to Kk or a vertex of degree at most k − 1.

2.7 Unique Edge Coloring

2.7.1 Basic Results About Unique Edge Coloring

We first state some fundamental facts about about unique edge-colorings and then

discuss characterizations of uniquely edge-k-colorable simple graphs.

The ideas of Theorem 2.2.1 and Corollary 2.2.2 are used in proving the the fol-

lowing about unique-edge-coloring which appears in [4].

Proposition 2.7.1 (Fiorini and Wilson, 1978) If G is a uniquely edge-k-colorable

graph on n vertices and e edges then

1. Each edge of G is adjacent to edges of every other color.

2. The subgraph Hα,β of G induced by edges colored either α or β is either a path

or a circuit.

3. 1
2
nk −

(
k
2

)
≤ e ≤ 1

2
nk and both these bounds can be attained.

4. If G is a regular k− valent graph (k ≥ 3) and if H is a graph obtained from G

by subdividing any edge of G, then H is k-critical.

The following theorem obtained by Greenwell and Kronk in [26], and indepen-

dently by Fiorini [3], shows that with one exception, uniquely edge-k-colorable graph

G is of class one, that is χ′(G) = ∆(G) = k, where ∆(G) denotes the maximum

degree in G.
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Theorem 2.7.1 (Greenwell and Kronk, Fiorini ) If G is a uniquely edge-k-colorable

simple graph then unless G is isomorphic to K3, G is of class one, that is χ′(G) =

∆(G) = k.

2.7.2 Characterizing Unique Edge-k-Coloring for k ≥ 4

We now discuss characterizations of simple uniquely edge-k-colorable graphs. If k = 1

it follows that the only uniquely edge-k-colorable graph consists of a graph with

isolated vertices and edges. If k = 2 the only uniquely edge-k-colorable graph is an

even cycle or a path. For k ≥ 4 Fiorini in [3] and Wilson in [27] made a conjecture

which we denote by U(k).

U(k) : The only connected uniquely-k-edge colorable graph is K1,k, the k-star.

We will now outline a proof that for k ≥ 5, that U(4) implies U(k).

Let k ≥ 5 and suppose that G is a uniquely edge-k-colorable graph with a unique

edge-k-coloring c : E(G)→ {1, . . . , k}. We first show that each vertex in G has degree

either k or 1. A vertex cannot have degree 0 because the graph is connected and it

cannot have degree greater than k because if it did, it would not be edge-k-colorable.

Suppose some vertex y has degree d, where 2 ≤ d ≤ k−1 and without loss of generality

let 1 and 2 be two colors such that there are edges incident to y which receive colors 1

and 2 and let 3 be a color such that there is no edge incident to y that receives color

3. Consider the subgraph of G induced by the edges of G which receive some color

in {1, 2, 3, 4}. This subgraph must include vertex y and the two edges incident to y

which are colored 1 and 2. It must be uniquely edge-4-colorable, because otherwise

the original coloring would not be a unique edge-k-coloring. Assuming U(4) to be

true, this subgraph must be K1,4. But y ∈ V (K1,4) has degree at least two and at
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most three which is a contradiction. Thus every vertex has degree 1 or k in G. Using

similar reasoning, it can be shown that there is exactly one vertex of degree k, and

that for every color a in {1, . . . , k}, there is exactly one edge colored a. This shows

that G is isomorphic to K1,k, as desired.

Andrew Thomason proved that U(4) was true in [28], and therefore the only case

that remains to be considered is the case k = 3. We will now discuss some of the

research and results surrounding this case.

2.8 Unique edge-3-coloring and the Fiorini-Wilson-

Fisk Conjecture

The state of unique edge-colorings of simple graphs is nice because there are con-

cise characterizations of uniquely edge-k-colorable graphs for every integer k 6= 3.

Moreover, the result of this thesis characterizes uniquely edge-3-colorable cubic pla-

nar graphs. Thus the only cases remaining for unique edge-3-coloring are when G is

non-planar or G is not 3-regular. We shall see that many of the conjectures about

uniquely edge-3-colorable graphs which are non-planar or not 3−regular claim a fairly

specific structure for these graphs.

2.8.1 The Fiorini-Wilson-Fisk Conjecture and its Precursors

We will discuss the development of the Fiorini-Wilson-Fisk Conjecture as well as

other conjectures about unique edge-3-coloring.

One of the first conjectures about unique edge-3-colorability is that of Greenwell
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and Kronk in [26]:

Conjecture 2.8.1 (Greenwell and Kronk, 1973) If G is a uniquely edge-3-colorable

cubic graph, then G is planar and contains a triangle.

Figure 2.1: The Graph P (9, 2)

For this to be true, we would have to interpret the word “graph” in the above

statement to mean simple graph, as the graph consisting of two vertices and three par-

allel edges is cubic, planar, has a unique edge-3-coloring and yet contains no triangle.
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More fundamentally, this statement must be modified because of the graph P (9, 2),

shown in Figure 2.1, which is non-planar, cubic and uniquely vertex-3-colorable.

The existence of P (9, 2) may well have led Fiorini and Wilson to propose in [1]

what we have been referring to as the Fiorini-Wilson-Fisk Conjecture:

Conjecture 2.8.2 Fiorini-Wilson-Fisk Conjecture: Every uniquely edge-3-colorable

cubic planar graph on at least 4 vertices contains a triangle.

The condition “on at least 4 vertices” is added to avoid the case of the two vertex

cubic graph with three parallel edges. Notice that both planarity, and the condition

that every vertex has degree exactly three are assumed. The vertex equivalent of the

Fiorini-Wilson-Fisk Conjecture was stated in Conjecture 1.2.1 and appeared in [2] as

an unsolved problem. A strengthening of the vertex version, due to Jensen [29], is

given in Section 2.8.5.

2.8.2 Conjectures Which Relax Planarity or Regularity

Let G and H be graphs. If H is isomorphic to a graph obtained from from a subgraph

of G by contracting edges, then G is said to have a H-minor. A graph G contains

a Petersen minor if G has the well known Petersen graph as a minor. The first

conjecture concerning non-planar uniquely edge-3-colorable cubic graphs is due to

Fiorini and Wilson [4]:

Conjecture 2.8.3 If G is a uniquely edge-3-colorable non-planar cubic graph then

G has a triangle or G is isomorphic to P (9, 2).
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The graph P (9, 2) is a generalized Petersen graph, and it appears in Figure 2.1.

There are some other conjectures about uniquely edge-3-colorable cubic graphs G

which do not assume planarity. One due to Zhang [5] in 1995 states that

Conjecture 2.8.4 If G is a uniquely edge-3-colorable simple cubic graph, then G

contains a Petersen minor or a triangle.

A snark is a two-edge connected cubic graph that is not edge-3-colorable. Again

in 1995, Zhang also conjectured in [5] that

Conjecture 2.8.5 If G is a uniquely edge-3-colorable, simple, cubic graph, then G

contains either a snark as a minor or a triangle.

In view of the truth of the Fiorini-Wilson-Fisk Conjecture, it would suffice to

prove these conjectures for non-planar graphs only. Goldwasser and Zhang have also

provided some additional help towards proving the second conjecture in the following

theorem [5].

Theorem 2.8.1 (Goldwasser & Zhang, 1995) If G is a cyclically 4-edge connected

uniquely-edge-3-colorable graph and if G has a cyclic 4-edge cut, then G contains a

snark as a minor.

As for the assumption of a uniquely edge-3-colorable graph being sub-cubic, there

is the following conjecture of Fiorini in 1973 [3] and Fiorini and Wilson in 1978 [4]

which was also brought up by Kriessell [30].

Conjecture 2.8.6 Every uniquely edge-3-colorable planar graph that is not isomor-

phic to K1,3 contains a triangle.
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2.8.3 Structure of Uniquely Edge-3-Colorable Cubic Planar

Graphs

We will say that a planar graph G is a Fiorini-Wilson-Fisk graph (or a FWF-graph

for short) if there is a sequence G0, G1, . . ., Gp, such that G0 is isomorphic to K4,

Gi arises from Gi−1 by the operation defined in Section 1.2 of replacing a degree 3

vertex with a triangle, and Gp = G.

We will also say that a graph G is a vertex-Fiorini-Wilson-Fisk graph if there is a

sequence of graphs G0, G1, . . ., Gp embedded in the plane such that G0 is isomorphic

to K4, G = Gp and Gi arises from Gi−1 by adding a vertex v and joining v to exactly

three vertices in a common facial triangle of Gi−1.

We now provide the promised proof of Theorem 1.2.2.

Theorem 2.8.2 Conjecture 1.2.1 is equivalent to the statement that every simple

uniquely vertex-4-colorable planar graph is a vertex Fiorini-Wilson-Fisk graph.

Proof: Let G be a uniquely vertex-4-colorable planar graph. First assume that

every uniquely vertex-4-colorable planar graph is a vertex Fiorini-Wilson-Fisk graph.

It then immediately follows that G has a vertex of degree three.

Now assume that every uniquely vertex-4-colorable planar graph has a vertex of

degree three. We prove that G is a vertex Fiorini-Wilson-Fisk graph by induction on

|V (G)|. Because of the assumption, it follows that G has a vertex v of degree three.

Also, it must be the case that G − {v} is uniquely vertex-4-colorable and planar or

else G would not be. By the induction hypothesis, G−{v} must be a vertex Fiorini-

Wilson-Fisk graph and it then follows that G itself is also a vertex Fiorini-Wilson-Fisk

graph. This completes the proof of Theorem 2.8.2.
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Although the Fiorini-Wilson-Fisk Conjecture states the existence of a triangle in a

uniquely edge-3-colorable cubic planar graph, it actually implies more as the following

result of Goldwasser and Zhang in [6] shows.

Theorem 2.8.3 (Goldwasser and Zhang) A Fiorini-Wilson-Fisk graph on at G with

at least 6 vertices contains at least two triangles, and all of its triangles are disjoint.

If G has at least 8 vertices and exactly two triangles, then each triangle shares an

edge with a 4-circuit which is disjoint from the other triangle.

For convenience, we state the vertex version of this theorem.

Theorem 2.8.4 A vertex Fiorini-Wilson-Fisk graph G on at least 5 vertices contains

at least two degree 3 vertices and all of the degree 3 vertices of G are non-adjacent.

If G has at least 6 vertices and exactly two degree three vertices v1 and v2, then there

are two vertices u1 and u2 having degree 4 in G, and such that ui is adjacent to vi

and not adjacent to v3−i for i = 1, 2.

2.8.4 Cantoni’s Conjecture, A Converse of The Fiorini-Wilson-

Fisk Conjecture

If the edge-coloring c : E(G) → {1, . . . , k} is a unique edge-k-coloring, and i, j ∈

{1, . . . , k} are distinct colors, then by Theorem 2.2.1 applied to the line graph of G,

the subgraph of G that consists of edges colored i or j and their endpoints must be a

hamiltonian circuit. It follows that a uniquely edge-3-colorable graph has at least 3

hamiltonian circuits. Moreover, since a cubic graph has an even number of vertices, it

can have at most 3 hamiltonian circuits because a fourth hamiltonian circuit defines
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a two coloring of the edges in the hamiltonian circuit which easily extends to another

edge-3-coloring of G.

The converse of this was conjectured Greenwell and Kronk in 1973 [26] and by

Fiorini and Wilson [1] in 1977, namely,

Conjecture 2.8.7 Every cubic graph which has exactly 3 hamiltonian circuits is

uniquely edge-3-colorable.

Thomason disproved this conjecture in 1982 by showing that the family of gen-

eralized Petersen graphs P (6k + 3, 2) (k ≥ 2) have exactly 3 hamiltonian cycles but

more than one edge-3-coloring [31]. These graphs are non-planar and if the hypothesis

of planarity is added, then the revised conjecture is still open. A related conjecture

of Cantoni [32] is that any cubic graph with exactly three hamiltonian circuits con-

tains a triangle. The truth of the Fiorini-Wilson-Fisk Conjecture implies that the

conjecture that a cubic planar graph with exactly 3 hamiltonian circuits is uniquely

edge-3-colorable is equivalent to the Cantoni Conjecture as we shall prove in Theorem

2.8.5.

Theorem 2.8.5 Let G be a cubic planar graph with exactly 3 hamiltonian cycles.

The following two statements are equivalent.

1) (Cantoni’s Conjecture) G contains a triangle.

2) G is uniquely edge-3-colorable.

Proof: LetG be a cubic planar graph with exactly three hamiltonian cycles. Consider

the operation performed on a cubic graph in which a triangle is contracted to a vertex.

This operation, and its inverse were mentioned in Section 1.2 and Section 2.8.3 and
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it is pointed out in [33] that they both preserve the number of hamiltonian cycles.

Using this we prove the claimed equivalence.

First assume the Cantoni Conjecture is true and proceed by induction on |V (G)|.

From the Cantoni Conjecture, deduce that G has a triangle since G has exactly 3

hamiltonian circuits. Perform the above operation by contracting this triangle to

get a smaller cubic graph G′, which also has exactly 3 hamiltonian circuits and so

by induction is uniquely edge-3-colorable. This, in turn, implies that G is uniquely

edge-3-colorable, as desired.

Now assume that a cubic planar graph with exactly 3 hamiltonian circuits is

uniquely edge-3-colorable and let us assume that the Cantoni Conjecture holds for

all cubic planar graphs on less than n vertices. If G is a cubic planar graph on n

vertices with exactly 3 hamiltonian circuits, then G is uniquely edge-3-colorable. By

the Fiorini-Wilson-Fisk Conjecture, G has a triangle, and so the proof is complete.

There is another connection of unique edge-3-colorability and the Cantoni Con-

jecture due to Zhang in [33]. A (1, 2)-eulerian weight w of a 2−connected graph is

a function w : E(G) → {1, 2} such that the total weight of each edge cut is even.

A faithful cover of w is a family C of circuits such that each edge e is contained in

precisely w(e) circuits of C. If w is a (1, 2)-eulerian weight of a cubic graph G then

a faithful cover C of w is hamiltonian if C is a set of two hamiltonian circuits. A

(1, 2)-eulerian weight w of G is hamiltonian if every faithful cover of w is hamilto-

nian. With these definitions behind us we can state the next result of Zhang which

gives some connection between the Cantoni Conjecture and uniquely edge-3-colorable

planar graphs:

31



Theorem 2.8.6 (Zhang, 1995) Let G be a cubic graph admitting a hamiltonian

weight w. Then the following statements are equivalent:

1. G is uniquely edge-3-colorable.

2. G has precisely three hamiltonian circuits.

3. The hamiltonian weight has precisely one faithful cover.

4. The set {e : w(e) = 1} is a hamiltonian circuit.

2.8.5 Strengthenings implied by the Fiorini-Wilson-Fisk Con-

jecture

A nowhere zero Z2×Z2 flow is a function φ : E(G) → Z2×Z2 such that φ(e) 6= 0 for

every edge e ∈ E(G) and for every vertex v ∈ G,
∑

e∈δ(v) φ(e) = 0. Here, δ(v) is the

set of all edges which have vertex v as an endpoint. Given a nowhere zero Z2 × Z2

flow f , we say that f is a unique flow if every other nowhere zero Z2×Z2 flow f ′ can

be obtained from f by an automorphism of Z2 × Z2. The following is an observation

of Robin Thomas [34].

Theorem 2.8.7 If a connected graph G has a unique nowhere zero Z2 × Z2 flow f

then G is cubic. If G is also planar, then G is a Fiorini-Wilson-Fisk graph, and so

contains a triangle.

Proof: The definition of Z2×Z2 shows that 2r(1, 0) = 2r(0, 1) = 2r(1, 1) = (0, 0) for

every positive integer r. For a vertex x let ax,bx, cx ∈ {0, 1} be the mod 2 parity of the

number of edges incident to x that are assigned (1, 0), (0, 1), (1, 1) respectively. Now

(0, 0) =
∑

e∈δ(x) f(e) = ax(1, 0)+bx(0, 1)+cx(1, 1) = (ax+cx, bx+cx), and this implies

either ax = bx = cx = 1 or ax = bx = cx = 0. Either way, any subgraph Lα,β induced
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by edges of G which are assigned two distinct elements α, β ∈ {(1, 0), (0, 1), (1, 1)}

has even degree at each vertex and so is a spanning eulerian subgraph. If Lα,β is not

a simple circuit then one can exchange α, β along the edges of a simple proper sub-

circuit of L to get a different nowhere zero flow. This contradicts the fact that f is

a unique flow. Thus L is a simple circuit for any distinct α, β ∈ {(1, 0), (0, 1), (1, 1)},

which implies that G is cubic.

Since there is a one to one correspondence between nowhere zero Z2 × Z2 flows

and edge-3-colorings of a cubic graph, if the graph is planar, it must be a Fiorini-

Wilson-Fisk graph, and, in particular, contains a triangle. This completes the proof

of Theorem 2.8.7.

Let G and H be graphs. Recall that if H is isomorphic to a graph obtained from

G by contracting and deleting edges, then G is said to have a H-minor.

Theorem 2.8.8 (Jensen) A simple graph G with no K5-minor is uniquely vertex-4-

colorable if and only if there is a sequence G0, G1, . . ., Gp, such that G0 is isomorphic

to K4, Gi is obtained from Gi−1 by adding a vertex v to Gi−1 and joining v to exactly

three vertices which induce a triangle in Gi−1.

Before proving this, we will need a definition and a fundamental characterization

of graphs with no K5-minor. This characterization is originally due to Wagner, and

the formulation we present is found in R. Diestel’s textbook Graph Theory [35].

If G is a graph and G1, G2 and S are induced subgraphs of G having the properties

that G = G1

⋃
G2, S = G1

⋂
G2, then G is said to be obtained from G1 and G2 by

pasting along S [35]. The Wagner graph, denoted by V8, is shown in figure 2.2.
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Figure 2.2: The Wagner Graph V8

Theorem 2.8.9 (Wagner, 1937) Let G be an edge maximal graph with no K5−minor.

If |V (G)| ≥ 4, then G can be constructed recursively by pasting plane triangulations

and V8’s along K3’s and K2’s.

We now prove Jensen’s extension by induction on |V (G)|. Let G be a uniquely

vertex-4-colorable graph with no K5-minor. Let G′ be an edge maximal spanning

super-graph of G with no K5-minor. It can be shown using Wagner’s Theorem that

|E(G′)| ≤ 3|V (G′)| − 6. By Corollary 2.2.2, |E(G)| ≥ 3|V (G)| − 6 and thus G = G′.

By applying Wagner’s Theorem to G, we may find two graphs G1 and G2, such

that G is obtained from G1 and G2 by pasting along an edge or a triangle, G1 is itself

an edge-maximal graph with no K5 minor, and G2 is either a planar triangulation or

is isomorphic to V8, the Wagner graph.
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Now χ(G1), χ(G2) ≤ 4 since they are subgraphs of G. Using this fact, we note

that for i = 1, 2, any vertex-4-coloring of Gi can be extended to a vertex-4-coloring

of G since G1 and G2 are pasted along either an edge or a triangle. Therefore, each

of G1 and G2 must be uniquely vertex-4-colorable since the graph G is uniquely

vertex-4-colorable.

This implies that G2 is not isomorphic to V8, since χ(V8) = 3. Therefore, G2 is a

plane triangulation and by the assumed truth of the Fiorini-Wilson-Fisk Conjecture,

must be a planar vertex Fiorini-Wilson-Fisk graph. If |V (G2)| = 4, then G2 is

isomorphic to K4 and we would be done after applying the induction hypothesis to

G1. If |V (G2)| ≥ 5, then Theorem 2.8.4 implies the existence of a vertex in G2 which

has degree 3 in G and whose neighbors induce a triangle in G. Jensen’s extension

thus follows.

2.9 Summary and Conclusion

Two things may be concluded in the light of this survey on the results of Unique

Colorability. The first is the drastic difference in the difficulty between unique edge

colorability and unique vertex colorability. On the one hand, there exist very nice and

precise characterizations for uniquely-edge-colorable graphs for almost all conceivable

graphs. Even in the cases which are not settled yet, namely graphs which have

maximum degree three and which are either non-planar or sub-cubic, many of the

conjectures propose a very specific structure.

On the other hand, uniquely vertex-colorable graphs seem to form a rich and varied

class, and usually elude any nice structural characterization. Related to this is the
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fact that identifying them will probably be computationally difficult [14]. Intuitively,

problems that are NP-Hard will not yield a “concise” characterization except in the

case of the unlikely event that NP=coNP.

One result illustrating the richness of the class of uniquely vertex colorable planar

graphs is that it is possible, given any graph H and any χ(H) coloring c of H,

to find a uniquely-χ(H)-colorable graph G whose unique coloring, when restricted

to V (H), equals c [17]. Another similar theorem says that the super-graph G can

be taken to have arbitrarily large minimum circuit length and to be edge-critical,

provided only that H has sufficiently high minimum circuit length, χ(H) ≤ χ(G),

and a certain condition about the set of homomorphisms on subgraphs of H holds

[18]. This result and others imply the existence of uniquely vertex-k-colorable graphs

having arbitrarily large minimum circuit length [23, 36]. This implies, in particular,

that there are uniquely vertex-k-colorable graphs which have no subgraph isomorphic

to Kk. Another structure that might be expected in an edge-critical uniquely vertex-

k-colorable graph is a vertex of degree k − 1. This, however, cannot be expected in

general, and in fact there exist edge critical uniquely vertex-k-colorable graphs which

have minimum degree as large as 2k − 3 [24].

In light of these results, the resolution of the Fiorini-Wilson-Fisk Conjecture shows

that unique vertex-4-coloring in the plane is exceptional. Its truth shows that it is

possible to decide in polynomial time whether or not a planar graph is uniquely vertex-

4-colorable. It also is the case that a uniquely vertex-4-colorable planar graph cannot

contain C4 as an induced subgraph. It also shows that uniquely vertex-4-colorable

planar graphs must contain a K4 as a subgraph and must also contain vertices of

degree 3.
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What then is the source of this difference in behavior between unique vertex-4-

coloring in the plane and unique vertex-coloring in general? Two sources which come

to mind are 1) planarity and 2) the fact that unique vertex-4-coloring is equivalent to

unique edge-3-coloring. To better understand the effect of planarity, it may be good

to look into unique vertex coloring on more general surfaces. The writer has some

suspicion that the embedding on a surface tends to produce nice substructures, like

degree k − 1 vertices and subgraphs isomorphic to Kk’s. If nothing else, it imposes

conditions on the minimum degree. Perhaps, on the other hand, the real source of

the nice characteristics of unique vertex-4-coloring of planar graphs is that it is really

a problem about unique-edge-coloring. To investigate this, it might be interesting

to look at unique vertex-colorability of graphs that are nearly line graphs, like claw-

free graphs, since unique coloring is well understood for line graphs via unique edge

coloring. This may make the unique vertex coloring problem significantly easier.
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Chapter 3

Structure of Minimum Counterexample to

the Fiorini-Wilson-Fisk Conjecture

3.1 Definitions and Notation

We start with some definitions to help us understand the discoveries that have been

made about the structure of counterexamples to the Fiorini-Wilson-Fisk Conjecture.

A minimum counterexample is a graph G such that

(1) G is planar,

(2) G is not a vertex Fiorini-Wilson-Fisk graph,

(3) G has at most one vertex-4-coloring, up to equivalence of colorings, and

(4) subject to conditions (1), (2) and (3), |V (G)| is minimum.

A set of edges F ⊂ E of a graph is an edge cut for a graph G if the graph G− F

has at least two components. A graph is k−edge-connected if every edge cut F ⊂ E

of G satisfies |F | ≥ k. An edge cut F of a graph G is cyclic if at least two components

of G−F have circuits. A graph is cyclically k-edge-connected if every cyclic edge cut

F satisfies |F | ≥ k. A cyclic edge-cut is trivial if one of the components of G − F

is precisely a circuit containing |F | edges. Recall that a graph is k-connected if after

the removal of any set having at most k − 1 vertices, the graph is still connected. A

graph G is internally 6-connected if it is 5-connected, and if for any set A of size 5
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having the property that G− A is disconnected, it must be the case that one of the

components of G− A consists of a single vertex.

Given a circuit C in a drawing (U, V ) of a planar graph G, the Jordan Curve

Theorem insures that C (treated as a curve in the topological sense), partitions the

sphere Σ into two connected (topologically) regions which are homeomorphic to a

disc. A circuit C in a drawing of a graph G is said to be a separating circuit of the

drawing of G if when C, when considered as simple topological closed curve, has the

property that the two arc-wise connected components of Σ−C both contain vertices

of V (G). When the drawing of G is clear from the context, we will also say that C is

a separating circuit of G.

Work on the Fiorini-Wilson-Fisk Conjecture has produced a number of results

about what a counterexample to the conjecture must look like. It is not too difficult

to prove that any counterexample to the vertex version of the Fiorini-Wilson-Fisk

Conjecture must be a triangulation of the plane, and that a minimum counterexample

must not have any separating triangles. Hind showed in his 1988 Ph.D. thesis that a

minimum counterexample to the edge version of the Fiorini-Wilson-Fisk Conjecture

must have girth 5, which implies that vertices in a vertex counterexample must have

degree at least 5 [37]. Goldwasser and Zhang in [6] strengthened this to prove that a

minimum counterexample to the edge version of the Fiorini-Wilson conjecture must

be cyclically 5-edge-connected. They then showed in [5] that every counterexample

to the edge version of the Fiorini-Wilson-Fisk Conjecture must be cyclically 5-edge-

connected. They showed, moreover, that in a minimum counterexample, every cyclic

edge cut F , with |F | = 5 must be trivial. By considering the dual graph, this can be

seen to imply that a minimum counterexample as we have defined it in Section 3.1 is
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internally 6-connected. Boehme, Stiebitz and Voigt [38] independently proved that a

minimum counterexample to the vertex version of the Fiorini-Wilson-Fisk Conjecture

is 5-connected.

We now give a proof of this result of Goldwasser and Zhang that says that a

minimum counterexample must be internally six-connected. First, we prove some

lemmas which show that the graph must be 5−connected.

Lemma 3.1.1 Any counterexample G to the Fiorini-Wilson-Fisk Conjecture must

have a drawing that is a triangulation. Moreover, if G is a minimum counterexample,

then no drawing of G which is a triangulation has a separating triangle.

Proof: First letG be any counterexample to the Fiorini-Wilson-Fisk Conjecture. The

fact that some drawing of G is a triangulation of the plane follows from Corollary

2.2.3.

Now let G be a minimum counterexample, as in the definition found in Section 3.1.

Consider a drawing (U, V ) of G which is a triangulation and which has a separating

triangle C. Let G′ be the drawing which consists of the subdrawing of (U, V ) induced

by all of the vertices that are in one of the arc-wise connected components of Σ− C

along with the all of the vertices of C. We see that G′ is uniquely 4-vertex colorable

or else G would have two distinct vertex-4-colorings. Since G is assumed to be a

minimum counterexample, then G′ is a vertex Fiorini-Wilson-Fisk graph, and so

Theorem 2.8.4 implies that G′ has at least two non-adjacent degree three vertices.

Thus, one of these two degree 3 vertices must not be a vertex in C, and therefore

must also be a degree three vertex in the original graph G, which is a contradiction.

This completes the proof of the lemma.
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3.2 Excluding Separating 4−Circuits

If c is a proper vertex-4-coloring of a graph G which uses colors {1, 2, 3, 4}, then we

will denote by G(i, j, c) the subgraph of G induced by vertices colored i or j. If the

coloring c is understood from the context, then we abbreviate G(i, j, c) by G(i, j).

Throughout this section and Section 3.3, we will be assuming that G is a minimum

counterexample, and that C is a separating circuit in some drawing of (U, V ) of G.

We will denote by GI be the subdrawing of (U, V ) induced by all of the vertices in one

of the arc-wise connected components of Σ−C along with V (C), and we will denote

by GO the subdrawing of (U, V ) induced by {x1, x2, x3, x4} and all of the vertices in

the other arc-wise connected component of Σ − C. We note that GI and GO each

have a unique face bounded by C that is not a triangle, and so we can consider each

of GI and GO to be a near triangulation by declaring this unique face in each to be

the infinite face. We note that since G is a minimum counterexample, then GI, GO

and graphs which are formed from GI or GO by either identifying vertices or adding

only edges and which are also planar will be either vertex Fiorini-Wilson-Fisk graphs

or will have at least two vertex-4-colorings. In either event, they will have at least

one vertex-4-coloring.

Lemma 3.2.1 Let G be a minimum counterexample. No drawing of G has a sepa-

rating four circuit.

Proof: Suppose by way of contradiction that G has a drawing (U, V ) with a separat-

ing four-circuit C having vertices x1, x2, x3, x4 with xi adjacent to xi+1 for i = 1, 2, 3

and x4 adjacent to x1. Note that x1 is not adjacent to x3 nor is x2 adjacent to x4,

because Lemma 3.1.1 guarantees the absence of separating triangles.
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Let CI (CO) denote the set of restrictions of four-colorings of GI (GO) to the four

circuit {x1, x2, x3, x4}. We will represent 4−colorings of C by four element strings

a1a2a3a4, where ai is the color of xi for 1 ≤ i ≤ 4. Two colorings c and c′ of V (C) are

deemed equivalent if there is a permutation π of {1, 2, 3, 4} such that c(xi) = π(c′(xi))

for every 1 ≤ i ≤ 4. Let CI (CO) denote those colorings in {1234, 1213, 1232, 1212}

that are equivalent to the restriction to {x1, x2, x3, x4} of a four-coloring of GI (GO).

We denote by C1234 those colorings of C which are equivalent to the coloring which

assigns c(x1) = 1, c(x2) = 2, c(x3) = 3, and c(x4) = 4, and make analogous definitions

for C1213, C1232, and C1212. Claim:

(i) {1212, 1213}⋂CI 6= ∅

(ii) {1212, 1232}⋂CI 6= ∅

(iii) {1232, 1234}⋂CI 6= ∅

(iv) {1232, 1234}⋂CI 6= ∅

Proof of Claim. To prove (i), form a graph from GI by identifying x1 and x3. This

graph is planar and is loop-less, because x1 is not adjacent to x3 in G. Since G is a

minimum counterexample, this graph is either a vertex Fiorini-Wilson-Fisk graph or

it has two vertex-4-colorings. Either way, it has at least one vertex-4-coloring. This

4−coloring naturally corresponds to a 4-coloring of GI in which x1 and x3 receive the

same color. The colorings which are equivalent to colorings in {1234, 1213, 1232, 1212}

and that give x1 and x3 the same color are equivalent to the colorings 1212 and 1213.

This shows that (i) holds. By similar reasoning applied to x2 and x4 we see that (ii)

holds. To prove (iii), add the edge {x1, x3} in the infinite face of GI and use the

similar reasoning as above to produce a vertex-4-coloring of GI in which x1 and x3

receive different colors. Since all colorings for which x1 and x3 are colored differently
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are equivalent to 1232 and 1234, then (iii) holds. By similar reasoning applied to x2

and x4, (iv) holds. This completes the proof of the claim. The same proof could be

applied to CO so the claim holds with CO replaced by CI .

By (i) and (iii) of the above claim, |CI | ≥ 2 and |CO| ≥ 2. If |CI | = 2 then

(i),(ii),(iii) and (iv) imply that CI = {1234, 1212} or CI = {1213, 1232}. Similarly, if

|CO| = 2 then CO = {1234, 1212} or CO = {1213, 1232}.

We now show that we may assume |CI
⋂ CO| ≥ 1. First note that unless |CI | = 2

and |CO| = 2 we would have |CI
⋂ CO| ≥ 1 immediately. Thus we may assume that

CI = {1234, 1212} or CI = {1213, 1232} and CO = {1234, 1212} or CO = {1213, 1232}.

We may therefore assume without loss of generality that CI = {1234, 1212} and

CO = {1213, 1232} or we would be done. Let c be a vertex-4-coloring of GI with the

property that c(x1) = 1, c(x2) = 2, c(x3) = 1 and c(x4) = 3. If the vertices x1 and

x3 are in the same component of the subgraph of GI(1, 4, c), then the vertices x2 and

x4 can not be in the same component of the subgraph of GI(2, 3, c) because GI is a

drawing. Therefore, it is possible to interchange the colors 2 and 3 in the component of

GI(2, 3, c) which contains the vertex x4. This will result in a coloring of GI which has

restriction to C denoted by 1212 which is impossible because CI = {1213, 1232}. It

follows from this contradiction that the vertices x1 and x3 are in different components

of G(1, 4, c). Therefore, we may interchange the colors 1 and 4 in that component of

G(1, 4, c) which contains the vertex x3 to get a coloring of GI whose restriction to C

is given by 1243 and which can be made equivalent to the coloring 1234. This also

contradicts CI = {1213, 1232}. Thus, we may assume that |CI
⋂ CO| ≥ 1.

Now we complete the proof of the lemma. Since |CI
⋂ CO| ≥ 1, if |CI | = 2 and

|CO| = 2 the work above shows that we must have |CI
⋂ CO| = 2 since |CI | = 2 implies
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that CI = {1234, 1212} or CI = {1213, 1232} with a similar statement for CO. Also,

if |CI | ≥ 3 and |CO| ≥ 3, then |CI
⋂ CO| ≥ 2 and we would be done. So we may

assume by the symmetry of CI and CO that |CI | = 2 and |CO| = 3. We will first show

that CI 6= {1234, 1212}. So assume that CI = {1234, 1212}. Consider a four-coloring

c of GI that has restriction to {x1, x2, x3, x4} equivalent to 1212. Without loss of

generality, we may assume that c(x1) = c(x3) = 1 and c(x2) = c(x4) = 2. If there is

a path in GI(1, 2) joining x1 and x3, then the planarity of GI implies that there is no

x2-x4 path in GI whose vertices are colored 2 or 4. But then by interchanging colors

in the component of the subgraph of GI(2, 4) containing the vertex x4, and permuting

the colors 3 and 4, we see that 1213 ∈ CI which is a contradiction. Thus, there is no

x1-x3 path in GI whose vertices are colored 1 and 3. Therefore, by interchanging the

colors 1 and 3 in the component of GI(1, 3, c) containing x3, we see that 1232 ∈ CI
which again is a contradiction. This shows that CI 6= {1234, 1212}.

Assume then that CI = {1213, 1232}. Consider a 4−coloring of GI that has

restriction to {x1, x2, x3, x4} equivalent to 1213. By using reasoning similar to the

previous paragraph, we can dispose of this case. This completes the proof of the

lemma.

3.3 Separating 5−Circuits

Because of Lemma 3.1.1 and Lemma 3.2.1, it suffices to show that if C is a separating

5-circuit in a minimum counterexample, then either the interior or the exterior of C

has exactly one vertex. Let the vertices of such a separating circuit C of length 5 be

x1, x2, x3, x4, x5. Note that by Lemma 3.1.1 and Lemma 3.2.1, C is chord-less. We
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will introduce the concept of a minority vertex whose definition depends on whether

C receives 3 or 4 colors in a proper 4-coloring. If c is a proper 4-coloring of C, in

which C receives exactly 3 different colors, (which we assume are 1,2, and 3), then

one of the colors {1, 2, 3} appears exactly once and the other two appear exactly

twice. The vertex which receives the color which appears exactly once is called the

minority vertex. If C receives four colors, say {1, 2, 3, 4}, then exactly one of the

colors {1, 2, 3, 4} appears twice. The unique vertex in V (C) which is adjacent to the

two vertices receiving this color will be the minority vertex in this case. By this

definition, every 4-coloring of C is uniquely specified by stating which vertex in C

is the minority vertex and whether C receives 3 or 4 colors. Thus we can denote a

class of equivalent colorings of C by an ordered pair (i, α) where i ∈ {1, 2, 3, 4, 5}

and α ∈ {3, 4} if xi is the minority vertex in a 4-coloring of C belonging to this class

which uses α colors. We will denote by CI (respectively CO) the set of ordered pairs

of the form above which represent coloring classes of restrictions to C of 4-colorings

of the graph GI (respectively GO).

Lemma 3.3.1 Let i ∈ {1, . . . , 5}.

a) If (i, 3) ∈ CI , then {(i−1, 3), (i−2, 4)}⋂ CI 6= ∅ and {(i+1, 3), (i+2, 4)}⋂CI 6=

∅.

b) If (i, 4) ∈ CI , then {(i+3, 3), (i+2, 4)}⋂CI 6= ∅, and {(i+2, 3), (i+3, 4)}⋂CI 6=

∅.

Here the first components of all ordered pairs should be interpreted modulo 5. The

same statements hold for CO as well.
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Proof: Let c be a coloring of GI that has restriction to x1, x2, x3, x4, x5 which is

represented by (i, 3). Without loss of generality we may assume (after possibly re-

labeling) that i = 1 and that x1 = 1 and that c(x1) = 1, c(x2) = c(x4) = 2 and

c(x3) = c(x5) = 3. If x2 and x4 are not in the same component of GI(2, 4, c), then

the colors 2 and 4 can be exchanged in the component containing x4 to get a coloring

of GI whose restriction to x1, x2, x3, x4, x5 is represented by (4, 4). If x2 and x4 are

in the same component of GI(2, 4, c), then x1 and x3 are not in the same compo-

nent of GI(1, 3, c), because if they were, the path in this component would intersect

the path joining x2 and x4 in GI(2, 4). Therefore the colors in the component of

GI(1, 3, c) containing x3 can be exchanged to get a coloring of GI whose restriction to

x1, x2, x3, x4, x5 is represented by (5, 3). This proves the assertion that if (i, 3) ∈ CI
then {(i− 1, 3), (i− 2, 4)}⋂CI 6= ∅.

Under the same assumption about c, if x1 and x4 are not in the same component

of GI(1, 2, c), then it can be shown that (2, 3) ∈ Ci. If x1 and x4 are in the same

component of G(1, 2, c), then x3 and x5 must be in different components of GI(3, 4, c),

and by an appropriate interchange of the colors 3 and 4, it can be shown that (3, 4) ∈

Ci. This establishes that {(i+ 1, 3), (i+ 2, 4)}⋂CI 6= ∅.

The proof of b) follows in the same way. Also, the same arguments can be applied

to GO to reach the same conclusions about GO. Therefore, the proof is complete.

The following notation will also be helpful: for i = 1, 2, 3, 4, 5, let Ti = {(i, 4),

(j, 3), (k, 3)} and Qi = {(i, 3), (i, 4), (j, 4), (k, 4)}, where j, k ∈ {1, 2, 3, 4, 5} and

j ≡ i + 2(mod 5) and k ≡ i + 3(mod 5). Arithmetic will be modulo 5, where the

context demands.
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Lemma 3.3.2 For every i ∈ {1, 2, 3, 4, 5},

1) Ti
⋂ CI 6= ∅.

2) Qi
⋂ CI 6= ∅.

Similar statements hold for the set CO in place of CI .

Proof: Let i ∈ {1, 2, 3, 4, 5}. We first prove 1). Because C is chord-less, we can iden-

tify the vertices xi−1 and xi+1 in the graph GI to get a graph G′I . This identification

is possible because C bounds the infinite face of GI . Because G is a minimum coun-

terexample, G′I has a vertex-4-coloring which naturally defines a vertex-4-coloring c

of the graph GI by “un-identifying” xi−1 and xi+1. In G′I , the single vertex obtained

by identifying xi−1 and xi+1 is in a triangle with the vertices xi+2 and xi+3. Therefore,

the coloring c of GI that arises from this coloring of G′I must assign the same color to

xi−1 and xi+1, and must assign two distinct colors other than c(xi−1) to the vertices

xi+2 and xi+3. If c uses exactly 3 colors then we may assume c(xi−1) = c(xi+1) = 1,

c(xi+2) = 2,c(xi+3) = 3 and c(xi) ∈ {2, 3}. Thus we see that either xi+2 or xi+3 is the

minority vertex. If c gives C 4 colors, then xi is the minority vertex. This completes

the proof that {(i, 4),((i+ 2), 3),((i+ 3), 3)}⋂ CI 6= ∅.

To prove 2), form the graph G′I from GI by adding the edges {xi, xi+2} and

{xi, xi+3} in the infinite face of GI that is bounded by C. By the minimality of G, G′I

has a vertex-4-coloring whose restriction to C uses at least 3 colors. If the restriction

to G′I uses exactly three colors, then xi is a minority vertex in this coloring. If it uses

4 colors then a little analysis will show that either xi or xi+2 or xi+3 is a minority

vertex. This proves 2).

Statements 1) and 2) clearly apply to GO as well as GI, since we used nothing

about GI except that it had infinite face bounded by C. This completes the proof of
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Lemma 3.3.2.

The next proof is adapted from Robertson et. al.

Lemma 3.3.3 (Birkhoff [9]) Let S = {(1, 3), (2, 3), (3, 3), (4, 3), (5, 3)} and suppose

that CI
⋂S 6= ∅. The set CI contains one of {T1, T2, T3, T4, T5,Q1,Q2,Q3,Q4,Q5,S}.

The same holds for CO.

Proof: If S ⊂ CI , we are done. Therefore, without loss of generality assume

that (1, 3) ∈ CI and (2, 3) /∈ CI . By Lemma 3.3.1, {(2, 3), (3, 4)}⋂CI 6= ∅, so

(3, 4) ∈ CI . If (5, 3) ∈ Ci, then T3 ⊂ CI , so we may assume (5, 3) /∈ CI . Again

from Lemma 3.3.1, {(4, 4), (5, 3)}⋂CI 6= ∅, so (4, 4) ∈ CI . Now (4, 4) ∈ CI and

Lemma 3.3.1, together imply that {(1, 4), (2, 3)}⋂CI 6= ∅, so (1, 4) ∈ CI . Thus

Q1 = {(1, 3), (1, 4), (3, 4), (4, 4)} ⊂ CI , as desired. The same reasoning can be applied

to CO as well. This completes the proof of the lemma.

Theorem 3.3.1 (Goldwasser & Zhang) A minimum counterexample is internally six

connected.

Proof: Because G has a drawing which is a triangulation, it suffices in terms of this

notation to show that either

1) |V (GI)− {x1, x2, x3, x4, x5}| = 1 or that

2) |V (GO)− {x1, x2, x3, x4, x5}| = 1.

So assume otherwise. Because G is assumed to be a minimum counterexample, it

follows that |CI
⋂ CO| = 1. Form a graph G′I by adding a vertex v to the infinite face

of GI and adding the 5 edges {{v, xi} : 1 ≤ i ≤ 5} to E(GI). By the minimality of
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G and the assumption that neither 1) nor 2) above hold, G′I has a vertex-4-coloring,

and so CI
⋂S 6= ∅. Similarly, CO

⋂S 6= ∅. Therefore, by Lemma 3.3.3, both CI and

CO contain some element in {T1, T2, T3, T4, T5,Q1,Q2,Q3,Q4,Q5,S}.

Suppose first that S 6⊂ CI , and S 6⊂ CO. Therefore there are sets RI ⊂ CI and

RO ⊂ CO such that RI , RO ∈ {T1, T2, T3, T4, T5,Q1,Q2,Q3,Q4,Q5,S}. By Lemma

3.3.2, |CI
⋂RO| ≥ 1, and |CO

⋂RI | ≥ 1. This implies that if |RI

⋂RO| ∈ {0, 2, 3, 4}

then |CI
⋂ CO| ≥ 2. Therefore, |RI

⋂RO| = 1. It is possible by relabeling to assume

that RO ∈ {T1,Q1}.

Assume first that RO = T1 and RI ∈ {Q1,Q2,Q3,Q4,Q5}. Since |RO

⋂RI | = 1,

it must be that RI = Q1 and that CI
⋂ CO = {(1, 4)}. By Lemma 3.3.2, {(4, 4), (1, 3),

(2, 3)}⋂CO 6= ∅. Since {(4, 4), (1, 3)} ⊂ RI ⊂ CI , it must be that (2, 3) ∈ CO. Like-

wise, {(3, 4), (5, 3), (1, 3)}⋂CO 6= ∅ implies (5, 3) ∈ CO. This, Lemma 3.3.1 and the

fact that (1, 3) ∈ CI − CO imply that (2, 4) ∈ CO. Thus T2 = {(2, 4), (4, 3), (5, 3)} ⊂

CO. However, Lemma 3.3.2 applied to CI with i = 2 establishes the fact that

CI
⋂ T2 6= ∅. This contradicts |CI

⋂ CO| = 1, and so completes the proof when

RO ∈ {T1, T2, T3, T4, T5} and RI ∈ {Q1,Q2,Q3,Q4,Q5}.

We now consider the case that RO = T1 = {(1, 4), (3, 3), (4, 3)} and RI ∈

{T1, T2, T3, T4, T5}. Since |RO

⋂RI | = 1, it must be that RI ∈ {T2, T5}. By symme-

try, we may assume that RI = T2 = {(2, 4), (4, 3), (5, 3)}, and so CI
⋂ CO = {(4, 3)}.

We split the proof of this case up according to whether (3, 4) ∈ CI or (3, 4) /∈ CI .

Assume first that (3, 4) ∈ CI . Lemma 3.3.2 with i = 3 implies that {(3, 4), (5, 3),

(1, 3)}⋂CO 6= ∅, and since {(3, 4), (5, 3)} ⊂ CI , it must be that (1, 3) ∈ CO. Lemma

3.3.1 and the fact that (3, 4) ∈ CI show that {(1, 3), (5, 4)}⋂CI 6= ∅ which forces

(5, 4) ∈ CI because (1, 3) ∈ CO and CI
⋂ CO = {(4, 3)}. We now have established that
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Q5 = {(5, 3), (5, 4), (2, 4), (3, 4)} ⊂ CI which reduces to the previous case.

Assume then that (3, 4) /∈ CI . By Lemma 3.3.2, {(3, 3), (3, 4), (5, 4), (1, 4)}⋂CI 6=

∅. Since {(3, 3), (1, 4)} ⊂ CO, this forces (5, 4) ∈ CI . This fact and Lemma 3.3.1 show

that {(2, 3), (3, 4)}⋂CI 6= ∅ and so (2, 3) ∈ CI . Now (2, 3) ∈ CI and Lemma 3.3.1

guarantee that CI
⋂{(3, 3), (4, 4)} is nonempty and since (3, 3) ∈ RO ⊂ CO, we have

that (4, 4) ∈ CI . Thus far we have shown that Q2 = {(2, 3), (2, 4), (4, 4), (5, 4)} ⊂ CI .

This, however, reduces to a previous case that we already proved.

The next case is when RO = Q1 and RI ∈ {Q1,Q2,Q3,Q4,Q5}. The fact that

|RO

⋂RI | = 1 allows us to conclude RI ∈ {Q2,Q5}, and we may by symmetry as-

sume that RI = Q2 = {(2, 3), (2, 4), (4, 4), (5, 4)}. Therefore, CI
⋂ CO = {(4, 4)}.

Lemma 3.3.2 guarantees that {(2, 4), (4, 3), (5, 3)}⋂CO 6= ∅, and it follows that

{(4, 3), (5, 3)} ⊂ CO.

If (5, 3) ∈ CO, then T3 ⊂ CO which corresponds to the first case proved. Thus, we

may assume that (4, 3) ∈ CO. Lemma 3.3.1 then implies that {(3, 3), (2, 4)}⋂CO 6= ∅

and this in turn implies that (3, 3) ∈ CO, since (2, 4) ∈ CI . Thus, T1 = {(1, 4), (3, 3),

(4, 3)} ⊂ CO, and we again can fall back to the proof of case 1.

The case when RO = Q1 and RI ∈ {T1, T2, T3, T4, T5} is just the second case

proved with the roles of GI and GO interchanged. There are no other cases and we

are forced to conclude that at least one of CI and CO contains S.

Suppose then that S ⊂ CO. We know that CI
⋂S 6= ∅. Therefore, |CI

⋂S| = 1

or else G would not be uniquely vertex-4-colorable, and so there exists an integer i ∈

{1, 2, 3, 4, 5} such that CI
⋂S = {(i, 3)} = CI

⋂ CO. Also, there is exactly one (up to a

permutation of colors) vertex-4-coloring of GI that has restriction to x1, x2, x3, x4, x5

represented by (i, 3), or else G would not be uniquely vertex-4-colorable. It follows
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that the graph G′I defined at the beginning of this proof is uniquely vertex-4-colorable,

and is therefore a smaller counterexample than G. Thus the assumption that |V (GI)−

{x1, x2, x3, x4, x5}| ≥ 2 and |V (GO) − {x1, x2, x3, x4, x5}| ≥ 2 is false, and so one of

GI − V (C) or GO − V (C) consists of a single vertex. This proves that G must be

internally 6-connected.
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Chapter 4

Configurations, Projections and Free

Completions

4.1 Combinatorial Representations of Drawings

Recall that a line in the sphere Σ is a subspace h([0, 1]) where h is a homeomorphism

of [0, 1]. A straight line in Σ is a line h such that h([0, 1]) is a h(0) − h(1) geodesic

in Σ. If a line h can be partitioned into a finite number of straight lines then we say

that h is a piecewise polygonal line. If (U, V ) is a drawing in which all of the edges are

piecewise polygonal lines, then we say that (U, V ) is a piecewise polygonal drawing.

Recall that C(u, ε) is the circle, centered at u and having radius ε. If x, y ∈ C(u, ε),

then the clockwise arc between x and y on C(u, ε), which will be denoted A(x, y, v, ε)

(or simply A(x, y) if u and ε are understood from the context) is the subset of C(u, ε)

between x and y in the clockwise direction.

In this section we develop a combinatorial description of drawings. Before we

do this, one minor detail must be disposed of. A consequence of the definition of

drawing is that an edge incident to a vertex v can spiral around v an infinite number

of times. This and other types of refractory edges can make the analysis of drawings

complicated. Happily, this problem can be circumvented without loss of generality

through the following lemma, a proof of which appears in Bollobas [39].
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Lemma 4.1.1 Let G be a drawing of a graph. There is a drawing of G in which

every edge of G is piecewise polygonal.

The advantage gained by this assumption will be made clear by the next lemma

and some definitions which follow. We will then prove two lemma’s which lay the

foundation for a combinatorial description of drawings. Each of these lemmas relies

on the piecewise polygonal drawing of edges.

Lemma 4.1.2 Let G be a piecewise polygonal drawing of a graph. There is an ε > 0

such that if v ∈ V (G) and g1, g2, . . . , gdG(v) are the edges of G that are incident to v

then:

1) D(v, ε)
⋂

( V (G)
⋃

(E(G)− {g1, . . . , gdG(v)}) ) = {v}.

2) D(v, ε)
⋂
gi is a straight line for every 1 ≤ i ≤ dG(v).

The proof of this lemma will be omitted.

For a given piecewise polygonal drawing of G, we call any ε which satisfies the

conditions 1) and 2) of Lemma 4.1.2 a critical radius for G. Henceforth, we will

assume that all drawings of graphs are piecewise polygonal. Let G be a drawing, let ε

be a critical radius for G and let v ∈ V (G). Consider all points of intersection of the

circle C(v, ε) with the edges g1, . . . , gdG(v) that are incident to v. Because of property

1), each edge in E(G) that is incident to v intersects C(v, ε) at least once. From

property 2), each edge incident to v intersects C(v, ε) at most once. Denote by xi the

unique point in C(v, ε)
⋂
gi. We will say that xj follows xi on C(v, ε) (or if C is evident

from the context simply that xj follows xi if A(xi, xj)
⋂{x1, . . . , xd(v)} = {xi, xj}. If

{j1, j2, . . . , jd(v)} = {1, 2, . . . , d(x)} is such that xji+1 follows xji for every 1 ≤ i ≤ d(v)

(where if i = d(x), ji+1 is interpreted to be j1), then gj1, gj2, . . . , gjd(x)
is a clockwise
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listing in G at C of edges incident to v. It is clear that any cyclic shift of j1, . . . , jd(x)

naturally gives rise to another clockwise listing at C of edges incident to v. Property

2) of Lemma 4.1.2 implies that any two critical radii will lead to the same clockwise

listing in G of edges incident to v. It is also natural to say that a set of vertices

u1, u2, . . . , udG(v) is a clockwise listing in G of neighbors of v if g1, . . . , gdG(v) is a

clockwise listing of edges in G having the property that the endpoint in V (G) − v

of gi is ui for 1 ≤ i ≤ dG(v). The next lemma gives the basic but fundamental

connection of clockwise listings to drawings.

Lemma 4.1.3 Suppose that G is a near-triangulation and that v ∈ V (G). Suppose

that g1, . . . , gdG(v) is a clockwise listing in G of edges incident to v. For every 1 ≤ i ≤

dG(v), there is a face ri of G which is incident to both gi and gi+1 (where if i = dG(v)

we interpret gi+1 as g1). Moreover, if dG(v) ≥ 3, and ri is finite and triangular then

ri is the unique finite face of G that is incident to gi and gi+1 for 1 ≤ i ≤ dG(v).

Proof: Let ε be a critical radius of G, and for 1 ≤ i ≤ dG(v), let xi denote the unique

point of intersection of the edge gi with C(v, ε). It follows that A(xi, xi+1, v, ε) =

A(xi, xi+1) satisfies A(xi, xi+1)
⋂{x1, . . . , xdG(v)} = {xi, xi+1}, for every 1 ≤ i ≤ dG(v)

(with the usual convention that when i = dG(v), i + 1 is interpreted to be 1). From

property 2) of Lemma 4.1.2, we may also conclude that A(xi, xi+1)
⋂
G = {xi, xi+1}

for 1 ≤ i ≤ dG(v). Therefore A(xi, xi+1)−{xi, xi+1} is a subset of ri, and this implies

that gi ⊂ ri and gi+1 ⊂ ri for 1 ≤ i ≤ dG(v). This completes the first part of the

proof.

Now assume that dG(v) ≥ 3 and that ri is a triangular face. Suppose that r 6= ri

is another face of G that is incident to both gi and gi+1. By relabeling we may assume
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that i = 1. The face r2 is incident to the edges g2 and g3. The edge g2 is incident

to at most two faces and therefore r2 ∈ {r, r1}. If r2 = r1, then r1 is incident to the

three edges g1, g2, g3 which is impossible since these three edges are all incident to v

and r1 is a triangular face. Therefore r2 = r. However r is incident to both of g1 and

g2 and since r = r2, r must also incident to g3 and this implies that r is not triangular

and hence is the infinite face of G.

This completes the proof of Lemma 4.1.3.

4.2 Configurations, Free Completions, and Projec-

tions

The next definition is taken from Robertson et. al. [8] A configuration K is a near

triangulation G = G(K) together with a function γK defined on the vertex set of

G(K) such that

(i) For every vertex v ∈ V (G), G(K)−v has at most two components, and if there

are two, then γK(v) = dG(v) + 2.

(ii) For every vertex v ∈ V (G), if v is not incident with the infinite region, then

γK(v) = dG(v), otherwise, γK(v) > dG(v) and in either case γK(v) ≥ 5.

(iii)K has ring size≥ 2, where the ring-size ofK is defined to be
∑

(γK(v)− dG(v)− 1),

summed over all the vertices v of G(K) incident with the infinite region such that

G(K)− v is connected.

It will be convenient to represent configurations pictorially, by simply drawing the

near-triangulation in the plane such that all of the finite regions are triangles and

where γ(v) is represented by having differing shapes for the vertex v according to the
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table in figure 4.1.

γ (ν)=5

γ (ν)=6

γ (ν)=7

γ (ν)=8

γ (ν)=9

γ (ν)=10

Figure 4.1: The Meaning Of Vertex Shapes

The set of configurations which we will be most concerned with are the 942 con-

figurations that appear in Appendix A. The configuration in row y and column z of

page x of Appendix A will be referred to by conf(x, y, z). We will show in Chapter 5

that no configuration in Appendix A can be “found” in a minimum counterexample.

Just what we mean by “found” is now made precise.
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If T is a triangulation or a near triangulation, then a configuration K appears in

T if G(K) is an induced subdrawing of T , every finite face of G is a face of T and

γK(v) = dT (v) for every vertex v ∈ V (G(K)).

Two configurations K and L are said to be isomorphic if there is a homeomorphism

φ of the sphere Σ mapping G(K) to G(L) and a function ψ : {5, 6, . . .} → {5, 6, . . .}

such that ψ(γK(v)) = γL(φ(v)) for every v ∈ V (G).

Let K be a configuration. The following definition appears in [8]. A free comple-

tion S of K with ring R is a near triangulation such that

(i) The infinite face of S is bounded by an induced circuit R called the ring.

(ii) The graph G(K) is an induced subdrawing of S, G(K) = S − R, every finite

region of G(K) is a finite region of S, and the infinite region of G(K) contains the

infinite region of S.

(iii) γK(v) = dS(v) for every v ∈ V (G(K)).

We will show in Section 4.4 that this free completion is essentially unique.

Suppose a configuration K with underlying graph G = G(K) appears in a trian-

gulation or near-triangulation T . Let A be the set of vertices of V (T ) that are either

in V (G) or are incident to a vertex in V (G). As mentioned above, a configuration

could appear in a triangulation or near triangulation in various ways. Thus, while

it is conceivable that a configuration K appears in a triangulation T in such a way

that the subgraph of T that is induced by the vertices of A is a free completion of

K, it is not the case that is has to be this way. One thing that can happen is that

vertices on the ring of the free completion can be identified in T . Thankfully, it can

be shown that the variety of different ways in which a configuration can appear in a

triangulation is under control, in the sense that it will suffice to analyze only the free
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completion. A key part of how this is established is by establishing a close relation-

ship between a free completion S of K, and any triangulation T in which K appears.

We now make this more precise, using a definition from [8].

Suppose that T is a triangulation and that S is the free completion of a configu-

ration K with ring R. Let F (S) be the set of finite faces of S. A map φ from the set

V (S)
⋃
E(S)

⋃
F (S) into V (T )

⋃
E(T )

⋃
F (T ) is called a projection of S into T if

(i) φ maps V (S) into V (T ), E(S) into E(T ) and F (S) into F (T )

(ii) for distinct u, v ∈ V (S), φ(u) = φ(v) only if u, v are both incident with the

infinite region of S; for distinct e, f ∈ E(S), φ(e) = φ(f) only if e,f are both incident

with the infinite region of S; and for distinct r,s ∈ F (S), φ(r) 6= φ(s), and

(iii) for x,y ∈ V (S)
⋃
E(S)

⋃
F (S), if x,y are incident in S, then φ(x), φ(y) are

incident in T .

The next theorem gives some basic properties of free completions. The proof is

omitted.

Lemma 4.2.1 Let S be a free completion of a configuration K with ring R. Then

the following are true:

1) The configuration K appears in S.

2) Every edge e ∈ E(S)−E(R) is incident to two finite faces of S and has at least

one endpoint in V (G).

3) For every v ∈ V (R) there is an x ∈ V (G) such that x is adjacent to v.

4) Every finite face of F (S) is incident to some vertex x ∈ V (G).

5) No v ∈ V (G) is incident to the infinite face of S.

6) For every v ∈ V (R), the clockwise listing in S of the edges incident to v is of

the form r1, g1, . . . , gp, r2, where p > 0, r1, r2 ∈ E(R) and g1, . . . , gp ∈ E(S)− E(R).
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7) No finite face of S is incident to two edges of E(R).

4.3 The Existence of Projections

Let S be a a graph containing a vertex v ∈ V (S). A portion of a clockwise listing

in S of edges incident to v in S is a sequence of at least two edges f1, f2, . . . , fp such

that f1, . . . , fp, t1, . . . , tk is a clockwise listing in S of edges incident to v.

Lemma 4.3.1 Let G be a near triangulation that is an induced subdrawing of a near-

triangulation S such that every finite face of G is a finite face of S. Suppose also that

dS(v) ≥ 5 for v ∈ V (G) and also that no edge of S which is incident to a vertex of

V (G) is incident with the infinite face of S. Let v ∈ V (G(K)), and let g1, g2, . . . , gj be

a portion of the clockwise listing in G of edges incident to v having the property that

for every 1 ≤ k < j, the edges gk and gk+1 are incident to a common triangular face

of G. Then g1, . . . , gj is also a portion of the clockwise listing in S of edges incident

to v.

Proof: Let s1, s2, . . . , sd(v) be a clockwise listing in S of edges incident to v in S. For a

suitably small ε there is a circle C(v, ε) having the property that D(v, ε)
⋂
V (S) = {v}

and where D(v, ε)
⋂
E(S) =

⋃i=dS(v)
i=1 si[v, xi], where for each 1 ≤ i ≤ dS(v), si[v, xi]

consists of a straight line segment between the vertex v and the final point xi of si

on C(v, ε). For x, y ∈ Σ
⋂
C(v, ε), let A(x, y) be the clockwise arc in C(v, ε) joining

x to y.

By the choice of ε, A(xi, xi+1)
⋂

(V (S)
⋃
E(S)) = {xi, xi+1} for every 1 ≤ i ≤

dS(v) (where for i = dS(v) we interpret si+1 as s1).
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Since G is a subdrawing of S, E(G) ⊂ E(S) and so there is a function f :

{1, . . . , j} → {1, . . . , dS(v)}, such that gi = sf(i) for i = 1, . . . , j. This also implies

that the final point of gi on C(v, ε) is xf(i) for 1 ≤ i ≤ j. Let fi be a finite face of G

that is incident to both of the edges gi and gi+1. By Lemma 4.1.3, this finite face fi

of G that is incident to both gi and gi+1 is unique. Since G appears in S, every finite

face of G is a finite face of S and in particular fi is a finite face of S for 1 ≤ i < j.

Now the the open arc A(xf(i), xf(i+1)) − {xf(i), xf(i+1)} of C(v, ε), is contained in fi

for every 1 ≤ i < j, and so (A(xf(i), xf(i+1)) − {xf(i), xf(i+1)})
⋂

(V (S)
⋃
E(S)) = ∅

which implies that gi follows gi+1 in the clockwise listing in S of edges incident to v.

This establishes Lemma 4.3.1.

Lemma 4.3.2 Let K be a configuration with underlying graph G, and let v ∈ V (G).

Let g1, . . . , gdG(v) be a clockwise listing in G of edges incident to v. Let p be the number

of indices i in {1, 2, . . . , dG(v)} such that gi and gi+1 are not incident to a common

finite face of G. (Here, when i = dG(v) we understand that gi+1 = g1).

a) If v is not incident to the infinite face then p = 0

b) If v is incident to the infinite face of G and if v is not a cut-vertex of G then

p = 1.

c) If v is incident to the infinite face of G and if v is a cut vertex of G, then p = 2.

Proof: We prove that G − {v} has max{|L|, 1} components, where L is the set of

indices in {1, . . . , dG(v)} such that gi and gi+1 are not in a common finite face of G.

By Lemma 4.1.3 , gi and gi+1 must be incident to a common face ri for 1 ≤ i ≤ dG(v).

Let vi ∈ V (G)− {v} be the endpoint of gi for 1 ≤ i ≤ dG(v).
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First, suppose |L| = 0 or |L| = 1. After a suitable relabeling of g1, . . . , gdG(v), we

may assume that each ri except possibly rdG(v) is a finite triangular face so that there

is an edge in G with endpoints vi and vi+1 for every 1 ≤ i < dG(v). Therefore, the

subgraph of G induced by the vertices {v1, . . . , vdG(v)} contains a walk and therefore

is connected. This implies that G−{v} is also connected. This proves the case when

|L| = 0 or |L| = 1.

Now suppose that p = |L| ≥ 2, let ε be a critical radius and let L = {k1, . . . , kp},

where we may write 1 ≤ k1 < k2 < . . . < kp ≤ dG(v). Suppose that xi is the unique

point in gi
⋂
C(v, ε) and let 1 ≤ i ≤ p− 1. Both of the faces rki and rki+1 are infinite

faces of G, and since G is a near-triangulation, rki = rki+1 . Therefore, and for any two

points x, y ∈ Σ where x ∈ S(v, ε, xki, xki+1)
⋂
rki and y ∈ S(v, ε, xki+1 , xki+1+1)

⋂
rki+1

there is a line Pi ⊂ Σ−G with endpoints x and y. By letting ε approach 0, x and y

approach v, and so we see that for 1 ≤ i ≤ p− 1 there is a closed curve Ci such that

1) Ci
⋂
G = {v}

2) Every edge in {gki+1, . . . , gki+1} is a subset of the topological interior of the

curve Ci, and every edge in {g1, . . . , gdG(v)} − {gki+1, . . . , gki+1} is a subset of the

topological exterior of the curve Ci.

Let Q be a vki-vki+1 path in G. Condition 2 and the Jordan Curve Theorem

imply that (treating Q as a subset of Σ rather than a subgraph of G) Q
⋂
Ci 6= ∅.

By condition 1), this implies that Q
⋂
Ci = {v}. This implies that vki and vki+1 are

in different components of G− {v}. Since this holds for 1 ≤ i ≤ p− 1, G− {v} will

have p components, and this establishes that G− {v} has |L| components.

If v is a vertex in G that is not incident to the infinite face of G then |L| = 0

and the result claimed in the lemma holds. Also, if v is a non-cut vertex of G that
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is incident to the infinite face, then |L| ≥ 1 from the very fact that v is incident

to the infinite face, and |L| < 2 since v is not a cut-vertex of G. Finally, if v is a

cut-vertex of G then |L| ≥ 2 and property (i) of configurations implies that |L| ≤ 2.

This completes the proof of Lemma 4.3.2.

Lemma 4.3.3 Let K be a configuration with underlying drawing G which appears in

S where S is a either a free completion of K or a triangulation, and let v ∈ V (G) be

a non-cut vertex of G. Let g1, . . . , gdG(v) be a clockwise listing in G of edges incident

to v having the property that if v is incident to the infinite face of G, then the edges

g1 and gdG(v) are also incident to the infinite face of G. Then a clockwise listing in S

of edges incident to v is g1, g2, . . . , gdG(v),s1, . . . , sp, where dG(v) + p = γK(v), p = 0

if and only if v is not incident to the infinite face of G, and s1, . . . , sp are edges in

E(S)− E(G) having their endpoints in {v}⋃(V (S)− V (G))

Proof: From Lemma 4.3.2, there is either 0 or 1 indices in {1, . . . , dG(v)} such that

gi and gi+1 are incident to the infinite face of G, (where when i = dG(v) we interpret

gi+1 as g1).

By Lemma 4.3.1, g1, g2, . . . , gdG(v) is a portion of the clockwise listing in S of edges

incident to v.

If there are 0 indices, then Lemma 4.3.1 implies that gdG(v)−1, gdG(v), g1 is also

a portion of the clockwise listing in S of edges incident to v. This implies that

g1, g2, . . . , gdG(v) is the clockwise listing in S of edges incident to v. In this case p = 0,

and thus v is not incident to the infinite face of G, so property (ii) of configurations

insures that γK(v) = dG(v).
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Now suppose that v is incident to the infinite face. Property (ii) of configurations

implies that dG(v) < γK(v) and since K appears in S, dS(v) = γK(v). Therefore,

there are p = γK(v)− dG(v) edges s1, . . . , sp ∈ E(S)−E(G) incident to v in addition

to the edges g1, . . . , gdG(v). If for 1 ≤ i ≤ p, the vertex vi ∈ V (S)−{v} is an endpoint

of si, then vi /∈ V (G), because if it was, then the fact that G is an induced subdrawing

of S would imply that si ∈ E(G). We may assume without loss of generality that

s1, s2, . . . , sp is a portion of a clockwise listing in S of edges incident to v. Therefore,

since g1, g2, . . . , gdG(v) is a portion of the clockwise listing in S of neighbors incident to

v, g1, . . . , gdG(v), s1, . . . , sp is a clockwise listing in S of neighbors incident to v. This

completes the proof of the Lemma 4.3.3.

Lemma 4.3.4 Let K be a configuration that appears in S, where S is either a free

completion of K or a triangulation and let v ∈ V (G(K)) be a cut-vertex of G = G(K).

Let g1, . . . , gdG(v) be a clockwise listing in G of edges incident to v such that g1 and

gdG(v) are both incident to the infinite face of G. There is a clockwise listing in S of

edges incident to v of the following form:

g1, . . . , gp, s1, gp+1, . . . , gdG(v), s2

where p < dG(v), γK(v) = dG(v) + 2, and where the endpoints of si are in (V (S) −

V (G))
⋃{v}.

Proof: From Lemma 4.3.2 we know that there is an index in {1, 2, . . . , dG(v) − 1}

such that gp and gp+1 are incident to the infinite face of G. Here, we are as usual

interpreting gi+1 as g1 when i = dG(v). Since there are exactly two indices with

this property, we know that there exists an integer p such that for 1 ≤ l < p and

p + 1 ≤ l < dG(v) the edges gl and gl+1 are both incident to a common finite face
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of G. Therefore by Lemma 4.3.1, g1, g2, . . . , gp and gp+1, . . . , gdG(v) are portions of

the clockwise listing in S of edges incident to v. By property (i) of configurations,

and by the fact that K appears in S, dS(v) = γK(v) = dG(v) + 2. Let s1, s2 be the

edges in E(S) − E(G) that are incident to v. If vi ∈ V (S) − {v} are the endpoints

of si for i = 1, 2, then the fact that G is an induced subdrawing of S implies that

v1, v2 ∈ V (S) − V (G). Thus there are without loss of generality, three possibilities

for the clockwise listing in S of edges incident to v:

1) g1, . . . , gp,s1,gp+1,. . .,gdG(v),s2.

2) g1, . . . , gp,s1, s2,gp+1, . . . , gdG(v).

3) g1, . . . , gp,gp+1, . . . , gdG(v),s1, s2.

By Lemma 4.2.1, v is not incident to an infinite face of S. Therefore any two

consecutive edges in a clockwise listing in S of edges incident to v are incident to a

common finite face of S. Thus, if 2) is a clockwise listing in S of edges incident to v,

then gdG(v) and g1 are incident to a common finite triangular face r of S. This means

that if hdG(v) and h1 are the endpoints of gdG(v) and g1 in V (G) − {v}, then there

is an edge e ∈ E(S) with endpoints hdG(v) and h1 and incident to the face r. Now

e has both endpoints in G and since G is an induced subdrawing of S, e is an edge

of G, and thus r is a face of G. Now it must be that r is designated as the infinite

face of G, since by hypothesis, gdG(v), g1 are both incident to the infinite face of G.

Therefore, the infinite face of G is a triangular face which is incident to the edges

gdG(v),g1, and e. However, the infinite face of G was also assumed to be incident to

the edges gp and gp+1 which are both distinct from the edges gdG(v) and g1. This is

a contradiction. A similar contradiction arises if 3) is a clockwise listing in G. This

implies that 1) is a clockwise listing in G of edges incident to v, and this completes
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the proof of the Lemma.

Let S and S ′ be drawings and let f : E(S) → E(S ′). Also, let x ∈ V (S)
⋂
V (S ′)

and suppose that g1, . . . , gdS(x) is a clockwise listing in S of edges incident to x. If

f(g1), f(g2), . . . , f(gd(x)) is a clockwise listing in S ′ of edges incident to x then we will

say that f preserves the embedding at x.

Lemma 4.3.5 Let K be a configuration with underlying graph G = G(K) and let

S be a free completion of K with ring R. Suppose that K appears in S ′ where S ′ is

a triangulation or a free completion of K. Let ES (respectively ES′) denote the set

of edges of S (respectively S ′) that have at least one endpoint in V (G). There is a

function φn : ES → ES′ such that

1) φn(e) = e for every e ∈ E(G) and φn(E(S)− E(R)− E(G)) ⊂ E(S ′)− E(G)

2) For every v ∈ V (G), φn preserves the embedding at v

3) If e and e′ are distinct edges of ES which have a common endpoint x ∈ V (G),

then φn(e) 6= φn(e′)

4) The function φn is one to one and onto.

Proof: Every edge in ES has at least one endpoint in V (G) so we will define φn by

considering an arbitrary vertex v ∈ V (G) and defining φn for every edge of S that is

incident to v.

Suppose that g1, . . . , gdG(x) is a clockwise listing in G of edges incident to v.

First consider the case when v is not incident to the infinite face of G. Lemma

4.3.3 insures that a clockwise listing in S is g1, . . . , gdG(v) and that a clockwise listing

in S ′ is g1, . . . , gdG(v). In this case, we simply define φn(gi) = gi for 1 ≤ i ≤ dG(v).

65



Now consider the case that v is a non cut-vertex of G that is incident to the

infinite face of G. By Lemma 4.3.3, a clockwise listing in S of edges incident to v is

g1, . . . , gdG(v),s1, . . . , sp, where s1, . . . , sp ∈ E(S)−E(G). and a clockwise listing in S ′

of edges incident to v is g1, . . . , gdG(v),s
′
1, . . . , s

′
p, where s′1, . . . , s

′
p ∈ E(S ′)− E(G).

In this case, define φn(gi) = gi for 1 ≤ i ≤ dG(v) and φn(si) = s′i for 1 ≤ i ≤ p.

Finally, if v is a cut-vertex of G, Lemma 4.3.4 again implies that a clockwise listing

in S of edges incident to v is g1, . . . , gp, s1, gp+1, . . . , gdG(v),s2, where s1, s2 ∈ E(S) −

E(G), and the clockwise listing in S ′ of edges incident to v is g1, . . . , gp, s
′
1, gp+1, . . . ,

gdG(v),s
′
2, where s′1, s

′
2 ∈ E(S ′) − E(G). Make the obvious definition φn(gi) = gi and

φn(si) = s′i for i = 1, 2.

First, note that φn is well defined, despite the fact that each edge e ∈ E(G) is

defined twice, once for each of its endpoints. However, in both cases its image under

φn is e, so there is no ambiguity. This also shows that φn(E(G)) ⊂ E(G). All other

edges in ES are defined exactly once this way, and have image in ES′ − E(G). Also,

φn clearly preserves the embedding at every x ∈ V (G). Finally, if e and e′ have a

common endpoint in V (G) then it is clear that φn(e) 6= φn(e′). Thus, property 3

holds.

Now we prove that the function φn is one to one and onto. First, note that

|ES| = |E(G)|+∑x∈V (G) γK(x)− dG(x) = |E(G)|+∑x∈V (G) dS′(x)− dG(x) = |ES′|.

Thus it will suffice to prove that φn is one to one. Suppose that φn(e) = φn(f).

Now the edge φn(e) = φn(f) has a common endpoint x ∈ V (G). It is clear from the

definition of φn that if x ∈ V (G) is the endpoint in S of an edge g ∈ FS, then x is an

endpoint in T of the edge φn(g). Thus both e and f have x ∈ V (G) as one of their

endpoints in S. Property 3 then shows e = f , and completes the proof that φn is one
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to one and onto. This establishes the lemma.

We will refer to the function φn of Lemma 4.3.5 the natural edge function.

Theorem 4.3.1 Let K be a configuration with free completion S and ring R which

appears in S ′, where S ′ is either a free completion of K or a triangulation. Then

there is a projection φ from S to S ′.

Proof: We define φ(e) = φn(e) for every e ∈ E(S) which has at least one endpoint

in V (G). Thus the values of φ are determined for all edges which have at least one

endpoint in V (G). It remains then to define φ for faces of S, vertices of V (S), and

edges of R, and we will do so in that order.

For finite faces r ∈ F (G), define φ(r) = r. For faces r ∈ F (S) − F (G), Lemma

4.2.1 shows that r is adjacent to a vertex x ∈ V (G). Let e1, . . . , eγK(v) be a clockwise

listing in S of edges incident to v such that the face r is incident to ei and ei+1

(where if i = γK(x) then ei+1 is interpreted as e1.) Because K is a configuration,

γK(v) ≥ 5 and therefore Lemma 4.1.3 implies that r is the unique finite face of F (S)

that is incident to ei and ei+1. Since φ preserves the embedding at x, the edge φ(ei+1)

follows the edge φ(ei) in the clockwise listing in S ′ of edges incident to x. Therefore,

there is at least one finite face r′ of F (S ′) that is incident to both φ(ei) and φ(ei+1)

in S ′. Because dS′(x) = γK(x) ≥ 5, Lemma 4.1.3 implies that r′ is the unique finite

face of F (S ′) that is incident to φ(ei) and φ(ei+1). Since r is the unique finite face

of F (S) that is incident to ei and ei+1, it follows that the assignment φ(r) = r′ is

well defined. Since every face of F (S) is incident to at least one vertex of V (G), this

completely defines φ on the set F (S).
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Moreover, for any e ∈ E(S)−E(R) and for any f ∈ F (S), if e is incident to f in

S, then this construction has the property that φ(e) is incident to φ(f) in S ′.

We now define φ for all vertices in V (S). First, if v ∈ V (G) define φ(v) = v.

We pause at this point to note that φ as thus far defined has the property that for

any z ∈ V (G)
⋃
E(G)

⋃
F (G), φ(z) = z. Now let v ∈ V (R). By Lemma 4.2.1,

there is at least one vertex g ∈ V (G) that is adjacent to v. Let g1, g2, . . . , gp be the

neighbors of v in V (G). By Lemma 4.2.1, a clockwise listing of the edges incident to v

is r1, e1, e2, . . . , ep, r2, where r1 and r2 are edges of the ring R that are both incident to

the infinite face of S, and where the endpoint of ei in V (S)−{v} is gi. For 1 ≤ i ≤ p,

denote e′i = φ(ei). Now e′i is an edge of E(S ′) which has one endpoint gi and where

we denote the other endpoint as x′i. Now from property 1) of Lemma 4.3.5 and from

the fact that G is an induced subdrawing of S ′, we infer that x′i /∈ V (G) for 1 ≤ i ≤ p.

We now claim that x′i = x′i+1 for 1 ≤ i ≤ p − 1. If p = 1 there is nothing to

prove so assume p ≥ 2, 1 ≤ i ≤ p − 1 and let r be the unique face of F (S) that is

incident to both ei and ei+1 in S. This face r is incident to a third edge f in S and

this edge must be in E(G) since both its endpoints gi and gi+1 are in V (G) and G is

an induced subdrawing of S. Since r is incident to the edges ei, ei+1 and f in S, it

follows from the way φ was constructed for faces that φ(r) is incident to φ(ei), φ(ei+1)

and φ(f) = f in S ′.

We now show that φ(ei), φ(ei+1) and φ(f) are distinct edges in S ′. First, φ(ei) 6=

φ(ei+1) because the edges ei and ei+1 do not share any common vertex in V (G),

and the natural edge function maps edges incident to any u ∈ V (G) to edges again

incident to u ∈ V (G). Moreover, f = φ(f) ∈ E(G), along with property 1) of the

natural edge function implies that f 6= φ(ei) and f 6= φ(ei+1).
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Thus far we have shown that the three distinct edges φ(ei), φ(ei+1) and φ(f) = f

are all incident to the finite face φ(r) of S ′, and this implies that x′i = x′i+1, which

completes the proof of the claim since i was arbitrary.

By this claim, we may without ambiguity define φ(v) = x′1. Note that this implies

that φ(x) ∈ V (S ′) − V (G) if x ∈ V (R). This claim also shows that if v ∈ V (R) is

incident in S to an edge e ∈ E(S)− (E(G)
⋃
E(R)), then φ(v) is incident to φ(e) in

S ′. This in turn can be shown to imply that if v ∈ V (R) is incident in S to r ∈ F (R)

then φ(v) is incident with φ(r) in S ′. To see this, use Lemma 4.2.1 to find an edge e

in E(S)− (E(G)
⋃
E(R)) which is incident in S to both v and r. From what we just

showed, φ(e) is incident to φ(v) in S ′, and from the construction of φ for faces, φ(f)

is incident in S ′ to φ(e). This implies that φ(f) is incident in S ′ to φ(v).

It remains to define φ for every edge e ∈ E(S) which has both endpoints in V (R).

Let x1, x2 be the endpoints of e in V (R). Using Lemma 4.2.1, let r ∈ F (S) be the

unique finite face of S which is incident to e, let x be the unique vertex of V (G) that

is incident to r, and for i = 1, 2 let ei be the edges in E(S) which have endpoints

x and xi and are incident in S to r. Now φ(r) and φ(x) = x are incident in S ′ to

φ(ei) for i = 1, 2 and to each other. Since φ(r) is a finite triangular face of S ′, it is

incident to a unique edge e′ 6= φ(e1), φ(e2). Define φ(e) = e′. This can be done for

every e ∈ E(R) and so φ is now completely defined. The endpoints of e′ must be the

endpoints of the the edges φ(e1) and φ(e2) in V (S)−{x}. Since xi is the endpoint of

ei in S for i = 1, 2, φ(xi) must be the endpoint of φ(ei) for i = 1, 2. Hence e incident

to xi in S implies φ(e) is incident in S ′ to φ(xi). The construction also implies that

φ preserves incidence between edges in E(R) and faces in F (S).
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Clearly φ maps V (S) into V (T ), E(S) into E(T ) and F (S) into F (T ). Let u, v ∈

V (G). From what was noted before, φ(V (R)) ⊂ V (S ′) − V (G). Also, φ(x) = x

for every x ∈ V (G) so φ(V (G)) = V (G). Therefore, if φ(u) = φ(v) then either

{u, v} ⊂ V (R) or {u, v} ⊂ V (G). If the former holds we are done and if the latter

holds then u = φ(u) = φ(v) = v so u = v. By the construction of φ for faces φ(r) = r

for r ∈ F (G) and φ(F (S)−F (G)) ⊂ F (S ′)−F (G), so φ(r) 6= φ(r′) for r 6= r′. Finally,

let e, f ∈ E(S). If both e, f ∈ E(G), then e = φ(e) = φ(f) = f . From property 1) of

the natural edge function, we may assume that neither e nor f is and edge of E(G).

From the definition of φ, if e′ ∈ E(R), φ(e′) has both endpoints in V (S ′)−V (G), and

so it cannot be that one of e, f is in E(R) and the other in E(S)− E(R). Thus we

may assume that e, f ∈ E(S) − (E(G)
⋃
E(R)). From the definition of φn, φ maps

edges in E(S) with endpoint x ∈ V (G) to edges in E(S ′) with endpoint x. Hence, e

and f must share a common endpoint x in V (G). However, property 3) of the natural

edge function, then implies that φ(e) 6= φ(f). All of this establishes property (ii) of

projections. Property (iii) of projections has been established throughout the proof

and so the proof of Theorem 4.3.1 is complete.

4.4 Existence and Uniqueness of Free Completions

This section is devoted to establishing that every configuration has an essentially

unique free completion.

Theorem 4.4.1 Every configuration K has a free completion S with ring R.

We omit the proof of this theorem.

70



Lemma 4.4.1 If S1 and S2 are two free completions of a configuration K with rings

R1, R2 respectively, then there is an isomorphism between S1 and S2. Moreover, if

u, v ∈ V (S1) are incident to a common face of S1, then the images of u and v under

this isomorphism are incident to a common face of S2.

Proof: By Lemma 4.2.1, a configuration appears in any free completion of itself.

Therefore, Theorem 4.3.1 shows that there is a function φ : V (S1) → V (S2) which is

the restriction to V (S1) of a projection of V (S1) into V (S2).

First, it will be proved that φ is a one to one and onto function. To show that it

is onto, let w ∈ V (S2). Since φ(x) = x for every x ∈ V (S1)
⋃
E(S1)

⋃
F (S1), we may

assume that w ∈ V (R2). Now w is adjacent in S2 to some vertex v ∈ V (G)
⋂
V (S2)

by an edge which we denote e′. By property 3) of the natural edge function, there is

an e ∈ E(S1) which has v as an endpoint and such that φ(e) = e′. It then follows that

there is an endpoint u 6= x of e in S1 and from the way φ is defined, φ(u) = w, so φ

is an onto function. Now the number of vertices in the ring of a free completion of a

configuration equals the ring size of the configuration. Therefore |V (R1)| = |V (R2)|

and therefore |V (S1)| = |V (S2)|. Since φ is onto, it follows that it is also one-to-one.

Having established that φ is a one-to-one and onto function, the fact that φ is the

restriction to V (S1) of a projection from S1 into S2 proves that φ is an isomorphism

of the graph S1 to S2. The properties of projections also imply that any two vertices

u, v ∈ V (S1) that are incident to a common face of S1 have the property that φ(u)

and φ(v) are incident to a common face of S2. This completes the proof of Lemma

4.4.1.

71



One of the fundamental results of this section is that each configuration has es-

sentially one free completion. This will be made more precise in Theorem 4.4.3. More

precisely, we will show that if S1 and S2 are two free completions of a configuration

K, then there is a homeomorphism of Σ which fixes G(K) pointwise and which maps

S1 into S2. We will need a result of topology to establish this. A reference for this

result is [40].

Theorem 4.4.2 (Jordan-Schönflies Theorem) If f is a homeomorphism of a simple

closed curve C in the plane onto another closed curve C ′ in the plane, then f can be

extended to a homeomorphism of the entire plane.

Let A ⊂ σ. Recall that bd(A) is defined to be the set Ā− A. Define the interior

of A, denoted interior(A), to be the set Ā− bd(A). We now state a lemma which is

based on a standard result in topology about how to “paste” two distinct continuous

functions together to construct a continuous function that extends both of them [41].

Lemma 4.4.2 Let A1 and A2 be closed subsets in a topological space Ω, where Ω =

A1

⋃
A2. Suppose that hi : Ai → Bi is a homeomorphism such that

1) h1(interior(A1))
⋂
h2(interior(A2)) = ∅ and

2) h1(x) = h2(x) for every x ∈ A1

⋂
A2.

There is a homeomorphism from A1

⋃
A2 to B1

⋃
B2 which agrees with hi on Ai

for i = 1, 2.

Theorem 4.4.3 Let K be a configuration and suppose that S1 and S2 are two free

completions of K. There exists a homeomorphism of the sphere which fixes G(K) and

maps S1 into S2.
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Proof: By the proof of Lemma 4.4.1, there is a projection φ from S1 to S2 whose

restriction to V (S1) is a graph isomorphism of S1 onto S2. Moreover, because φ is a

projection, it has the property that {x1, . . . , xk} is a circuit bounding a finite face in

S1 if and only if {φ(x1), . . . , φ(xk)} is a facial circuit in S2. We now show that there

is a homeomorphism h from the drawing S1 (considered as a topological space) to the

drawing S2, with the property that for every x ∈ Σ
⋂
S1,

1) if y ∈ V (S1) then x = y if and only if h(x) = φ(y) and

2) if y ∈ E(S1), then x ∈ y if and only if h(x) ∈ φ(y).

Defining h for vertices x ∈ V (S1) is easy; set h(x) = φ(x). To define h for edges,

we build a homeomorphism mapping ē to φ(e) for each e ∈ E(S1). For each edge

e ∈ E(S1) there are homeomorphisms he : [0, 1] → ē and hφ(e) : [0, 1] → φ(e).

The composition hφ(e)(h
−1
e x)) : e → φ(e) is a homeomorphism and so we define

h(x) = (hφ(e)h
−1
e )(x) to be this composition. Since no two edges intersect, h(x) is

well defined, and h satisfies the property that x ∈ y if and only if h(x) ∈ φ(y). It

remains to show that h is a homeomorphism of S1 onto S2.

The topological space S1 can be thought of as a union of closed sets consisting

of the vertices of S1 and the closure ē of each edge in S1. The function h restricted

to each of these closed sets is a homeomorphism of that closed set onto its image

in V (S2). Moreover, the intersection of any of these closed sets consists only of

vertices, and thus h is well defined on these intersections. Thus by Lemma 4.4.2, h is

a homeomorphism of the entire space S1 onto the space S2. By the construction, h

satisfies properties 1) and 2).

Let r be a face in S and r′ its image under h in S ′. Because φ is a projection, the

image of bd(r) under h is bd(r′). Thus the restriction of h to bd(r) is a homeomorphism
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of the simple closed curve bd(r) to the simple closed curve bd(r ′). By the Jordan-

Schönflies Theorem, this homeomorphism can be extended to a homeomorphism h′ of

Σ onto Σ which agrees with h on bd(r). Moreover, we may arrange things so that the

set h′(r) equals the set r′. The restriction then of h′ to r is also a homeomorphism of

r to r′ which we henceforth denote hr. We know then that hr(x) = h(x) for x ∈ bd(r).

If r1 and r2 are two faces of S for which r1

⋂
r2 6= ∅, then hr1(x) = h(x) = hr2(x)

for any x ∈ r1

⋂
r2. We can thus use the collection of homeomorphisms {hr : r is a

face in S1} along with Lemma 4.4.2 to build a homeomorphism of Σ onto Σ which

agrees with h on S. This completes the proof of Theorem 4.4.3.
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Chapter 5

Reducibility for the Fiorini-Wilson-Fisk

Conjecture

5.1 Introduction

In this section we define what we mean by reducibility for the Fiorini-Wilson-Fisk

Conjecture and outline the logic used to establish the reducibility of every configu-

ration in U . Of course, a computer actually verifies the reducibility of each config-

uration, as it would be too difficult using the present techniques to do so by hand.

Essentially, reducibility for the Fiorini-Wilson-Fisk Conjecture is just a strengthening

of reducibility for the Four Color Theorem, and in fact many of the configurations

that were reducible for the Four Color Theorem are also reducible for the Fiorini-

Wilson-Fisk Conjecture.

5.1.1 Tricolorings and Notation

Recall that two functions c and c′ with identical domain and range={1, 2, . . . , k} are

equivalent if {c−1({1}), c−1({2}), . . . , c−1({k})} = {c′−1({1}), c′−1({2}), . . . , c′−1({k})}.

We will use this frequently when the functions represent colorings. If A is a set of

functions with domain D and range R = {1, . . . , k}, then η(A) will denote the set of
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all functions with domain D and range R that are equivalent to some coloring in A.

Let T be a triangulation or near-triangulation, and let F (T ) denote the set of

all faces of T that are bounded by exactly 3 edges. A tricoloring of T is a function

c : F (T )→ {−1, 0, 1} such that for every f ∈ F (T ), and for any two distinct edges i

and j incident to f , c(i) 6= c(j). The next theorem establishes a connection between

tricolorings and vertex colorings of a graph and edge colorings of the dual of the

graph.

Theorem 5.1.1 (Tait) Let G be a triangulation or near-triangulation. The following

statements are equivalent:

(i) The vertices of G can be 4-colored.

(ii) The drawing G has a tricoloring.

(iii) The dual of G can be edge-3-colored.

5.1.1.1 Tricolorings and Contracts

The reducibility part of the recent Robertson et al. proof of the Four Color Theorem

essentially proceeds by induction. Without going into details, the contraction of

edges is critical in their argument to produce smaller graphs. To avoid notational

difficulties, they introduced the idea of a tricoloring of T modulo X, where T is a

triangulation or near-triangulation and X is a set of edges in T . As the definition

will reveal, the set X represents the set of edges to be contracted.

Following the definitions of Robertson et al. [8], a set X ⊂ E(T ) is said to be

sparse if no two edges of X are incident to a common finite face of T , and if T is a

near-triangulation, then no edge of X is incident to the infinite face of T . If X is
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sparse, then a tricoloring of T modulo X is a coloring κ:E(T )−X → {−1, 0, 1} such

that for every finite face r ∈ F (T )

1.) If r does not have any edges in common with X then κ assigns distinct colors

to the three edges of r.

2.) If r has exactly one edge in common with X, then κ(e) = κ(f) for the other

two edges e and f of r.

Recall that a counterexample is defined to be a planar graph which is not a vertex

Fiorini-Wilson-Fisk graph and has at most one vertex-4-coloring. A minimum coun-

terexample is a counterexample with a minimum number of vertices. The following

theorem, adapted from [8], captures the idea that if one can contract edges in a min-

imum counterexample so that no loops are created, then the resulting graph has a

tricoloring.

Theorem 5.1.2 Let T be a minimum counterexample, and let X ⊂ E(T ) be a

nonempty, sparse set such that there is no circuit C of T for which |E(C)−X| = 1.

Then there is a tricoloring of T modulo X.

Proof: Let T (X) be the subgraph of T consisting of the vertices of T and the edges

of X. Let V1,V2,. . ., Vp be the vertex sets of the components of T (X). Let H be the

graph obtained by deleting multiple edges in the graph with vertex set {V1, . . . , Vp}

and with Vi adjacent to Vj if and only if there is an edge in E(T ) − X which joins

two vertices vi and vj with vi ∈ Vi and vj ∈ Vj. Claim: H is loopless. If there was

a loop f joining the vertex Vi to itself then there would be an edge f ′ ∈ E(T ) − X

which joins two distinct vertices x, y of T that are both in Vi. Since Vi is a vertex

set of a component of the graph T (X), there is a path in T joining x and y and
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consisting entirely of vertices in T . The circuit P
⋃{f ′} violates the condition that

|E(C)−X| 6= 1 for every circuit C in T . Thus H is loopless. Since X is nonempty,

p < |V (T )| and since T is a minimum counterexample and H is loopless, H is either

a vertex Fiorini-Wilson-Fisk graph or H has at least two vertex-4-colorings that are

not permutations of one another. Either way, H has a vertex-4-coloring c. Use the

standard Tait coloring to define a coloring κ : E(T )−X → {−1, 0, 1}; that is for an

edge e of E(T )−X with endpoints u ∈ Vi and v ∈ Vj, define:

κ(e) = −1 if {c(Vi), c(Vj)} = {1, 2} or {c(Vi), c(Vj)} = {3, 4}.

κ(e) = 0 if {c(Vi), c(Vj)} = {1, 3} or {c(Vi), c(Vj)} = {2, 4}.

κ(e) = 1 if {c(Vi), c(Vj)} = {1, 4} or {c(Vi), c(Vj)} = {2, 3}.

Claim: κ is a tricoloring of T modulo X. To prove this, let r be a triangular

face in F (T ) incident to the vertices {x, y, z} and edges e = {x, y},f = {x, z} and

g = {y, z}. If {e, f, g}⋂X = ∅ then x, y and z are in three distinct vertices of H,

say x ∈ Vi, y ∈ Vj and z ∈ Vk. In the vertex-4-coloring of H which defines κ, Vi, Vj

and Vk receive different colors and thus κ can be seen to assign different colors to e,f ,

and g. If one of the edges incident with r is in X, say g ∈ X, then the vertices y and

z are in the same vertex, say Vi of H. If x were in the same component of T (X) as y

or z, then since e, f /∈ X, there would be a circuit C in T such that |E(C)−X| = 1.

Since X is sparse, x is in a distinct vertex. Hence, κ(e) and κ(f) are well defined and

equal to each other. This completes the proof of the claim that κ is a tricoloring of

T modulo X and hence completes the proof of the theorem.

If X ⊂ E(T ) is sparse and |E(C) − X| ≥ 2 for all circuits C in T then we say

that X is contractible in T .
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5.1.2 Colorings of a Ring

Let S be a free completion of a configuration K with ring R. If c is a tricoloring

of S, the restriction of c to the ring defines a coloring of that ring. A basic part of

the theory of reducibility is the consideration of these ring colorings. Let the vertices

of R be 1,2,. . .,r and the edges of R be e1,e2,. . .,er, where ei has endpoints i and

i+ 1 for i = 1, . . . , r − 1 and er has endpoints r and 1. A coloring of R is a function

κ : E(R)→ {−1, 0, 1}. Let C∗(R) denote the set of colorings of R. We will sometimes

abbreviate C∗(R) by C∗. By a restriction to R of a tricoloring c of S, we mean the

function c|R with domain E(R) and range {−1, 0, 1} that agrees with c on the edges

of R. Also, if κ : E(R) → {−1, 0, 1} is a coloring of R, then we define an extension

of κ into a tricoloring of S, to be a tricoloring of S which agrees with κ on E(R). We

let C(S) denote the set of restrictions to R of tricolorings of S. A restriction to R of

a tricoloring of S has either one or more extensions into tricolorings of S. Let the

set of restrictions to R of tricolorings of S which have exactly one extension into a

tricoloring of S be denoted by U(S) or just U if the free completion S is understood

from the context. If T is a triangulation that is uniquely vertex-4-colorable, and if

the free completion S appears in T then it follows that the restriction to R of the

corresponding tricoloring of T must be an element of U .

The following definitions are taken from Robertson et. al. [8] A match is a an

unordered pair {e, f} of distinct edges of E(R). A matching is a nonempty set of

matches {{e1, f1}, {e2, f2}, . . . , {ek, fk}} such that for any i 6= j, the edges ej and fj

are in the same component of R − {ei, fi}. Finally, a signed matching is a collection

of ordered pairs {({e1, f1}, µ1), ({e2, f2}, µ2), . . . , ({ek, fk}, µk)}, where the collection
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{{e1, f1}, {e2, f2}, . . . , {ek, fk}} is a matching, and where µi ∈ {−1, 1} for 1 ≤ i ≤ k.

The sign of a match is used to differentiate whether both ends of a kempe chain have

the same color or distinct colors.

If θ ∈ {−1, 0, 1} and κ is a coloring of R we say that κ θ-fits a signed matching

M = {({e1, f1}, µ1), ({e2, f2}, µ2), . . . , ({ek, fk}, µk)} if

(i) E(R)−⋃1≤i≤k {ei, fi} = {e ∈ E(R) : κ(e) = θ} and

(ii) For each ({ei, fi}, µi) ∈M , κ(ei) = κ(fi) if and only if µi = 1.

A set C of colorings of R is consistent if for every κ ∈ C and every θ, θ ′ ∈ {−1, 0, 1}

there is a signed matching M such that

i) κ θ−fits M .

ii) C contains every coloring of R that θ′−fits M .

Let A ⊂ C∗. A set of colorings C of R is said to be A-critical if for every κ ∈ C

and every θ, θ′ ∈ {−1, 0, 1}, there is a signed matching M such that

i) κ θ−fits M ,

ii) C contains every edge that θ′−fits M , and

iii) there are not two colorings α, α′ ∈ A and integers γ, γ ′ ∈ {−1, 0, 1} such that

both α γ−fits M and α′ γ′−fits M and α is not equivalent to α′.

Lemma 5.1.1 If |A⋂C| ≤ 1, then C is A−critical if and only if C is consistent.

Proof: If C is A−critical, then it is clearly consistent. Conversely, let C be a con-

sistent set. We must show that under the hypothesis, C is critical. Let κ ∈ C

and θ ∈ {−1, 0, 1}. Since C is consistent, there is a signed matching M such that

κ θ−fits M and C contains every coloring that θ ′−fits M . Now let α, α′ ∈ A, and let
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γ, γ′ ∈ {−1, 0, 1}. Since |A⋂C| ≤ 1, it follows that one of either α or α′ is not in C.

Without loss of generality, assume that α′ /∈ C. Therefore α′ does not γ′−fit κ, be-

cause if it did, condition ii) of consistency would imply that α′ ∈ C. This establishes

that C is A−critical and completes the proof of Lemma 5.1.1.

Consistency and criticality are defined in terms of colorings of a circuit, but the

near triangulations to which we want to apply the ideas of consistency may have

their infinite face bounded by something other than a circuit. This does not turn

out to be a serious obstacle to using consistency as we shall now see. Let R be a

circuit with vertices {1, 2, . . . , r} and edges e1, e2, . . ., er where edge ei joins vertex

i to vertex i + 1 for 1 ≤ i < r, and edge er joins vertex r to vertex 1. Let H be

a near triangulation with outer-facial walk W = v1, f1, v2, f2, v3,. . . , vr, fr, v1, where

v1, v2, . . . , vr are vertices, not necessarily distinct and where {f1, f2, . . . , fr} are edges

such that fi joins vi and vi+1 for 1 ≤ i ≤ r − 1 and where fr joins the vertices vr

and v1. Let φ : E(R) → {f1, f2, . . . , fr} be defined by φ(ei) = fi. Also suppose that

κ is a tricoloring of H and define a function λ on the edges of the circuit E(R) by

λ(e) = κ(φ(e)). Following [8], we say that φ wraps R around H and that the coloring

λ of E(R) is a lift of κ.

The next theorem is an important result which uses ideas of both Kempe and

Birkhoff.

Theorem 5.1.3 Let H be a near triangulation with outer facial walk W as above,

and let φ wrap the circuit R around H. The set C of all lifts of tricolorings of H is

consistent.

Proof: Let κ ∈ C and let θ ∈ {−1, 0, 1}. We will construct a signed matching
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M = M(κ, θ) such that κ θ-fits M . Following Robertson et. al. [8], we define a θ−rib

to be a sequence g0,r1,g1,r2,. . .,rt,gt such that

(i) g0, g1, . . . , gt are distinct edges of H.

(ii) r1,r2,. . . ,rt are distinct finite faces of H.

(iii) If t > 0 then g0,gt are both incident with the infinite face of H, and if t = 0

then g0 is incident with no finite face of H.

(iv) For 1 ≤ i ≤ t, ri is incident with gi−1 and with gi.

(v) For 0 ≤ i ≤ t, κ(gi) 6= θ.

Any two distinct θ−ribs ρ = g0, r1,g1,r2,g3,. . .,gt and ρ′ = g′0,r′1,g′1,. . .,r′t′ ,g
′
t′ must

have {g0, g1, . . . , gt}
⋂{g′0, g′1, . . . , g′t′} = ∅ and {r0, r1, . . . , rt}

⋂{r′0, r′1, . . . , r′t′} = ∅.

To see this, note two things. First, if ρ and ρ′ share a common non-infinite face r,

then ρ and ρ′ must also share both of the unique (because each of the finite faces is

a triangle) edges incident to r that are colored with the colors in {−1, 0, 1} − {θ},

because of (iv). Second, if ρ and ρ′ share a common edge g then ρ and ρ′ also share

both of the faces that are incident to g, because of (iv) and (v). Using these two

facts, we can show that if any two θ−ribs share either an edge or a finite face, then

the two θ−ribs are identical.

Because of (iii), unless a rib consists of a single edge, it contains at least two edges

incident to the infinite face. Because of (ii) and (iv), a rib does not contain more

than two edges which are incident to an infinite face. Thus, if a rib is not a single

edge, then it has exactly two edges that are incident to the infinite face and colored

with colors in {−1, 0, 1} − {θ}.

Conversely, we claim every edge that is incident to the infinite face and is colored

with a color in {−1, 0, 1}−{θ} is in some rib. To see this, let e0 be an edge incident to
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the infinite face which is colored α ∈ {−1, 0, 1}− {θ} and let γ ∈ {−1, 0, 1}− {θ, α}.

If e0 is not incident to a finite face, then e0 is itself a rib by (iii). So suppose that e0

is incident to a unique finite face s1 that is a triangle. Because the given coloring is

a tricoloring, s1 has exactly one edge e1 6= e0, which receives the color γ. This edge

is incident to a face s2 6= s1. If s2 is the infinite face, then e0,s1,e1 is a rib and we

have proven that e0 is in a rib. If s1 is not an infinite face, then because the coloring

is a tricoloring and because s1 is a triangle, there is an edge e2 6= e1 which receives

the color θ and is incident to a face s3 6= s2. In this way we generate an alternating

sequence of edges and faces e0,s1,e1,s2,. . .. If the sequence ever selects an infinite face

sk+1 it terminates. We now show that the construction of this sequence guarantees

that all of the edges e0, e1, . . . , are distinct. If not, there would be integers 0 ≤ i < j

such that ei = ej. Of all such pairs (i, j) choose one with the smallest j and subject

to that choose among those the one with the largest i. As a first case, assume i = 0.

Thus ej is incident to the infinite face. It follows that s1 = sj and e1 = ej−1. By the

choice of j, it cannot be that ej−1 ∈ {e0, e1, . . . , ej−2} and so j − 2 = 0. It follows

that s1 = sj = s2. This however, contradicts the construction. Thus we have shown

that i > 0, and in addition that if e0, . . . , ej−1 are distinct and ej is incident to the

infinite face, then ej 6= e0.

Of the two faces incident to ei, the face si−1 precedes the face si+1 is the sequence.

Similarly, the face sj precedes the face sj+1 and both are incident to ei = ej. Clearly

{si, si+1} = {sj, sj+1}. The face sj is incident to an edge ej−1 6= ej that receives a

color in {−1, 0, 1} − {θ}. Since {si, si+1} = {sj, sj+1}, it follows that the edge ej−1

is in one of the faces si or si+1. Therefore ej ∈ {ei−1, ei, ei+1}. Now the choice of

j insures that ej−1 /∈ {e0, e1, . . . , ej−2}. Thus, it must be that i + 1 = j − 1, so
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j = i + 2 and si+1 = sj−1. Thus ei = ej is incident to si, si+1 = sj−1 and si+2 = sj

and since each edge is incident to at most two faces, two of the three faces si,si+1

and si+2 must actually be the same face. By the construction, si 6= si+1 which forces

si = si+2. But then ej−1 = ei−1 which contradicts the choice of j. Thus, every edge

of the sequence is distinct. Since the graph is finite, this means that the sequence

must terminate on an edge ek other than e0 which is incident to the infinite face. The

sequence e0,s1,e1,s2,. . .,sk,ek is a rib which contains e0, as desired.

This shows that each θ−rib ρ defines a pair of edges {eρ, fρ} which are both

incident to the infinite face and which both receive colors from {−1, 0, 1} − {θ}. We

can thus use ρ to define a signed match, namely ({eρ, fρ}, µρ) where µρ = −1 if κ(eρ) 6=

κ(fρ) and µρ = 1 otherwise. Now we will show the set of ribs {ρ1, . . . ρp} defines a

signed matching. First of all, the set {ρ1, . . . ρp} defines a set of signed matches

M = M(κ, θ) = {({eρ1 , fρ1}, µρ1), . . . , ({eρp, fρp}, µρp)} in the manner defined above.

Because of the planarity of the graph, and the fact that two ribs are either disjoint

or identical, it must be that for every i 6= j, 1 ≤ i, j ≤ p, 1) {eρi, fρi}
⋂{eρj , fρj} = ∅

and 2) the removal of {eρi , fρi} from the ring could not separate eρj from fρj . Thus

M is a signed matching. Now we show that κ θ−fits M . First, because every edge

incident to the infinite face and receiving a color in {−1, 0, 1}−{θ} must be in a rib,

it follows that {eρ1 , . . . , eρp, fρ1 , . . . , fρp} equals {f ∈ E(R) : κ(f) ∈ {−1, 0, 1}−{θ}}.

The definition of µρi also shows that for every integer i (1 ≤ i ≤ p), κ(eρi) = κ(fρi)

if and only if µρi = 1. This proves that κ θ−fits M = M(κ).

We now finish the proof that C is consistent. First, for every κ ∈ C and every θ ∈

{−1, 0, 1}, our construction using ribs has produced a signed matching M = M(κ, θ)

such that κ θ−fits M . So let θ′ ∈ {−1, 0, 1} and let κ′ be another coloring that θ′−fits
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M(κ, θ) = M . Define the coloring κ′′ as follows: κ′′(e) = θ if k′(e) = θ′, κ′′(e) = θ′

if κ′(e) = θ and κ′′(e) = κ′(e) if κ′(e) ∈ {−1, 0, 1} − {θ, θ′}. It follows that κ′′ θ−fits

M . Let c be the coloring of H whose lift is κ and let {ρ1, . . . ρp} be the set of θ−ribs

induced by c which define M . If ({ei, fi}, µi) is the signed match associated with the

θ−rib ρi, then the fact that κ′′ θ′−fits implies that

1a) Either κ′′(ei) = κ′′(fi) 6= κ(ei) or

1b) κ′′(ei) = κ′′(fi) = κ(ei) or

1c) κ′′(ei) 6= κ′′(fi), and κ′′(ei) 6= κ(ei) or

1d) κ′′(ei) 6= κ′′(fi), and κ′′(ei) = κ(ei).

where either 1a) or 1b) hold if µi = 1 and either 1c) or 1d) hold of µi = −1.

In the θ−rib ρi = g0,r1,g1,r2,. . .,rt,gt, we have κ(g0) = κ(g2) = κ(g4) = . . . =

κ(g2b t
2
c) = α and κ(g1) = κ(g3) = κ(g5) = . . . = κ(g2b t−1

2
c+1) = β where {α, β} =

{−1, 0, 1} − {θ}. There is another tricoloring γ of H that can be obtained by

exchanging the colors α and β along H, namely γ(e) = κ(e) if e is not in ρi,

γ(e0) = γ(e2) = γ(e4) = . . . = γ(e2b t
2
c) = β and γ(g1) = γ(g3) = γ(g5) = . . . =

γ(g2b t−1
2
c+1) = α. Using this idea, we define a new tricoloring c′′ of H by exchanging

the colors α, β ∈ {−1, 0, 1} − {θ} along each rib ρi for which either 1a) or 1c) holds.

The lift of c′′ will be κ′′ and thus κ′′ ∈ C. Moreover, by defining a coloring c′ of H

from the coloring c′′ by swapping the colors θ and θ′, that is defining c′(x) = θ if

c′′(x) = θ′, c′(x) = θ′ if c′′(x) = θ and c′(x) = c′′(x) otherwise, we see that c′ is also

tricoloing of H whose lift equals κ′. Thus κ′ ∈ C as desired.

This shows that C is consistent and completes the proof of Theorem 5.1.3.

Lemma 5.1.2 Let R be a ring and let A ⊂ C∗(R). The empty set is an A-critical

set. Also, the union of two A−critical sets is an A−critical set and in particular, the
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union of two consistent sets is consistent. Finally, for any subset B of colorings of

R, the maximally A-critical subset of B exists, that is, there is a subset of B which

is A-critical, and such that every other A-critical subset of B is contained in it.

Proof: Let A ⊂ C∗(R). The statement that the empty set is A−critical is vacuously

true. Let C1, C2 ⊂ C∗(R) be two A−critical sets, and assume that for i = 1, 2, and

any θ, θ′, γ, γ′ ∈ {−1, 0, 1} and any κ ∈ Ci, there is a signed matching M such that

i) κ θ−fits M and

ii) every κ′ that θ′−fits M is in Ci and

iii) no two non-equivalent colorings αi ∈ A γi−fit M for both i = 1 and i = 2.

Let κ ∈ C1

⋃ C2 and let θ ∈ {−1, 0, 1}. Without loss of generality, we may assume

κ ∈ C1. Therefore there is a matching M that κ θ−fits and such that every other

coloring κ′ which θ′−fits M is in C1 ⊂ C1

⋃ C2.

Now suppose by way of contradiction that there are two non-equivalent colorings

α1, α2 and two integers γ1, γ2 ∈ {−1, 0, 1} such that α1 γ1−fits M and α2 γ2−fits M .

This however violates the A−criticality of either C1 or C2.

This proves that C1

⋃ C2 is A-critical. If |A| ≤ 1 the set C is A−critical if and

only if it is consistent and so by choosing A = ∅, we deduce that the union of two

consistent sets is consistent.

Now let B ⊂ C∗(R). The union of all A-critical subsets of B is A-critical and

certainly contains every A−critical subset of B. This completes the proof of Lemma

5.1.2.

Lemma 5.1.3 If |A⋂C| ≤ 1, then the maximal consistent subset of C equals the

maximal A−critical subset of C.
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Proof: Let MCSA(C) denote the maximal A−critical subset of C and let MCS∅(C)

denote the maximal consistent subset of C. We know that MCSA(C) is consistent so

MCSA(C) ⊂MCS∅(C). Also, by Lemma 5.1.1 and the fact that |CA| ≤ 1, MCS∅(C)

is A−critical. Hence MCS∅(C) ⊂MCSA(C), and thus the theorem holds.

5.2 Proving Reducibility

5.2.1 Using a Corresponding Projection

Let K be a configuration that appears in a triangulation T and has free completion

S and ring R. In general S will not appear in T , but suppose for illustration that it

does. The ring R will naturally split T up into two near triangulations, one of them

S and the other which we denote by H. However, it may be the case that S does

not appear in T . The next lemma is a technical result to show that we may still in a

certain sense decompose T into the near triangulation H and the free completion S.

Lemma 5.2.1 Let K be a configuration which appears in a triangulation T and has

free completion S with ring R and let φ be the corresponding projection of S into T .

Let H be the graph obtained from T be deleting the vertex-set φ(V (G(K))). Then

1) H is a near triangulation and φ wraps R around H.

2) If X ⊂ E(S) is sparse in S, then φ(X) is sparse in T .

Proof: Since φ fixes G(K) and G(K) is connected, all of G(K) lies in the same face

of the drawing T −V (G(K)). This and the fact that T is a triangulation implies that

H = T − φ(V (G(K))) = T − V (G(K)) is a near triangulation.
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Let V (R) = {r1, r2, . . . , rq} and E(R) = {e1, e2, . . . , eq} where for i = 1, 2, . . . , q−

1, ei has endpoints ri and ri+1 and eq = {rq, r1}. Suppose that r1,r2,. . .,rq is the

clockwise order of appearance of the vertices of V (R). Consider the alternating

sequence W of vertices and edges in T : φ(r1), φ(e1), φ(r2), φ(e2), . . ., φ(rq), φ(eq),

φ(r1). By property (iii) of projections, φ(ri) is incident to φ(ei) in T for each i ∈

1, . . . , q − 1 because ri is incident to ei in S for each i ∈ 1, . . . , q − 1. For the same

reason φ(eq) is incident to φ(r1). Thus W is a closed walk in H.

We now prove some things that will help in establishing that W is a facial walk.

We claim that every finite face r ∈ F (S) − F (G) has the property that φ(r) is

contained in the infinite face of H. It suffices to show that φ(r) is incident to some

vertex of V (G), because the infinite face of H will contain that vertex in its interior.

By property 2) of Lemma 4.2.1, r is incident to a vertex x ∈ V (G). By property (iii)

of projections, φ(r) is incident to φ(x) = x in T . This proves that claim.

Let v ∈ V (R). By property 6) of Lemma 4.2.1, a clockwise listing in S of edges

incident to v is g0, g1, . . . , gp where g0, gp ∈ E(R), p ≥ 2 and g1, . . . gp−1 ∈ E(G). We

assume that the endpoints of gi in V (S)− v are xi for 0 ≤ i ≤ p. Also, for 1 ≤ i ≤ p,

we label the unique finite face of S that is incident to gi−1 and gi as ri and the unique

edge in E(S) that is incident to ri as hi. Thus, for 1 ≤ i ≤ p − 1, hi+1, gi, hi is a

portion of a clockwise listing in S of edges incident to xi. From the fact that φ is the

extension of the natural edge function, and the fact that the natural edge function

preserves the embedding in S at xi, it follows that φ(hi+1), φ(gi), φ(hi) is a portion

of the clockwise listing in T of edges incident to φ(xi) = xi for 1 ≤ i ≤ p − 1. Also,

the fact that φ is a projection, implies that φ(ri) is a face of T that is incident to the

edges φ(gi−1), φ(hi), φ(gi) for 1 ≤ i ≤ p. We claim that for every 1 ≤ i ≤ p, φ(gi)
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follows φ(gi−1) in the clockwise listing in T of edges incident to φ(v). This however

follows from three facts:

1) φ(hi) follows φ(gi) in any clockwise listing in T of edges incident to xi for

1 ≤ i ≤ p.

2) φ(gi−1) follows φ(hi) in any clockwise listing in T of edges incident to xi−1 for

1 ≤ i ≤ p.

3) The edges φ(gi), φ(hi) and φ(gi−1) are all incident to the finite face ri in T , for

1 ≤ i ≤ p.

All of this implies that φ(g0), φ(g1), . . . , φ(gp) is a portion of any clockwise listing

in T of edges incident to φ(v) in T . Moreover, from the claim above, φ(ri) is a face of

T that is contained in the infinite face of H. Hence, the edges φ(g1), φ(g2), . . . , φ(gp−1)

are all edges of the infinite face of H, and it therefore follows that φ(gp) follows φ(g0)

in any clockwise listing in H of edges incident to φ(v).

We now show that the sequence φ(r1), φ(e1), φ(r2), φ(e2), . . ., φ(rq), φ(eq), φ(r1)

is a facial walk in H that bounds the infinite face. From what we have just shown,

φ(ei−1) follows φ(ei) in the clockwise listing in T of edges incident to φ(ri) for 1 ≤ i ≤ q

(and where when i = 1, we interpret ei−1 as er). This completes the proof that W is

a facial walk of the infinite face of G and thus shows that φ wraps R around H.

Now let X ⊂ E(S) be a sparse set of edges. Each edge in X must have at least

one endpoint in V (G). Therefore, every edge of X is in the domain of the natural

edge function of Lemma 4.11. Since φ is an extension of the natural edge function,

φ preserves that embedding at every x ∈ V (G), which implies that if e, f ∈ X share

a common endpoint x ∈ V (G), but do not share a common face, then φ(e) and φ(f)

have common endpoint x in T but are not in a common face of T . This implies that
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if φ(e) and φ(f) are in the same face r′ of T for some distinct edges e, f ∈ X, then

φ(e) and φ(f) do not have a common endpoint in V (G). However, φ(e) and φ(f)

both have endpoints in V (G) since e and f do. Let xe denote the endpoint of e in

V (G) and xf the endpoint of f in V (G), and let z be the common endpoint of φ(e)

and φ(f) in T .

We digress briefly to show that there is an r ∈ F (S) such that φ(r) = r ′. Now r′

is adjacent to a vertex in V (G), (in fact two, xe and xf ). Property 4) of the natural

edge function guarantees that φ restricted to the edges of S which have at least one

endpoint in V (G) is a one to one and onto function into the set of edges T with at

least one endpoint in V (G). From the way φ was defined for faces, this implies that

φ(r) = r′.

Let g be the edge in S which has endpoints xe and xf and which is incident to the

face r. Because φ is a projection, φ(g) is incident to r ′. Also, since G is an induced

subdrawing of S, g ∈ E(G) and so φ(g) = g. Suppose without loss of generality that

g follows φ(e) in every clockwise listing in T of edges incident to xe, and that φ(f)

follows g in every clockwise listing in T of edges incident to xf . Now the edge e either

precedes or follows the edge g in any clockwise listing in S of edges incident to xe.

If e follows g in every clockwise listing in S of edges incident to xe then φ(e) would

both precede and follow φ(g) in every clockwise listing in T of edges incident to xe.

This however is impossible because dT (xe) = γK(xe) ≥ 5. Therefore, it must be the

case that e precedes g in any clockwise listing in S of edges incident to xe. For similar

reasons, f must follow g in any clockwise listing in S of edges incident to xf . Thus e

and f share a triangular face with each other and with g, which contradicts that X

is sparse. This completes the proof of the lemma.
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5.2.2 Defining Various Types of Reducibility

We now introduce the notation that will be used for the rest of this chapter. Let

K be a configuration with free completion S and ring R. Suppose that K appears

in the triangulation T , that φ is a corresponding projection of S into T , that H is

the near triangulation T − V (K(G)), and that φ wraps R around the outer facial

walk of H. Finally, let X be a sparse subset of E(S). We now define various sets of

colorings of R. Let C∗ be the set of all colorings of the ring R, let CS be the set of

restrictions to R of tricolorings of S, and let U ⊂ C be the set of colorings of R which

extend to a unique tricoloring of S. Note that C∗(R) − CS is the set of colorings of

R which do not extend into S. The set CS(X) will denote the set of restrictions to

R of tricoloring of S modulo X. Also, let CH denote the set of lifts of tricolorings

of H. By Lemma 5.1.2, for any B ⊂ C, there is a maximal U−critical subset of B

which we denote by MCSU (B) or just MCS(B) for short. The notation MCS∅(B)

will denote the maximal consistent subset of B. Finally, for u ∈ U we denote the set

MCSU ((C∗ − CS)
⋃{u}) by MCS(u). With these definitions in place, we now define

various types of reducibility, the first two of which appear in the literature and are

sufficient to prove the Four Color Theorem, and the third, fourth and fifth of which

are introduced to prove the Fiorini-Wilson-Fisk Conjecture.

1. The configuration K is D-reducible if MCS∅(C∗ − CS) = ∅.

2. The configuration K is C(k)-reducible if there exists a sparse set set X ⊂ E(S)

such that |X| = k, φ(X) is contractible and no tricoloring of S modulo X is in the

set MCS∅(C∗ − CS).

3. If u ∈ U and u /∈MCS(u) then we say that u is D-removable.
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4. If u ∈ U and there is a sparse set X ⊂ E(S) such that φ(X) is contractible

and MCS(u)
⋂ CS(X) = ∅, then we say that u is C-removable.

5. A configuration K is U-reducible if

1) every u ∈ U , is either D-removable or C-removable.

2) At least one u ∈ U is C-removable or the configuration K is either D-reducible

or C(4)-reducible.

Notice that each of the above types of reducibility depends only on R and S and

not on H. This has the very practical application that if |V (R)| is relatively small,

say 14 or 15, it is feasible computationally to calculate Maximum Critical Subsets like

MCS(u). This coupled with the following observations which relate CH to MCS(u)

are the key to reducibility because calculations on a small piece of the triangulation

T yield information about the rest of the triangulation which could be immense. Let

us recall that the operator η was defined at the beginning of the chapter.

1) If it is not the case that CH
⋂ CS * η({u}) for some u ∈ U , then it can be

shown that T has at least two vertex-4-colorings.

2) If CH
⋂ CS ⊂ η({u}) for some u ∈ U , then CH ⊂ MCS(u) by Lemma 5.1.3.

Thus if T is a minimum counterexample, then CH ⊂MCS(u). This will turn out

to be valuable because the induction hypothesis can be used to color H.

Robertson et al. used D-reducibility and C(k)-reducibility for 1 ≤ k ≤ 4 to prove

the Four Color Theorem [8]. Notice that reducibility for the Four Color Theorem

(Types 1. and 2.) is defined for entire configurations while reducibility for the Fiorini-

Wilson-Fisk Conjecture must first be defined in terms of individual colors in U (types

3. and 4.) and only then defined for an entire configuration (type 5.) This means

that proving reducibility for the Fiorini-Wilson-Fisk conjecture will tend to be more
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computationally intensive than proving it for the Four Color Theorem because in

principle, each color in U needs to be considered. In practice, it is often possible to

simultaneously get rid of groups of colors in U as we shall show in Section 6.8.1.

5.2.3 Proving Reducibility

As noted above, S will not, in general, appear in T , but suppose again for illustration

that it does. The ring R will appear in T and will naturally split T up into two near

triangulations, one of them S and the other which we denote by H. Denoting by CS
the set of restrictions to R of tricoloring of S and CH the set of restrictions to R of

tricolorings of H, it is clear that T will have a tricoloring if and only if CS
⋂ CH 6= ∅.

Many of the results of this section will use this simple principle in one way or another.

The next theorem proves that this simple principle can be applied even when only a

projection φ of S appears in T .

Lemma 5.2.2 Let d be a coloring of R. Then d ∈ CS
⋂ CH if and only if T has a

tricoloring whose restriction to φ(R) is d.

The proof of this is straightforward and we omit it.

The usefulness of our definitions of reducibility hinge on the following lemma, as

was alluded to in Section 4.2.2.

Lemma 5.2.3 Either T has at least two non-equivalent vertex-4-colorings or there is

a u ∈ U such that CH ⊂ MCS(u).

Proof: By Lemma 5.2.2, if |CH
⋂ CS | ≥ 2, or if CH

⋂
(CS − U) 6= ∅, then T has at

least two distinct vertex-4-colorings. Hence, we may assume there is a u ∈ U such
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that CH ⊂ (C∗−CS)
⋃
η({u}). Now MCS(u) ⊂ (C∗−CS)

⋃
η({u}) and also MCS(u)

is consistent by Lemma 5.1.3. Thus Theorem 5.1.3 implies that CH ⊂MCS(u) since

CH is consistent.

Lemma 5.2.4 Let φ be a corresponding projection of S into T . If c is a tricoloring

of T modulo φ(X), then there are functions cX and cH , such that cX is a tricoloring

of S modulo X and cH is a tricoloring of H. In addition, cX(e) = c(φ(e)) for every

e ∈ E(S), and cH(e) = c(e) for all e ∈ E(H). Finally, the restriction of c to φ(E(R)),

the restriction of cX to E(R) and the lift of cH by φ are all the same ring coloring,

and this ring coloring is in CH
⋂ CS.

Proof: Note that by Lemma 5.2.1, H is a near-triangulation, φ wraps R around H

and φ(X) is sparse in T . Since E(H)
⋂
φ(X) = ∅, c restricted to H is a tricoloring of

H, which we henceforth denote cH . The tricoloring c also defines a tricoloring cX of S

modulo X as follows: cX(e) = c(φ(e)) for e ∈ E(S). By property (iii) of projections,

if r ∈ F (S), and r is incident to the distinct edges e, f, g ∈ E(S) then φ(r) is a face

in F (T ) which is incident to edges the edges φ(e), φ(f) and φ(g). If X
⋂{e, f, g} =

∅, then φ(X)
⋂{φ(e), φ(f), φ(g)} = ∅ so {1, 0, 1} = {c(φ(e)), c(φ(f)), c(φ(g))} =

{cX(e), cX(f), cX(g)}. If X
⋂{e, f, g} 6= ∅, say e ∈ X, then φ(e) ∈ φ(X), so cX(f) =

c(φ(f)) = c(φ(g)) = cX(g). Thus cX is a tricoloring of S modulo X. From the

definitions of cX and cH , cX(e) = c(φ(e)) = cH(φ(e)) for e ∈ E(R). Hence the

restriction of cX to R (which equals the restriction of cH to φ(E(R)) is in the set

CS
⋂ CH . This completes the proof of Lemma 5.2.4

Let A ⊂ C∗. Generalizing Robertson et al. we say that a set X ⊂ E(S) − E(R)

is an A−contract if it is a nonempty, sparse set and if no tricoloring modulo X of
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S is in the set MCS( (C∗ − C)⋃A ). If A = {a} we call an A-contract simply an

a−contract. If A = ∅, then we say that X is a contract.

The free completion S of a configuration does not necessarily appear in the trian-

gulation T even if the configuration does. However, Theorem 4.3.1 shows that there

is a projection of S into T . It is conceivable that a contract X in S might produce

loops if the corresponding edges were contracted in T and Theorem 5.1.2 would not

be applicable. The following method of Robertson et al. gives an easy to check suffi-

cient condition for a contract X ∈ S not to produce loops after being projected into

T .

An edge e is said to face a vertex v if v is not an endpoint of e and both v and e

are incident to a common face. A vertex v ∈ V (S) is a triad for X if

(i) v ∈ V (G(K))

(ii) There are at least three vertices of S adjacent to v and incident to a member

of X

(iii) If γK(v) = 5, then there is an edge of X that does not face v.

Theorem 5.2.1 Let K be a configuration with free completion S and ring R and

suppose that K appears in an internally 6 connected triangulation T . Let φ be a

corresponding projection of S into T and let X ⊂ E(S) be a sparse subset with

|X| = 4 such that there is a vertex of G(K) which is a triad for X. Then for every

circuit C in T , |E(C)− φ(X)| ≥ 2 or there is a short circuit in T .

Proof: Let Y = φ(X). Lemma 5.2.1 guarantees that Y is sparse in T . Let C be

a circuit in T . Since T is loopless, |E(C)| > 1. If |E(C)| = 2 then because all

faces are triangles, C cannot bound a face and must therefore be a short circuit. If
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|E(C)| = 3 then C must bound a face, for otherwise it would be a short circuit. Thus,

the sparseness of Y implies that Y has at most one edge in common with E(C) and

so the desired inequality holds. If |E(C)| = 4 and C = {x1, x2, x3, x4} then either

C is a short circuit or some pair of diagonally opposite vertices of C, say x1 and x3

are adjacent to each other and {x1, x2, x3} and {x3, x4, x1} form triangular faces in

T . Since Y is sparse, Y has at most one edge in common which each of these two

faces and so |E(C)
⋂
Y | ≤ 2 and the inequality follows. If |E(C)| ≥ 6, then |X| ≤ 4

implies |E(C) − φ(X)| ≥ 2. So we may assume |E(C)| = 5 and thus that |X| = 4.

Let C = x1, x2, x3, x4, x5. We may assume |E(C)−Y | = 1 and so all 4 edges of Y are

in E(C). Let int(C) denote the subdrawing of T induced by the vertices in one of the

arc-wise connected components of Σ − C and let ext(C) denote the the subdrawing

of T induced by the vertices in the other arc-wise connected component of Σ − C.

We may assume that either |V (int(C))| ≤ 1 or |V (ext(C))| ≤ 1, or else C is a short

circuit. If |V (int(C))| = 0 or |V (ext(C))| = 0, then there are only edges in one of the

two disjoint regions of the sphere defined by C, but this will create triangular faces

containing two edges of Y , a violation of the sparseness of Y . Thus we must have

|V (int(C))| = 1 or |V (ext(C))| = 1. By symmetry, we may assume the former and we

will let y denote the vertex for which V (int(C)) = {y}. Note that y has degree 5 and

faces all the edges of Y and so cannot be a triad for Y . Since there is a triad v for Y ,

v ∈ V (ext(C)), v is incident to at least three vertices xi1 , xi2 , xi3 ⊂ {x1, x2, x3, x4, x5}

which are, in turn endpoints of edges in Y . By relabeling, we may assume xi1 = x1

and xi2 = x2 and that i3 ∈ {3, 4}. If i3 = 4 then {v, x4, y, x1} form a short circuit.

So assume that i3 = 3, and deduce that {v, x3, x4, x5, x1} is either a short circuit, or

there is a degree 5 vertex w that is adjacent to {v, x3, x4, x5, x1}. We may assume
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{v, x3, x4, x5, x1} is not a short circuit in T , so the later holds and v has neighbors

{x1, x2, x3, w} which form a short circuit. This completes the proof of the theorem.

We will call any A− contract X with |X| = 4 and for which X has a triad a safe

contract.

Theorem 5.2.2 Every configuration in Appendix A is U-reducible. Moreover, for

every u ∈ U that is C-removable, there is a safe u-contract X.

Proof: Let K be a configuration in Appendix A. The computer verifies that for

every u ∈ U , u is either D-removable or C-removable. When the color is C-removable,

the computer finds a u-contract X and verifies that X is safe. After showing that

every u ∈ U is either D-removable or C-removable, the computer verifies that the

configuration K is U-reducible. If at least one of the u ∈ U was C-removable, then

U-reducibility for K is immediately established. Otherwise, the computer verifies

that K is either D-reducible or C(4)-reducible. Details about how the computer does

this can be found in Chapter 6.

Theorem 5.2.3 Let T be a minimum counterexample. Then no configuration iso-

morphic to one in Appendix A appears in T .

Proof: Let T be a minimum counterexample, and suppose that K is a configuration

in Appendix A which appears in T . By Theorem 3.3.1, we know that T is internally

6−connected.

Let H and S be as at the beginning of Section 5.2.2. We first notice that if

CH
⋂ CS includes two non-equivalent colorings, or if κ ∈ CH

⋂ CS for some κ ∈ CS−U ,

97



then Lemma 5.2.2 implies that T would have at least two non-equivalent vertex-4-

colorings. Therefore, we may assume that CH
⋂ CS ⊂ (C∗ − CS)

⋃
η({u}), for some

u ∈ U .

Assume first that no u ∈ U is C-removable. Therefore, every u ∈ U is D-removable,

which implies that u /∈ MCS(u) for every u ∈ U . Since K appears in Appendix A,

Theorem 5.2.2 implies that K is either D-reducible or C-reducible. We first consider

the case that K is D-reducible, and therefore that MCS(C∗ − C) = ∅. Since T is a

minimum counterexample, H has a vertex-4-coloring and thus CH 6= ∅. If CH
⋂ CS =

∅, then CH ⊂ (C∗ − CS) which implies that CH ⊂ MCS(C∗ − CS) since Lemma 5.1.3

implies the latter is consistent. This however, is a contradiction. Assume then that

CH
⋂ CS = η({u}) for some u ∈ U . This also gives rise to a contradiction, because

then CH ⊂ (C∗ − CS)
⋃
η({u}) which implies CH ⊂ MCS(u) since by Lemma 5.1.3,

MCS(u) equals the maximal critical subset of (C∗ − CS)
⋃
η({u}) and CH is critical

by Theorem 5.1.3. Thus u ∈ CH ⊂MCS(u) which contradicts that u is D-removable.

Now consider the case that K is C(4)-reducible, and let X be a sparse subset of

S such that φ(X) is contractible in T and that CS(X)
⋂
MCS(C∗ − CS) = ∅. By

Theorem 5.1.2, there is a tricoloring of T modulo X which we denote by c. Let cH

and cX be the colorings that are guaranteed to exist by Lemma 5.2.4, let cH(R) be

the lift of cH by φ and let cX(R) be the restriction to R of the coloring cX . Lemma

5.2.4 says that cH(R) = cX(R) and that cX(R) ∈ CH
⋂ CS. Also, we know that

cX(R) ∈ CS(X). Therefore cX(R) ∈ CH
⋂ CS

⋂ CS(X). From this and our assumption

that CH ⊂ (C∗ − CS)
⋃
η({u}) for some u ∈ U , it follows that cX(R) ∈ U and that

CH ⊂ MCS(cX(R)) since by Theorem 5.1.3, CH is consistent and by Lemma 5.1.3,

MCS(cX(R)) equals the maximal consistent subset of (C∗−CS)
⋃{cX(R)}. Since we
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are assuming that every u ∈ U is D-removable, it follows that cX(R) is D-removable,

and hence that cX(R) /∈ MCS(cX(R)). This however is a contradiction because we

know that cX(R) ∈ CH ⊂ MCS(cX(R)). This completes the proof of Theorem 5.2.3

in the case when no u ∈ U is C-removable.

We may assume then that there is a u ∈ U which is not D-removable and hence

is C-removable. By Theorem 5.2.2, we know that there is a safe u−contract X. We

now show that we may assume CH ⊂ (C∗ − CS)
⋃
η({u}). If not, then from our

previous assumptions we know that there is a u′ ∈ U with u 6= u′ such that CH ⊂

(C∗−CS)
⋃
η({u′}). Now CH * C∗−CS ; otherwise CH ⊂ C∗−CS ⊂ (C∗−CS)

⋃
η({u}).

It follows then that u′ ∈ CH ⊂ MCS(u′), so u′ is not D-removable. Therefore u′ is

C-removable, by Theorem 5.2.2. Thus, we could let u′ play the role of u. This proves

that that we may assume u ∈ CH ⊂ MCS(u) ⊂ (C∗ − CS)
⋃
η({u}).

Since X is a safe contract, Theorem 5.1.2 guarantees that T has a tricoloring

modulo X which we denote by c. Using Lemma 5.2.4 and its notation, we write

cH(R) for the lift of cH by φ, and cX(R) for the restriction to R of the coloring c

Lemma 5.2.4 guarantees that cX(R) = cH(R) and that cX(R) ∈ CH
⋂ CS(X). Since

CH ⊂ MCS(u), it follows that cX(R) ∈ MCS(u)
⋂ CS(X). This is a contradiction

however, because X is a u-contract implies that CS(X)
⋂
MCS(u) = ∅.

This completes the proof of Theorem 5.2.3.
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Chapter 6

The Reducibility Program for the

Fiorini-Wilson-Fisk Conjecture

6.1 Introduction

In this section we give a description of the computer program used to prove Theorem

5.2.2, that is, to show that every configuration in the unavoidable set is U-reducible.

The code for this program is written in C and is available upon request.

6.1.1 Notation

The following notation will be used throughout this chapter. Let K be a configuration,

which appears in a triangulation T , let G be the underlying graph of K and let S be

the free completion of K with a ring R having r edges. Let φ denote a corresponding

projection of S onto T that fixes G and let X be a sparse subset of E(S). Let C∗

denote the set of all ring colorings, let CS denote the set of ring colorings of S which

extend to a tricoloring of all of S and let CS(X) denote the set of ring colorings

of R that extend to a tricoloring of S modulo X. Let U be those elements of CS
which extend to exactly one tricoloring of S and for A ⊂ U , let MCS(A) denote the

maximal critical subset of (C∗ − S)
⋃A with respect to U . When A = {u} we write
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MCS(u) instead of MCS({u}). We will assume that V (S) = {1, 2 . . . , |V (S)|} and

that V (R) = {1, . . . , |V (R)|}.

6.1.2 High Level Description

Here is a high level description of what the program does:

Having verified that K1, . . . , Kk ∈ K are U -reducible, the program:

1. Reads the next block of data from the file and checks that it is a configuration.

This block of data will represent the free completion of the configuration Kk+1.

If it is not a valid configuration, the program stops and warns the user that an

error has occurred.

2. Let the current configuration be K and its free completion S. Assume that

the ring of S is R. The program calculates all tricolorings of S, and for each

tricoloring c of S, records its restriction to R by means of a unique code. The

program notes which tricolorings of R have no extensions into S, exactly one

extension into S, (we denote the set of these by U), and which have two or more

extensions into S. For notation, we let C∗(R) = C∗ denote the set of colorings

of R, and C(S) denote the set of restrictions to R of colorings of S.

3. For each u ∈ U , the program tries to establish that every coloring u ∈ U is

either D-removable or C-removable. It does this by calculating MCS(A) for

various subsets A ⊂ U , trying to show that for each u ∈ A ⊂ U either

(a) u /∈MCS(A) (Which we will show implies u is D-removable) or
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(b) There is a contract X = XA such that no tricoloring of S modulo X is in

MCS(A) (Which we will show implies u is C-removable)

If every color u ∈ U satisfies either condition 3a or condition 3b, then

the program proceeds to step 4. If some coloring u ∈ U does not satisfy

either condition 3a or condition 3b when A = {u}, then the program

terminates unsuccessfully, concluding that the current configuration K is

not U-reducible.

4. If during the course of step 3 the program discovers that some coloring in

U is C-removable, then the program concludes that the configuration is U-

reducible. If not, then the program tries to verify that that the configuration

is either D-reducible or C(4)-reducible. If this verification is successful, the

program concludes that the current configuration is U-reducible and proceeds

back to step 1 for the next configuration. If the verification is not successful,

the program halts, concluding that the current configuration is not U-reducible.

6.1.3 Balanced Colorings

A coloring κ:E(R) → {−1, 0, 1} is balanced, if |κ−1(−1)|, |κ−1(0)|, |κ−1(1)| and |R|

all have the same parity. The next result is well-known, and we omit the proof.

Lemma 6.1.1 Let H be a near triangulation with outer facial walk W , and let φ

wrap the circuit R around H. The set C of all lifts of tricolorings of H by φ contains

only balanced colorings.

The main value of MCS(u) is that it is a superset of CH provided that |CH
⋂ CS| ≤

1. This follows because |CH
⋂ CS| ≤ 1 implies CH ⊂ (C∗−CS)

⋃
η({u}) which in turn
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implies that CH ⊂MCS(u) since MCS(u) is the maximal consistent subset of (C∗ −

CS)
⋃
η({u}). By Lemma 6.1.1, CH contains only balanced colorings, and so when con-

sidering the set C∗ in the calculation of MCS(u) = MCS((C∗ − CS)
⋃
η({u}), it suf-

fices for computational purposes to only include balanced colorings. Then when only

balanced colorings are included in C∗, the set MCS(u) = MCS((C∗ − CS)
⋃
η({u}))

remains a superset of CH .

6.1.4 Subroutines

There will be 6 subroutines helpful to this end goal.

1. Data Reading Subroutine

Input: A file consisting of block of specified format, a pointer to some

place in this file, a matrix A.

Output: The free completion of a configuration K written into matrix A

in a manner specified later, or a warning that the data did not represent

a free completion.

2. TriColor(S, C)

Input: A free completion S with ring R of a configuration K and a vector

which has |C| elements.

Output: A recording for each ring coloring c ∈ C∗(R) of whether c extends

to 0, 1 or ≥ 2 tricolorings of S.

3. TriModCon(S,A, X)
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Input: A free completion S with ring R of some configuration K, a set

A ⊂ U and a proposed A−contract X.

Output: Either a warning that the proposed A-contract is invalid , or if

the contract is valid then a set containing every tricoloring of S modulo

X.

4. Critical(S,A,D,v)

Input: Two subsets D ⊂ C∗(R)−CS , and A ⊂ U and a vector v consisting

of |A| ones.

Output: The maximal critical subset MCSU (A,D) of the set A⋃D, and

the vector v such that the ith element of v is 0 if the ith element of A is

not in MCSU(A,D) and 1 otherwise.

5. Contracts Subroutine

Input: A free completion S.

Output: A sparse set and safe set X ⊂ E(S) satisfying |X| = 4.

6. UniqueReduce(S,A, C))

Input: A free completion S with ring R of some configuration K, and a

subset A of the set U of ring colorings that extend to exactly one tricoloring

of S.

Output: A set A′ with the following properties:
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1. A′ ⊂ A is empty if every coloring γ ∈ A is either D−removable or

C−removable for K and otherwise A′ = {γ} where γ is a ring coloring of

R such that γ is neither D-removable nor C-removable.

6.1.5 Running The Program

It is suggested that the code be compiled with some sort of optimization option. Once

it is compiled, a guide to usage can be printed by typing the name of the compiled

program without any arguments. There is one mandatory argument, the name of

the file containing the set K, and this must be the first argument. There are three

optional arguments, the first specifying which configuration in the file the program

should start with, and the next two giving the ranges of those codes of colorings in U

which the user wants to eliminate. Of course, a given configuration will be U-reducible

only if all of the colorings in U can be eliminated with either D-removability or C-

removability. These last two arguments then are used if the user wants to investigate

the D-removability or C-removability of a limited range of colors.

The output can be controlled by either defining or not defining the constants

NORMALPRINT, PRINTHOPE, PRINTSMART. To keep output to a minimum, leave all of

these undefined. To keep track of how the program is progressing towards its goal of

proving that the current configuration is U-reducible, NORMALPRINT should be defined

by including the pre-processing statement #define NORMALPRINT in the code before

the function main(). If PRINTHOPE is defined, then some information about the matrix

hope will be printed, (see 6.7 and 6.8.3.1 for details about hope) and if PRINTSMART is

defined, then information about the contracts which smart contract generates (again

see 6.7 and 6.8.3.1 for details) is displayed. Likewise, leaving PRINTGOODCONTRACT
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defined enables printing A−contracts as they are discovered (see 6.7). Various other

options about how the program is run can be controlled by either defining or leaving

undefined the variables HOPE and SMARTCONTRACT. We refer the reader to Section 6.7

for more details.

6.2 Global Variables and Data Structures

6.2.1 Important Constants

First, the program defines a number of constants EDGES, VERTS, MAXRING, and MAXSET.

They represent respectively the maximum numbers of edges, the maximum number

of vertices, the maximum ringsize of any of the free completions in the unavoidable

set, and the maximum size of any subset A ⊂ U , which implies that |U| is assumed

to be at most MAXSET. The constant DEG is a generous upper bound on the maximum

degree of a free completion, and will be used to allocate the number of columns in

the matrix which will store S.

These constants are later used to allocate matrices and vectors for other data

structures.

6.2.2 Storing the Free Completion

The global variable graph will be the data structure used to store information about

a given free completion. The entries graph[0][0], and graph[0][1], graph[0][2],

graph[0][3] and graph[0][4] will store respectively, |V (S)|, |V (R)|, |CS|, |C∗| and

|X| respectively. The information in |CS|, |C∗| and |X| is not used during the
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course of calculations nor is what is originally read from the input file into the

entries graph[0][3+2i] and graph[0][4+2i] for 1 ≤ i ≤ |X|. However, these

entries will be used later during run time to store potential contracts. For each

i ∈ V (S), graph[i][0] will denote the degree of i in S, and graph[i][1] . . .

graph[i][graph[i][0]] will be a clockwise listing in S of neighbors of i. Further

properties of graph can be found by consulting Section 6.3.1.

6.2.3 Storing Colorings of R

The global variables used to keep track of colorings of R are the scalars ring, nlive,

ncodes, and the vectors used are live, fixedlive, and power. The description of

what follows uses some ideas from [42]. Suppose that E(R) = {e1, . . . , er} and ei has

ends i and i − 1 if 2 ≤ i ≤ r and e1 has ends r and 1. Two ring colorings κ, γ are

said to be equivalent if {κ−1(−1), κ−1(0), κ−1(1)} = {λ−1(−1), λ−1(0), λ−1(1)}. To

find a representative colorings amongst the set of similar colorings we call a coloring

κ canonical if κ(ei) = 0 for 1 ≤ i ≤ r or there is an integer k with 1 ≤ k < r satisfying

κ(er) = κ(er−1) = . . . = κ(ek+1) = 0 and κ(ek) = 1. By a suitable permutation of

colors it can be shown that every ring coloring is equivalent to a unique canonical

coloring. Given a coloring κ, its code is defined as
∑r

i=1 κ
′(ei)3i−1 where κ′ is the

canonical coloring that is equivalent to κ. If κ and γ are two distinct canonical

colorings, and if the largest index at which they differ is 1 ≤ p < r, where κ(ep) >

γ(ep), then code(κ)− code(γ) =
∑k

i=1 (κ(ei)− γ(ei))3
i−1 ≥ 3k−1−∑k−1

i=1 2 3i−1 ≥ 1 so

no two distinct colorings have the same code. Notice that every code is non-negative

and has value at most 3r−1−1
2

.

The global variable used to keep track of colorings of R are the scalars ring,
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nlive, ncodes, and the vectors live, fixedlive, and power.

The global variables ring, and ncodes store |V (R)|, and |C∗| respectively.

Let i be the code of a ring coloring κ of R. The entry live[i] will contain

information about κ, but as to just what this information is will depend on what

stage the algorithm is in. It is safe to assume that if κ ∈ CS −U , or if κ ∈ U has been

eliminated via D-removability or C-removability, then live[i]= 0.

The global variable nlive is used to store the number of non-zero elements in the

vector live. Sections 6.4.4 and 6.8.2 may be consulted for further information about

how to interpret the entry live[i].

The global variable fixedlive will be used to store U and to keep track of

which elements of U have been eliminated by either establishing D−removability

or C−removability. The meaning of the entry fixedlive[i] will also vary at the

different stages of the algorithm, but with these general guidelines:

0 ≤fixedlive[i]≤ 18 means the coloring with code i is not in CS
fixedlive[i]= 19 means the coloring with code i is in CS − U .

fixedlive[i]= 20 means the coloring with code i is in U and has been has

been eliminated by either D- or C-removability.

21 ≤fixedlive[i] means the coloring with code i is in U and has not yet been

eliminated through D-removability or C-removability.

See Sections 6.4.4, and 6.9.4 for more information on fixedlive. Finally, power[i]

simply stores the value 3i−1 for i ≥ 1.
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6.2.4 Storing Signed Matchings

Suppose thatM is a set of signed matchings. The algorithm will keep track of such a

setM with the the array real, which consists of nchar elements of C data type char

and with the variables nrealterm and bit and their respective pointers pnreal and

pbit. To conserve memory, the algorithm views each such element of type char as a

binary string of a length equal to the number of bits that that particular computer

uses to represent the C data type char. Membership inM for a given signed matching

M that is represented by the ith bit of some element of real is tracked by the rule

that M ∈ M if and only if the ith bit equals one. The static array simatchnumber

gives the number of signed matchings of rings having between 0 and 16 edges, which

explains the allocation made in main:

nchar = simatchnumber[MAXRING] / 8 + 1;

real = (char *) malloc((long unsigned) nchar * sizeof(char));

Suppose that a particular machine represents the data type char with n bits. The

variable bit is of type char and will cycle through the values 20, 21, 22, . . ., 2n−1, being

incremented by the command *pbit<<1 (found only once in the entire algorithm in

the function checkreality) which multiplies bit by 2 and does arithmetic modulo

2n − 1. If bit= 2i, then lines like

if (!(*pbit & real[*prealterm]))

found in checkreality test whether the signed matching represented by the ith bit

of the realtermth element of real are in M.
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6.2.5 Storing Information Related to Edges and Contracts

The function strip orders the edges of E(S) so that the ring edges are the first

r edges in the order they appear around the ring. The variable edgeends satisfies

the rule that edgeends[i][1] and edgeends[i][2] are the endpoints of the ith

edge ei in the ordering. Based on this labeling, the global variable edgeid[i][j]

will be 1 if there is an edge in S with endpoints i and j and 0 otherwise. The

global variables angle, sameangle and diffangle are all matrices whose ith row

contains information pertaining to the edge ei. The global variable contract is a

0 − 1 vector such that contract[i] = 1 if and only if the edge ei ∈ X. The entries

angle[i][1-4] are reserved for those indices j such that j > i and the edge ej is in a

common facial triangle of the configuration with the edge ei. The integer angle[i][0]

gives the number of such indices j. Suppose now that ei is not in X. The entries

diffangle[i][1-4] are the indices j > i such that ej is in a common facial triangle

with ei and some third edge ek, and ej, ek /∈ X. The entries of sameangle[i][1-4] are

the indices j > i such that ej is in a common facial triangle with ei and some third edge

ek, and such that ej /∈ X but ek ∈ X. Both diffangle[i][0] and sameangle[i][0]

store quantities analogous to angle[i][0]. In addition, the entries angle[0][p],

diffangle[0][p] are equal and are used to store the quantities |V (S)|, |V (R)| and

|E(S)| respectively for p = 0, 1, 2.
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6.3 Reading Configurations

6.3.1 Problem Statement, Notation and Data Structures

In this section we discuss Subroutine 1 of Section 6.1.4. An obvious preliminary

step of our task is to read in the data of the next potential configuration that is to

be proved reducible from a file, prove that it is a configuration, and store it in an

appropriate data structure.

Let K be the next configuration to be read and let its free completion be S with

ring R. Actually the data stored will represent S in the following form:

name

n r n1 n2

x y1 y2 y3 . . . y2x

1 d1 y1,1 y1,2 . . . y1,d1

2 d2 y2,1 y2,2 . . . y2,d2

3 d3 y3,1 y3,2 . . . y3,d3

.

.

.

n dn y1,1 y1,2 . . . y1,d1

c1 c2, . . ., c8

c9 c10, . . ., c16

c17 . . . cn.

Here n = |V (S)|, r is the ringsize of S, n1 is the number of restrictions to R of

tricolorings of S, n2 is an undefined number, X = {{y1, y2}, {y3, y4}, {y5, y6} {y7, y8}}
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is a contract containing 4 edges. As mentioned above, the initial information in

graph[0][4− 12] that is read from the file will not be used, but later on the program

will store potential contracts in these 9 entries. Also, di is the degree of vertex i,

and yi,1 yi,2 . . . yi,di is the clockwise listing in S of neighbors of vertex i. If the data

represents a configuration with ring size r, then the data will be written into the

global variable graph by the function ReadConf in the following manner

graph[0][0] = n, graph[0][1] = r, graph[0][2] = κ, graph[0][3] = n1,

graph[0][4] = x, graph[0][4 + 2i− 1] = y2i−1, graph[0][4 + 2i] = y2i for 1 ≤ i ≤ x

graph[i][0] = di for 1 ≤ i ≤ n, graph[i][j] = yi,j for 1 ≤ j ≤ di

For 1 ≤ i ≤ n, the number ci is the coordinate of vertex i in a drawing of the free

completion. Here, ci = 1024x + y, where x is the x−coordinate of vertex i and y is

the y−coordinate of vertex i in the drawing.

6.3.2 Algorithm

We now list 7 tests taken from Robertson et. al. that will be applied to the the input

as it is read in.

1: 2 ≤ r < n

2: 3 ≤ di ≤ n for 1 ≤ i ≤ r and 5 ≤ di ≤ n− 1 for r + 1 ≤ i ≤ n.

3: 1 ≤ yi,j ≤ n for 1 ≤ i ≤ n and 1 ≤ j ≤ di.

4: If 1 ≤ i ≤ r then yi,1 = i + 1 (except yr,1 = 1), yi,di = i− 1, (except y1,d1 = r)

and r + 1 ≤ yi,j ≤ n for 2 ≤ j ≤ di − 1.

5:d1 + d2 + . . . dn = 6n− 6− 2r

6:For each integer i satisfying r+ 1 ≤ i ≤ n, there are at most two integers j such

that yi,j > r and yi,j+1 ≤ r, and if there are exactly two, then yi,j+2 > r for both such
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integers. Here yi,di+k = yi,k for k = 1, 2.

7: Let k = yi,j where either 1 ≤ i ≤ r and 1 ≤ j ≤ di − 1 or r + 1 ≤ i ≤ n and

1 ≤ j ≤ di. There exists an integer p such that yi,j+1 = yk,p (or yi,1 = yk,p if j = di)

and i = yk,p+1 (or i = yk,1 if p = dk, in which case k > r).

Here then are the basic steps performed to read the next free completion’s data.

Step 1. Read the data of the file into the matrix A so that A[0][0] through A[0][4 + 2x]

are defined as above. Check test 1. and if it fails, output warning message and

exit the program.

Step 2. For 1 ≤ i ≤ n read the information for vertex i so that the A[i][0] through

A[i][di] are defined as above. While this is being done check that the data

satisfy tests 2-7. If any test is violated, output a warning message and exit the

program immediately.

6.3.3 Correctness

The correctness of the algorithm is proved in the following lemma. taken from Robert-

son et. al.[42]

Lemma 6.3.1 Suppose that the data of the matrix A satisfy tests 1 through test 7.

Then there is a configuration K with free completion S and ring R such that:

(i) V (S) = {1, 2, . . . , n}, V (R) = {1, . . . , r}, the degree of vertex i in S is di, and

a clockwise listing in S of neighbors of i is A[i][1],. . ., A[i][di]. Also, if 1 ≤ i ≤ r,

then Ai,1 and Ai,A[i][0] are in V (R).

(ii) A[0][0] = n and A[0][1] = r.
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6.4 Tricoloring Subroutine

6.4.1 Problem Statement, Notation and Data Structures

In this section we describe an algorithm for:

Input: A free completion S with ring R of a configuration K and a vector which has

|C| elements.

Output: A recording in the vector for each ring coloring c ∈ C∗(R) of whether c extends

to 0, 1 or ≥ 2 tricolorings of S.

6.4.2 Algorithm

We use the notation introduced in Section 6.2.3. The strategy will be to compute all

tricolorings of S and record their restriction to R with the appropriate code. Number

the edges of E(S) e1, e2, . . . , em so that em−1 and em are in the same triangle and

so that e1, . . . , er are the edges of E(R) as they were defined above. The algorithm

will compute virtual tricolorings of S, that is, all mappings of E(S)− {e1, . . . , er} to

{1, 2, 4} such that no triangle of S has two edges which are colored the same color.

Each such virtual tricoloring defines a unique tricoloring (up to permutation of colors)

because R being chord-less means that each edge of R is in a unique triangle of F (S),

both of whose other edges are in E(S)−E(R) and are colored with two distinct colors

in {1, 2, 4}. We have used to {1, 2, 4} instead of {−1, 0, 1} to stay as close as possible

to the code. Suppose that c is a coloring of some subset of the edges E(S) − E(R)

that satisfies the condition. For each edge ei with i < m − 1, the set of forbidden
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colors for ei, denoted Fi, is defined to be the set of all colors c(ej) ∈ {1, 2, 4} such that

j > i and ei is in a common triangle. This set will change throughout the algorithm.

The strategy we use is to compute all virtual tricolorings of S, and record what

their restriction to R is. We impose a lexicographic ordering on the set T of m −

r element vectors c whose elements are members of {1, 2, 4}, whose ith element is

indexed i + r and whose last two elements cm−1 and cm are 2 and 1 respectively as

follows: Declare c > c′ if at the largest index m − 2 > i ≥ r + 1 at which ci and

c′i−1 differ, we have c′i < ci. The algorithm will consider all sequences in the set T in

lexicographic order, from least to greatest, and record the restriction to R of those

which correspond to virtual tricolorings. The algorithm follows:

Initialize c(em) = 1, c(em−1) = 2, Fm−1 = {1, 4}, Fj = ∅ and c(ej) = 8 for

r + 1 ≤ j ≤ m− 2 and j = m− 2. Keep repeating steps 1, 2, 3 below.

Step 1. While c(ej) ∈ Fj, keep repeating steps (i) and (ii) below.

(i) Double c(ej), and

(ii) while c(ej) = 8 repeat the following steps:

(a) if j ≥ m− 1 terminate computation,

(b) increase j by one and double c(ej).

If j = r + 1 do step 2, otherwise do step 3.

Step 2. Do the following:

(i) A tricoloring is uniquely defined by this virtual tricoloring. Record the code

of its restriction to E(R), taking into account multiplicity by increasing

fixedlive[code]++ by one.

(ii) Double c(ej)

(iii) while c(ej) = 8 repeat steps (a) and (b) below:
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(a) if j ≥ m− 1 terminate computation,

(b) increase j by one and double c(ej).

Step 3. If j > r + 1 decrease j by one, set c(ej) = 1 and compute Fj.

6.4.3 Correctness

To prove correctness, we use the fact that em−1 and em are in the same triangle.

Essentially, the algorithm builds a function c : {er+1, er+2, . . . em} → {1, 2, 4} by

progressing lexicographically through partial sequences of the form cj, cj+1, . . . , cm

where j ≥ m + 1 and ci ∈ {1, 2, 4} represents the color c(ei) that the algorithm has

currently assigned to the edge ei for j ≤ i ≤ m. To prove correctness we must prove

that 1) Everything that the algorithm writes to output in step 2 is a tricoloring of

the free completion S, and 2) for every tricoloring c of S, the algorithm writes the

restriction of c to R to output in step 2.

We first prove 1). Let cr+1, cr+2, . . . , cm be a sequence that is written to output

at step 2.1 and suppose that it does not induce a tricoloring of S. There must be

two indices i, j with r + 1 ≤ j < i ≤ m − 2 such that ci = cj and ei and ej are

in the same triangular face of S. Consider the last time the algorithm assigns the

edge ej the color cj before recording the tricoloring induced by cr+1, . . . , cm. For ease

of reference, we label this time t and we also label the first time that the algorithm

records the restriction to R of the tricoloring induced by cm+1, cm+2, . . . , cr by u. We

may assume that t occurs before u. By definition of t, the value of cj will not be

altered by the algorithm between the time t and the time u.

We now prove that the edge ei must be assigned the value ci at any time between

t and u. Assume then that ei is assigned value other than ci at some time between
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time t and time u. Therefore the algorithm must at some point assign ci to ei before

recording the restriction of the induced tricoloring. For this to happen, step 1(ii)(b)

or 2(iii)(b) must be executed at some point between time t and time u or else the fact

that i > j would make it impossible to change the value assigned to ei. The first time

step 1(ii)(b) or 2(iii)(b) is executed after time t the condition tested in step 1(ii) or

2(iii) respectively will be whether the current value assigned to ej is 8. Moreover, this

condition must be true since step 1(ii)(b) or 2(iii)(b) is executed. Since cj ∈ {1, 2, 4},

this contradicts the choice of t. Thus, the value of ei between time t and time u must

be ci.

It can be shown that there will be a time strictly between time t and time u that

the algorithm tests the condition in step 1. The first time it does so, it will be testing

if cj ∈ Fj, and since the value assigned to ei is ci, this test will be true. Thus step

1.i will be executed and will change the value assigned to ej, in contradiction to the

choice of t. This completes the proof of 1).

To prove 2), we make some helpful observations. For j > r + 1 we will say that

the algorithm assumes the assignment c′j, c
′
j+1, . . . , c

′
m if at some point the algorithm

has made the assignment c(ei) = c′i, for every j ≤ i ≤ m. We also say that that

the algorithm attains the assignment c′j, c
′
j+1, . . . , c

′
m if it assumes the assignment

c′j−1, c
′
j, c
′
j+1, . . . , c

′
m where c′j−1 = 1. We first observe that if the algorithm attains

an assignment c′j, c
′
j+1, . . . , c

′
m, then at some point the algorithm assumes the assign-

ment 2c′j, c
′
j+1, . . ., c

′
m. Using this, we then notice that if the algorithm attains an

assignment c′j, c
′
j+1, . . . , c

′
m then for every x ∈ {1, 2, 4} the algorithm assumes the

assignment c′j−1 = x, c′j, . . ., c
′
m. Using these two observations, we notice that if

I) the algorithm attains an assignment c′j, c
′
j+1, . . . , c

′
m, and
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II) if for x ∈ {1, 2, 4} the assignment of x to ej−1 and c′i to ei for every j ≤ i ≤ i has

the property that there is no facial triangle in S with two edges in {ej−1, ej . . . , em}

that have the same value under this assignment then the algorithm attains the as-

signment c′j−1 = x, . . . , c′m.

We now prove 2). Let cr+1, cr+2, . . . , cm represent an arbitrary sequence which

induces a tricoloring of S. We may assume by a suitable permutation of colors that

cm = 1 and cm−1 = 2. From the facts proved above, it can be shown by downward

induction on j that for m + 1 < j ≤ m − 2, the algorithm attains the assignment

cj, cj+1, . . . , cm. From this and the definition of Fk it follows that cr+1, cr+2, . . . , cm

induces a tricoloring of S which is recorded in step ii. This proves 2) and establishes

the correctness of Tricolor.

6.4.4 Implementation

The implementation is primarily carried out by the function findlive. The local

variables j,i,u,*am are all auxiliary to the main task. The local variable edges

equals m, the number of edges in the configuration, and the local variable ring gives

the ring size of S, Both of the local variables extent and bigno are passed to the

function record; extent keeps track of the number of colorings of the ring that

extend into S and bigno equals the total number of ring colorings. The variable

bigno is pre-calculated to save time in the function record. The local variable

c[j] represents the algorithm’s current color assignment to the edge ej and the local

variable forbidden[j] represents the content of the set Fj. If d2d1d0 are the rightmost

three digits in the base 2 representation of forbidden[j] then for 0 ≤ i ≤ 2, 2i ∈ Fj
if and only if di = 1. This representation allows the set membership test in step 1 of
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the algorithm to be carried out by evaluating c[j] & forbidden[j]. The portion of

code

c[j]=1;

for(u=0,i=1;i<=am[0];i++)

u |= c[am[i]];

is responsible for the recalculation of Fj in step 3 of the algorithm.

The function record is called every time a virtual tricoloring of S is found. Using

the information that is passed to it, record converts the virtual tricoloring given

by c to an actual tricoloring of S and computes the code of the restriction to R

of this tricoloring. If the code of this ring coloring is denoted by i, then record

sets live[i] to 0 and sets fixedlive[i] appropriately. Thus, just after findlive

finishes its execution live[i] and fixedlive[i] will have the following properties:

live[i]= 0 if the coloring with code i is in CS
live[i]= 1 if the coloring with code i is in C∗ − CS
fixedlive[i]= 18 if the coloring with code i is in C∗ − CS .

fixedlive[i]= 19 if the coloring with code i is in CS − U .

fixedlive[i]= 21 if the coloring with code i is in U .

The main purpose of the function printstatus is to print |CS| to output. The

function findlive then terminates by returning the quantity |CS|. The function

strip uses a heuristic to choose the ordering of the edges (see Section 6.2.5) so as to

reduce the computation time of both findlive and checkcontract.
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6.5 Tricoloring Modulo a Contract

6.5.1 Problem Statement, Notation, and Data Structures

In this section we describe the algorithm:

Tricoloring Modulo A Contract Subroutine (TriModCon(S,A, X)

Input: A free completion S with ring R of some configuration K, a set A ⊂ U

and a proposed safe A−contract X.

Output: Notification of whether the proposed A-contract is valid or not.

There are three parts to the algorithm. The first will check that φ(X) is con-

tractible for T and this done by using Theorem 5.2.1 in the natural way to show that

X is safe. The second is to calculate all tricolorings of S modulo X and the last is to

check that none of these tricolorings modulo X are in the set MCS((C∗−CS)
⋃{A}).

Since the algorithm in the previous section essentially found all tricolorings of S mod-

ulo X when X = ∅, the first part of the task will be accomplished using an algorithm

similar to the one in that section.

6.5.2 Algorithm

Step 1. While c(ej) ∈ Fj, keep repeating steps (i) and (ii) below.

(i) Double c(ej), and

(ii) while c(ej) = 8 repeat the following steps:

(a) if j ≥ m− 1 terminate computation,

(b) increase j by one and set c(ej) = min{2c(ej), 8}.

If j = r + 1 do step 2, otherwise do step 3.

Step 2. Do the following:
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(i) A tricoloring is uniquely defined by this virtual tricoloring. Record the code

of its restriction to E(R).

(ii) Double c(ej)

(iii) while c(ej) = 8 repeat step (a) and (b) below:

(a) if j ≥ m− 1 terminate computation,

(b) increase j by one and set c(ej) = min{2c(ej), 8} .

Step 3. If j > r + 1 decrease j by one, and if ej /∈ X set c(ej) = 1 and compute Fj.

6.5.3 Correctness and Implementation

The correctness of this algorithm follows in a similar manner as the proof of correct-

ness of the algorithm TriColor that is found in Section 6.4.3.

The primary function for this algorithm is checkcontract.

The function itself as well as its local variables are very similar to the func-

tion findlive discussed in Section 6.4.3. The function inlive that is called by

checkcontract is analogous to the function record that is called by findlive.

At the beginning of its execution, the pointer pneedscontract points to a vari-

able needscontract which is 1 as long as there is no known A−contract. The

function inlive is called each time a tricoloring modulo X is discovered. If this

tricoloring modulo X has a restriction to R that is also in MCS((C∗ − CS)
⋃A)

then inlive returns a 1 and checkcontract thus immediately terminates with the

variable needscontract set to 1. This corresponds to the case that the proposed

contract X was not an A-contract. If on the other hand the variable j is eventually

equal to or exceeds start, then this means that every tricoloring of S modulo X

has been found, and none of these tricolorings is in MCS((C∗ − CS)
⋃A) because
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otherwise checkcontract would have terminated. This means that X is actually an

A−contract. In this case, checkcontract sets the variable needscontract to 0, thus

indicating that an A−contract has been found.

6.6 Finding Critical Sets

6.6.1 Problem Statement, Notation, and Data Structures

In this section, we describe the algorithm Critical(S,A,D,v):

Input: Two subsets D ⊂ C∗(R)−CS , and A ⊂ U and a vector v consisting of |A| ones.

Output: The maximal critical subset MCSU(A,D) of the set D⋃A, and the vector v

such that the ith element of v is 0 if the ith element of A is not in MCSU(A,D)

and 1 otherwise.

The techniques used are those of Robertson et al. in [42]. We call a signed

matching P = {({e1, fi}, µ1), . . . , {ek, fk}, µk)} balanced if r−∑k
i=1

(µi−1)
2

is even. We

define some sets in the same way that Robertson et. al. do with the exception ofM0

which is defined differently to reflect that we are calculating Critical Sets rather than

Consistent sets.

Let M0 be the set of all balanced signed matchings having the property that for

every M ∈ M0, there are not two distinct colorings u1,u2 ∈ U and two integers γ1,

γ2 ∈ {−1, 0, 1} such that u1 θ1−fits M and u2 θ2−fits M .

Let C0 = D⋃A. Given Ci andMi, define Mi+1 to be the of all signed matchings

M inMi having the property that for every θ ∈ {−1, 0, 1}, Ci contains every coloring
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that θ−fits M . Also, given Mi and Ci−1, define Ci to be the set of all colorings in

Ci−1 such that for every θ ∈ {−1, 0, 1}, there is a signed matching M ∈ Mi such that

κ θ−fits M . The next theorem will be the foundation for proving the correctness of

Critical.

Lemma 6.6.1 If M0, M1, . . ., and C0, C1, . . . are defined as above, and if there is

a positive integer n such that Cn−1 = Cn, then the maximally critical subset of D⋃A

with respect to U equals Cn.

Proof: Let κ ∈ C ∈ Cn, θ, θ′, η, η′ ∈ {−1, 0, 1} and let α, α′ ∈ U be distinct. We show

that there is an M ∈ Mn such that

i) κ θ−fits M .

ii) Every coloring κ′ that θ′ fits M is in C.

iii) It is not the case that α η−fits M and α′ η′−fits M .

Since κ ∈ Cn = Cn−1, the definition of Cn shows that there is a signed matching

M ∈ Mn which κ θ−fits and so property i) holds. Now suppose that some κ′ θ′−fits

M . Since Mn = Mn+1, M ∈ Mn+1 and so it follows that κ′ ∈ Cn, which proves

property (ii) of critical. Finally, sinceMn ⊂M0, it cannot be the case that α η−fits

M and α′ η′−fits M simultaneously. Thus Cn is critical with respect to U .

To show that MCSU(A,D) = Cn it will suffice to show MCSU ⊂ Ci for i = 0, 1, . . .,

since the maximality of MCSU (A,D) implies that Cn ⊂MCSU(A,D).

Assume then that this is not the case and let j be the smallest integer such that

MCSU (A,D) * Cj. Clearly j > 0. Let κ ∈ (Cj−1

⋂
MCSU (A,D)) − Cj. It follows

that there is a θ ∈ {−1, 0, 1} and an M ∈ Mj−1 −Mj such that κ θ−fits M . Since

κ ∈ MCSU(A,D) and M ⊂ Mj−1, we may choose M so that M ∈ M. Since
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M /∈ Mj, there must be a θ′ ∈ {−1, 0, 1} and a κ′ /∈ Cj−1 such that κ′ θ′−fits M .

Now M ∈ Mj−1 implies that κ′ ∈ Cj−2. There is a coloring κ′′ that is equivalent to

κ′ such that κ′′ θ−fits M . By the definition of equivalent colorings, it follows that

κ′′ ∈ Cj−2 − Cj−1. However, κ′′ ∈ MCSU (A,D) because M ∈ M and κ′′ θ−fits M .

Therefore, by the choice of j, κ′′ ∈ Cj−1, which contradicts that κ′′ ∈ Cj−2 − Cj−1.

This completes the proof of the lemma.

6.6.2 Algorithm

6.6.2.1 High Level Description

Here is an overview of the Subroutine Critical(M,D,A,v):

Critical(M,D,A,v):

Step 1. ComputeM0, the set of all balanced signed matchings having the property

that for every M ∈ M0, there is no θ ∈ {−1, 0, 1} such that there are two distinct

colorings of u1, u2 ∈ U which θ−fit M . Set C0 = D⋃A.

Step 2. Repeat the following: having calculated Mi and Ci, do:

2a) Compute Mi+1.

2b) Compute Ci+1

2c) If Ci = Ci−1, halt.

2d) For every κ ∈ Ci−1 − Ci, if κ ∈ A, set the appropriate entry of v to 0.

This can be accomplished by the following Do While loop:

Do(ALLMATCHINGS(Mi, Ci,A))

While(ADJUST(Mi, Ci,A) = 1)

{i = i + 1}
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Here ALLMATCHINGS generates all signed matchings, and discards those Mi

that are incompatible with the current state of Ci while ADJUST updates Ci to Ci+1,

returning a 1 if Ci+1 6= Ci and a 0 if Ci = Ci+1 or if it is discovered that every color in

A is either D-removable or C-removable. More details about this follow in the next

section.

The correctness of the algorithm follows from Lemma 6.6.1 above.

6.6.2.2 Calculating Mi+1 from Mi

We now describe in more detail how Mi+1 is calculated from Mi and Ci. This

will be accomplished by recursively calculating every signed matching in the same

order, including those we know to not be Mi. Let R be a ring and suppose that

M = {{e1, f1}, {e2, f2}, {e3, f3}, . . . , {ek, fk}} is a fixed unsigned matching, and that

I = {[s1, t1], [s2, t2], . . ., [sl, tl]} are disjoint intervals satisfying s1 ≤ t1 < s2 ≤ t2 <

s3 ≤ t3 < . . . sl ≤ tl and {s1, . . . , sl, t1, . . . tl} ⊂ {1, 2, . . . , r} − {e1, . . . , el, f1, . . . , bl}.

For convenience, if 0 ≤ h ≤ l, let Ih denote the collection {[s1, t1], . . . , [sh, th]}. LetM

be a set of signed matchings, and C a set of ring colorings. If P is a signed matching,

then let M(P ) denote the set of individual matches that make up P .

We will call functions that the subroutines of Section 6.1.4 use procedures, al-

though it would have been appropriate to refer to them as sub-subroutines.

We now describe a recursive procedure MATCHING(M, I,M, C) which updates

the set M to a set M′ such that

1) M contains all and only those signed matchings P which

1a) Satisfy M ⊂ M(P ) and if {a, b} ∈ M(P ) then there is a p with 1 ≤ p ≤ l

such that sp ≤ a < b ≤ tp.
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1b) There is a θ ∈ {−1, 0, 1} such that C contains every coloring that θ−fits P .

There are two main tasks which in the implementation are woven together. The

first is to generate all unsigned matchings which satisfy 1a). This is accomplished

by finding a new match in one of the intervals in I, adding this match to M to get

a new unsigned matching M ′, and recursively calling MATCHING on M ′ and an

appropriate adjustment of I. This is done in step 2.ii) below.

As a new unsigned matching M ′ is generated, the call of SIGN(M ′) in step 1.ii)

will make sure that property 1b) will hold for C ′.

MATCHING(M, I,M, C){

1) SIGN(M,M, C);

2) For every h ∈ {1, . . . , l} and for every pair of integers i, j satisfying sl ≤ j <

i ≤ tl do

2.i) Add M
⋃{j, i} to M.

2.ii) If j ≤ sh + 1 and i ≤ j + 2) do

MATCHING(M
⋃{{j, i}}, Ih,M);

Else If j > sh + 1 and i ≤ j + 2 do

MATCHING(M
⋃{{j, i}, }, {{j, i}}, Ih−1

⋃
[sh, j − 1],M);

Else If j ≤ sh + 1 and i > j + 2 do

MATCHING(M
⋃{{j, i}, }, {{j, i}}, Ih−1

⋃
[j + 1, i− 1],M) ;

Else If j > sh + 1 and i > j + 2 do

MATCHING(M
⋃{{j, i}, }, {{j, i}}, Ih−1

⋃
[sh, j − 1]

⋃
[j + 1, i− 1],M);

}

The procedure SIGN when called on the unsigned matching M will first generate

all possible assignments of signs to the matchings M . If P denotes a signed matching
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generated from this procedure, so thatM(P ) = M , SIGN will then determine whether

or not P has the property that there is some θ ∈ {−1, 0, 1} such that C contains every

coloring which θ−fits M and will include or remove P from M accordingly. Finally,

if SIGN decides to keep P in M, then there will be some preprocessing done on the

set C to prepare this set for the next call to the procedure ADJUST(C,M)

If M = ∅ initially, then when MATCHING(M, I,M, C) finishes it execution,

properties 1a) and 1b) will hold forM. This is not enough however, because condition

1a) demands that a particular matching be included and we want all signed matchings.

To generate all signed matchings in the same order every time, we use the procedure

ALLMATCHINGS.

ALLMATCHINGS(M, C) {

For every i ∈ {2, . . . , r} and every j ∈ {1, . . . , i} Do 1) and 2):

1) If j ≤ 2 and i ≤ j + 2, Let I = ∅

Else If j ≥ 3 and i ≤ j + 2, Let I = {[1, j − 1]};

Else If j ≤ 2 and i ≥ j + 3, Let I = {[j + 1, i− 1]}

Else If j ≥ 3 and i ≥ j + 3, Let I = {[1, j − 1], [j + 1, i− 1]}

2) MATCHING({j, i}, I,M, C);

}

6.6.2.3 Calculating Ci+1 from Ci

After ALLMATCHINGS terminates execution,M will contain every signed matching

that satisfies 1b). At this point the algorithm will call a subroutine ADJUST(C,M,A)

which will remove colors of C so that when it is finished executing the only colorings

which will remain in C are those colorings κ satisfying:
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2) for every θ ∈ {−1, 0, 1}, there is an P ∈ M such that κ θ−fits P .

As it runs, ADJUST(C,M,A) will also remove any colors from A that it also

removed from C (which Section 6.9.1 shows implies D-removability for such removed

colorings), and will occasionally call a procedure SHORTCUT, explained in Section

6.9.3 that attempts to find an A−contract.

ADJUST returns a zero if (i) it removes every color in A or (ii) if it discovers an

A−contract or (iii) if in a particular iteration it does not remove any color from C.

Possibility (i) implies every color in A being D-removable, possibility (ii) implies each

color in A being C-removable, and possibility (iii) corresponds to the condition Cn =

Cn−1 and so implies that Cn is now a maximal critical subset. Otherwise ADJUST

returns a one and the algorithm calls ALLMATCHINGS again to start the process

of again generating all signed matchings.

6.6.3 Implementation

We now discuss the process in terms of the code actually used. The Do- While loop

at the end of Section 6.6.2 corresponds to the following Do-While loop found in the

function control:

do

testmatch(ring, real, power, live,fixedlive, nchar);

while(updatelive(live, fixedlive,ncodes, pnlive,set,

&needscontract,&progress));

We have omitted the body of this loop and will discuss its role in Section 6.9.4.
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The task of computing Mi+1 from Mi by generating all signed matchings and

discarding appropriately is carried out by the functions testmatch, augment,

checkreality and stillreal as follows: testmatch is responsible for some nec-

essary initialization and corresponds to the procedure ALLMATCHINGS; augment

is responsible for recursively generating unsigned matchings and corresponds to the

procedure MATCHING; checkreality generates all possible signings of a given un-

signed matching and corresponds to the first part of the procedure SIGN; stillreal

generates all ring colorings which fit a given signed matching and corresponds to the

second part of the procedure SIGN as well as doing preprocessing for the function

updatelive. This function updatelive corresponds to the procedure ADJUST and

has the task of updating Ci to Ci+1.

The variable real tracks the setsMj by the rule that the bit in real corresponding

to some signed matching P is 1 if and only and if P ∈ Mj. The variable live is

usually governed by the rule that at the end of the j th iteration of the Do-While Loop,

live[i] = 1 if and only if there is a ring coloring κ with code i and κ ∈ Cj; otherwise

live[i] = 0. More information about real and live can be found in Sections 6.2.3

and 6.2.4.

The function testmatch is straightforward, corresponding closely to ALLMATCH-

INGS. In the function augment, the array interval corresponds to the collection I

of intervals in the procedure MATCHING. The array weight of augment essentially

encodes the fixed unsigned matching M of the procedure MATCHING. To under-

stand what exactly the encoded information of weight is and to better understand

checkreality and stillreal we make some definitions.

Let P = {({e1, f1}, µ1), ({e2, f2}, µ2, . . . , ({ek, fk}, µk)} be a signed matching. The
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code of P is is given by
∑k

i=1 (3ei−1 + µi3
fi−1) if e1 < r, and (3i−1)

2
−∑k

i=1 (3ei−1 + (3−µi)3fi−1

2
)

if e1 = r. Here we are assuming ei > fi for 1 ≤ i ≤ k and that e1 = max{e1, e2, . . . , ek}.

For i = 2, . . . , k, define hi = 2(3ei−1 + µi3
fi−1) if e1 < r and hi = 3ei−1 + µi3

fi−1 if

e1 = r and define the vector (h2, h3, . . . , hk) to be the choice sequence of M .

The information of weight that was originally assigned to the variable mw in the

function testmatch is all of the various combinations of powers of 3 that are needed to

calculate the code and the choice function of a signed matching. The variable choice

in the function checkreality is just the choice function for a particular signing of

the unsigned matching M that was passed to checkreality. The variables pbit and

prealterm are discussed in Section 6.2.4 and are used to access and update real.

Once checkreality fixes a particular signing of M, call it P , stillreal is called to

see if all of the colorings which fit P are in live and if any of them are not, stillreal

returns a zero and so the line

real[*prealterm] =̂ *pbit;

of checkreality is executed, thus setting the bit corresponding to P to zero, and

thereby denying P the right to remain inM. The following lemma found in Robertson

et. al. [42] is used by stillreal to accomplish the task of generating all ring colorings

which fit a given signed matching. The statement here is a little different then the

statement in some versions of [42] which seemed to have some typographical errors.

Lemma 6.6.2 Let P be a signed matching with code c and choice sequence (h2, . . . , hk).

Let CM be the set of codes of canonical ring colorings κ for which there is a θ ∈

{−1, 0, 1} such that κ θ−fits M . Then CM = {|c −∑k
i=2 εihi| : εi ∈ {0, 1}}. More-

over, if κ is a canonical ring coloring which θ−fits M for some θ ∈ {−1, 0, 1} and

which has code |d| where d = c−∑k
i=2 εihi where εi ∈ {0, 1} for i = 2, . . . , k, then the
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identity of θ is determined as follows: if ei < r then θ = 0 and if ei = r then θ = 1 if

d > 0 and θ = −1 if d < 0.

Proof: We give an idea of how the proof proceeds for the case when e1 < r. Fix an

assignment of (ε2, . . . , ek). Define ε1 = 1 and for α ∈ {−1, 1} the sets

Eα := {ej : εj = 1 + α}, and

Fα := {fj : (εj = 0 & µj = −α) or (εj = 1 & µj = α)}.

Define a coloring κ : E(R) → {−1, 0, 1} as follows:

κ(i) = α if i ∈ Eα
⋃
Fα for α ∈ {−1, 1} and κ(i) = 0 otherwise. It can be shown

that c 0−fits P .

Conversely, it follows from the fact that there are k− 1 pairs of matched edges in

P (excluding the one with the largest index) which allow 2 choices of coloring that

there are 2k−1 different canonical ring colorings which fit P . Thus, every ring coloring

which fits P is included. This completes the proof of the lemma.

Practically, the for loop in stillreal which is initialized by

for (i = 2, twopower = 1, mark = 1; i <= depth; i++, twopower <<= 1)

and for (j = 0; j < twopower; j++, mark++)

simply calculates c−∑k
i=2 εihi for every (ε2, ε3, . . . , εk) ∈ {0, 1}k−1.

Knowing the code i of every ring colorings κ which θ−fit a signed matching P

that has been passed to stillreal, lines like

if (!live[col])

return ((long) 0);

check if κ ∈ Cj and if not, stillreal returns 0. If every ring coloring that θ−

fits P for some θ ∈ {−1, 0, 1}, then end of stillreal performs preprocessing for

updatelive by treating the elements of live as four digit binary strings and marking
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the 2, 3rd or 4th digit of live[i] with a 1 depending on whether κ either −1−fits, or

0−fits or 1-fits P .

When testmatch and all the functions it calls finish their recursion, execution in

the Do-While loop passes to updatelive. In updatelive, the line

if(live[i] != 15)

uses the preprocessing done by stillreal as a basis of whether to keep or remove

the coloring with code i from the set Cj because live[i]6= 15 if and only if at least

one of the second, third or fourth bits of live[i] was not set to one by stillreal

which happens if and only if there is a θ ∈ {−1, 0, 1}, such that no signed matching

of Mj+1 is θ−fit by κ. When updatelive removes a ring coloring with code i from

Cj, it checks to see whether κ was in A with the lines

if(in set(i,testset,1,testset[0]) ){

fixedlive[i]=20;

leftinset--;

(*pprogress)++;

},

setting fixedlive[i] to 20 because κ is D-removable.

If all of the colorings of A are eliminated this way, or if in a particular iteration,

no colors are removed from Cj, then updatelive returns a zero and so terminates

the Do-While loop. In the case when all colors of A are removed, updatelive sets

*pneedscontract to zero, a fact of some relevance to Section 6.9.4.

One other comment about some of the code in stillreal. Lines like

if( ( 20<=fixedlive[-b] ) && unique){

tally++;
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if(tally>=2) return( (long) 0);

}/* end if !fixedlive && unique */

are designed to eliminate matchings M for which there are two distinct colorings

α, α′ ∈ U and integers η, η′ ∈ {−1, 0, 1}, such that α η−fits M , and α′ η′−fits M

simultaneously. This is necessary to comply with the definition of M0.

6.7 Finding Contracts

In this section, we discuss the Subroutine 5 of Section 6.1.4. To find a safe con-

tract, we simply run through all possible sparse sets |X| on four edges, and for those

which are safe, we calculate CS(X) using the subroutine TriConMod and then see

whether or not CS(X)
⋂
MCS(A) = ∅. The functions used for this are trycontract,

updateangles, and checkcontract. The function trycontract generates all possi-

ble 4 element subsets of edges, and uses the information in the array angle (see Section

6.2.5), to exclude non-sparse sets. At this point, the function updateangles is called

to change the information in the arrays diffangle, sameangle and contract, and to

see whether or not the contract is safe by trying to find a triad. If the proposed set X

of 4 edges is not safe then updateangles returns a zero, and it returns a one otherwise.

At this point, checkcontract is called to see whether or not CS(X)
⋂
MCS(A) = ∅,

and thus whether or not X is a safe A−contract. The variable needscontract and its

associated pointer pneedscontract will be set to one until a safe contract is found,

at which time it is set to zero. The vertices which are the endpoints of the ith edge

in a potential contract are stored in graph[0][4+2i-1], and graph[0][4+2i]. In
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addition, all of the edges are ordered, and the ith element of the array contract is set

to 1 if the ith edge is in the potential contract. The array contractindices records

the indices under this order of the edges of the contract.

Certain contracts are much better than others. When a contract X is discovered

that has promise of being favorable, the array hope stores certain X by a call to the

program prepare matrix. The function check hope can then be called to quickly see

if there is some contract stored in hope that might be a valid contract. The function

record contract which appears in the function main is used by prepare matrix to

record the set CS(X) into the matrix hope. The function smart contract is designed

to find contracts which would be expected to be good, using a heuristic. Roughly,

this heuristic attempts to find those safe contracts which have the effect of identifying

distinct ring vertices. When smart contract finds such a contract X, it stores X

and CS(X) in hope. Leaving HOPE undefined disables any attempt to store colorings

in HOPE or make calls to check hope, and leaving SMARTCONTRACT undefined insures

that the program does not call the function smart contract.

6.8 The Controlling Algorithm

6.8.1 Problem Statement, Notation

We will introduce some generalizations of D-removability and C-removability that are

used to speed up the process of showing that a configuration K is U-reducible. Let C

be any subset of C∗ − CS. We will denote by MCS(A, C) the maximal critical subset

of C⋃ η(A) with respect to U . When C = C∗−CS we simply denote this set MCS(A)

as we have been doing before. We say that a coloring κ ∈ U is D-removable with
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respect to C if κ /∈ MCS(κ, C) and we say that A is D−removable with respect to C

if A⋂MCS(A, C) = ∅. Similarly, if there is a safe contract X ⊂ E(S) for which

CS(X)
⋂
MCS(A, C) = ∅, then we say that A is C−removable with respect to C and

make obvious allowances in notation if |A| = 1. When C = C∗ − CS, these definitions

reduce to the original definitions for D-removability and C-removability.

Lemma 6.8.1 If u ∈ A ⊂ U , then u is D-removable with respect to C, if A is

D−removable. Similarly, u is C−removable if A is C-removable. Also, let A′ =

A⋂MCS(A, C) and let C ′ = C⋂MCS(A, C). Then MCS(A′, C ′) = MCS(A, C)

and so A is D-removable (or C-removable respectively) with respect to C if and only

if A is D-removable (or C-removable respectively) with respect to C ′.

Proof: From Lemma 5.1.2 and the fact that η({u})⋃(C∗ − CS) ⊂ η(A)
⋃

(C∗ − CS),

it follows that MCS(u) ⊂ MCS(A). Therefore, A⋂MCS(A) = ∅ implies u /∈

MCS(u). Also, since C ⊂ C∗−CS , it follows that C⋃ η({u}) ⊂ (C∗−CS)
⋃
η({u}), and

so by Lemma 5.1.2, MCS(u, C) ⊂ MCS(u). Hence, u /∈ MCS(u, C), which proves

the first statement about D−removability. The first statement about C-removability

follows in a similar vein because for some sparse X, CS(X)
⋂
MCS(A) = ∅.

Now we establish that MCS(A′, C ′) = MCS(A, C). Clearly MCS(A′, C ′) ⊂

MCS(A, C). If x ∈ MCS(A, C) then x ∈ A or x ∈ C which implies x ∈ A′⋃ C ′,

and so MCS(A, C) ⊂ A⋃ C. Thus MCS(A, C) ⊂ MCS(A′, C ′). From this it follows

that A is D-removable (respectively, C-removable) if and only if A is D-removable

(respectively, C-removable) with respect to C−D where D = (A⋃ C)−(A′⋃ C ′). This

completes the proof of the lemma.
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The above ideas will be exploited computationally by attempting to simultane-

ously eliminate (i.e. show to be either D or C removable) large subsets A ⊂ U rather

than simply individual colors u ∈ U . They also give a natural way to recurse.

We now describe the algorithm used to prove that every color u ∈ U is either

D-removable or C-removable.

UniqueReduce(S,A, C,v)

Input A free completion S with ring R of some configuration K, and a subset

A of the set U of ring colorings that extend to exactly one tricoloring of S, a subset

C ⊂ C∗ − CS, and a vector v consisting of |A| ones.

Output A set A ⊂ A with the following property:

A is empty if every coloring γ ∈ A is either D-removable or C-removable with

respect to C and otherwise A = {γ} where γ is a ring coloring of R such that γ is

neither D-removable or C-removable with respect to C. Also, each entry in v is one

if and only if the corresponding element of A is in MCS(A, C) and zero otherwise.

By calling UniqueReduce(S,U , C,v) and checking the results, we can determine

either that every color in U is either C-removable or D-removable or that there is

some coloring in U which is neither D− nor C−removable. If every color in U is

C-removable or D-removable, then the only thing needed to do to establish that K is

U-reducible is to check that either some coloring u ∈ U is C-removable or that K is

either D-reducible or C(4)-reducible.

6.8.2 Algorithm

UniqueReduce(S,A, C,v)

Step 1. Call Critical(A, C,v) to compute MCS(A, C), let B = MCS(A, C)⋂A,
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and let A′ = A− B.

Step 2. If A′ = ∅ return ∅. Otherwise, for each sparse set X ⊂ E(S) with |X| = 4

Do

2.i TriModCon(S,X,A′).

2.ii If X is a A′ contract, then A′ is C-removable with respect to C. Return ∅.

Step 3. If |A′| = 1 let κ be the unique element of A′ and return {κ}. Otherwise

partition A′ into two roughly equal size subsets A1 and A2. Let C ′ be the maximal

subset of C having the property that C ′ ⊂MCS(A′, C).

Step 4. Do

4.i Call UniqueReduce(S,A1, C ′,v1) and suppose it returns A1.

4.ii If A1 6= ∅, return A1. Otherwise, call UniqueReduce(S,A2, C ′,v2) and suppose

it returns A2. Return (A2).

6.8.3 Implementation

The function which corresponds to UniqueReduce(S,A, C) is control. When run

on the arguments startcolor and stopcolor, the function control returns a one

if every ring coloring u ∈ U satisfying startcolor ≤ code(u) ≤ stopcolor is either

D-removable or C-removable. The set C will be encoded in live by the rule that

κ ∈ C if and only if live[code(κ)]= 1 and live[code(κ)]= 0 otherwise. The set

A is encoded in fixedlive and the vector v in set. The arguments of control,

like maxiter, hopethresh, hopefrec, tryconthresh, tryconfrec, progressmin,

minprogressiter and hope are simply related to the shortcuts that control will

attempt to dispose of its task more quickly but do not contribute to the essence of

control. The other arguments either contain important information about S or are
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needed to pass to other functions that control calls.

When control begins, it must do some initialization to appropriately adjust set

and live to make sure that every element of A⋃C is represented. Then it carries out

Step 1 of Section 6.8.2 in the Do-While loop which is discussed in Section 6.6.3. If in

the midst of executing the Do-While loop, either an A−contract during a shortcut,

or if every color in A is shown to be D-removable, then the variable needscontract

is set zero, and control returns a one, having successfully completed its task. If not,

then by the end of the Do-While loop, the set MCS(A, C) has been computed and

the task of Step 2 of Section 6.8.2 commences. If the call trycontract produces an

A−contract, then trycontract sets needscontract to zero, and is control returns

a one. If not, then Step 3 of Section 6.8.2 is carried out, and in particular, if |A| = 1

control returns a zero, indicating that the current configuration is not U-reducible.

Assuming, |A| 6= 1, control proceeds to split up the colors in A that have yet been

proved to be D- or C-removable into two roughly equal size set A1 and A2 for a

recursive call.

6.8.3.1 Shortcuts in control

We now explain the shortcuts that are built into the body of the Do-While loop in

control. In terms of the notation of Section 6.6.3, a particular cycle of the Do-While

loop primarily corresponds to a calculation ofMi, and Ci from the knowledge ofMi−1

and Ci−1. Depending on the values of the parameters maxiter,hopethresh, etc., an

attempt is made to find an A−contract, even though MCS(A, C) is not known yet.

This is possible because at every iteration, Ci ⊂ MCS(A, C), and so if some safe X

can be found such that Ci
⋂ CS(X) = ∅, then MCS(A, C)⋂ CS(X) = ∅ as well. Some
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examples of these attempts occur in the lines

if( (iteration > = hopethresh) ) && ...) {

check hope(hope,live, &needscontract,...);

}

and

if( (iteration>=tryconthresh)&& ...){

try contract(0,4,graph,ring,...);

} /* if iteration >= tryconthresh etc */

As discussed in Section 6.7, the array hope is an array which stores previously

calculated contracts that are likely to be successful A−contracts. The function

check hope simply checks these favorable contracts against Ci to see if any of them

might be an A−contract, and if it is, check hope set *pneedscontract to zero, thus

breaking the Do-While loop.

The call to trycontract just generates all possible safe sets on 4 edges. There is

a tradeoff with this call to trycontract; if it is successful, then no more iterations

of the Do-While loop need to be performed, whereas if it is unsuccessful, then time

is wasted generating all possible safe sets on 4 edges. The arguments like maxiter,

hopethresh, etc are used to tune this tradeoff. For instance, tryconthresh represents

the minimum number of iterations that the Do-While loop is to perform before making

a call to tryconthresh. Such a parameter is useful because there is no reason to waste

time trying to find A−contracts when |Ci| is still large.

Another shortcut outside the body of the Do-While loop occurs after MCS(A, C)

has been found. Let C ′ = MCS(A, C)−A. For the purposes of calculating MCS(A, C),

we may assume A⋂ C = ∅ and from this it follows that C ′ ⊂ C. By Lemma 6.8.1,
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MCS(A, C ′) = MCS(A, C), and so u ∈ A is D-removable (respectively, C-removable)

with respect to C if and only if u is D-removable, (respectively, C-removable) with

respect to C ′. Thus, the colors of C − C ′ can be eliminated. This is implemented by

the following code in control:

if( (!live[i]) && (depth<= fixedlive[i]) && (fixedlive[i]<= 18) )

fixedlive[i]=depth;

as well as

if(fixedlive[i]<depth ) live[i]=0;

which appears earlier in control. These two lines work together to insure that if

some color in C − A with code i, has been eliminated during a certain recursive call

of control, then color i is also considered as eliminated in all recursive calls which

are proper descendants of this call in the tree describing the recursion.

Finally, the function smart contract, described in Section 6.7, attempts to find

good contracts before any attempt to eliminate colorings from U and store them in

hope. The goal of this is to eliminate searching through all possible contracts, many

of which are not likely to be effective.

6.9 Checking D-reducibility or C(4)-reducibility of

Configurations

We now discuss the implementation of Step 4 in Section 6.1.2. The main function

responsible for this implementation is four color reducibility and its task is to

determine that the current configuration is either D-reducible or C-reducible. By the

time that the program comes to the following lines in main,
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if (strictlyD && goodflag) {

printf("WARNING: Although Every Coloring in Script U

was D-Removable,\n");

printf("No C-removable Colorings were Found. \n");

printf("Now Attempting to Prove Configuration is");

printf("D-reducible or C(4)-reducible\n");

four color reducibility(live, fixedlive, real, &strictlyD,

&needscontract, graph, ring, nlive, ncodes, nchar,

power, angle, diffangle, sameangle, contract,

edgeid, edgeends, hope);

if (strictlyD) {

printf("WARNING: The Configuration is NOT U-Reducible \n");

}

}

the variable goodflag will be set to 1 if and only if the program has already estab-

lished that every color in U is either C-removableor D-removable, and the variable

strictlyD will be set to 1 if and only if the program has failed to establish that some

color in U is C-removable. Thus, the function four color reducibility is called

only if every color in U is known to be D-removable and no color in U is known to be

C-removable. When it is called it sets the variable strictlyD to 0 if it determines the

configuration to be D-reducible or C(4)-reducible and otherwise it keeps strictlyD

set to 1.

To determine whether the configuration is D-reducible, four color reducibility

calculates MCS(C∗ − CS), and checks if this set is empty. This calculation can
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be done with the subroutine Critical (see 6.6 for a description). If MCS(C∗ −

CS) 6= ∅, then all sparse sets X on four edges are generated and the subroutine

TriConMod (see 6.7) is called to see if any of these will be a contract. If one

is found, four color reducibility concludes that the current configuration is U-

reducible and sets strictlyD to 0; otherwise four color reducibility concludes

that the configuration is not U-reducible. This completes the description of the func-

tion four color reducibility.
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Chapter 7

Discharging

7.1 Introduction to Discharging

In this section we prove that for every internally 6−connected triangulation T there

is a configuration K that is isomorphic to a member of K such that K appears in T .

We follow the techniques of [8] in the proof.

A cartwheel is a configuration W such that there is a vertex w called a hub and

two circuits N1 and N2 of G(W ) with the following properties:

(i) {w}, V (N1) and V (N2) are pairwise disjoint and have union V (G(W )),

(ii) N1 and N2 are both induced subgraphs of G(W ), and U(N2) bounds the

infinite face of G(W ), and

(iii) w is adjacent to all vertices of N1 and no vertices of N2.

The following is due to Birkhoff [9].

Lemma 7.1.1 Let T be an internally 6−connected triangulation and let v ∈ V (T ).

There is a unique cartwheel appearing in T with hub v.

If W is a cartwheel, then we say a configuration K appears in W if G(K) is an

induced subdrawing of G(W ), every finite face of K is a finite face of G(W ), and

γK(v) = γW (v) for every v ∈ V (G(K)). A pass P is a quadruple (K, r, s, t) where
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(i) K is a configuration,

(ii) r is a positive integer,

(iii) s and t are distinct adjacent vertices of G(K), and

(iv) for each v ∈ G(K) there is an s, v−path and a t, v−path in G(K) both having

length at most 2.

We will occasionally write r(P ) = r, s(P ) = s, t(P ) = t and K(P ) = K. The

quantity r will be called the value of the pass P , s the source of P and t the sink of

P .

A pass P appears in a triangulation T if the configuration K(P ) appears in T

and P appears in a cartwheel W if K(P ) appears in W . Two passes P1 and P2 are

isomorphic if the two configurations K(P1) and K(P2) are isomorphic, r(P1) = r(P2)

and if φ is a graph isomorphism between G1 = G(K(P1)) and G2 = G(K(P2)), that

is guaranteed by K(P1) and K(P2) being isomorphic, then φ(s(P1)) = s(P2) and

φ(t(P1)) = t(P2).

Lemma 7.1.2 Let T be a triangulation, and let Ws be the cartwheel appearing in T

having hub s. If P be a pass appearing in T with source or sink s, then P appears

in Ws. Conversely, if a pass P with source or sink s appears in some cartwheel of T

having hub s then P appears in T .

Proof: Denote K(P ), r(P ), s(P ), t(P ) and G(K(P )) by K, r, s, t and G respectively.

Assume that P is a pass appearing in T with source or sink S. We first prove that K

appears in Ws. We must show that G is an induced subdrawing of G(Ws), every finite

face of G is a finite face of G(Ws) and that γK(v) = γWs(v) for every v ∈ V (G(K)).

We first show that G is an induced subdrawing of T . Clearly s ∈ V (G)
⋂
V (Ws).
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For every v ∈ V (G) there is an s−v path in G of length at most 2. Thus since s is the

hub of the cartwheel Ws, v ∈ V (G) implies v ∈ V (Ws) and so V (G) ⊂ V (Ws). Now

let e ∈ E(G) be an edge in G with endpoints u and v. We know by the hypothesis that

e ∈ E(T ) and we just showed that u, v ∈ V (Ws). Therefore, since Ws is an induced

subdrawing of T , e ∈ E(Ws) and so E(G) ⊂ E(Ws). Now suppose that u, v ∈ V (G)

and that {u, v} ∈ E(Ws). Because Ws is a subdrawing of T , {u, v} ∈ E(T ), and since

G is an induced subdrawing of T , {u, v} ∈ E(G) which completes the proof that G

is an induced subdrawing of Ws.

We now show that every finite face of G is a finite face of Ws. If G(Ws) equals the

triangulation T then we are done since every finite face of G is a finite face of T . So

assume that there is some face of T that is not a finite face of Ws. Let f be a finite

face of G incident to the vertices {u, v, w} and the edges {u, v}, {v, w}, {w, u}. From

the work above, {u, v, w} ⊂ V (H) and {{u, v}, {v, w}, {w, u}} ⊂ E(H). Because G

appears in T , f is a face of T and so f
⋂

(V (T )
⋃
E(T )) = ∅ which implies that f is a

subset of some face of Ws. Since every finite face of Ws is a finite face of T , it follows

that either f is a finite face of Ws or that f ⊂ f∞ where f∞ denotes the infinite face

of Ws. If f is a finite face of Ws we are done so assume f ⊂ f∞.

First consider the case that f = f∞. Since T 6= Ws, the infinite face of G which

we denote fG meets the f∞ in every face of T that is not a finite face of Ws or G.

This however is a contradiction, because it implies f
⋂
f∞ 6= ∅.

So assume f 6= f∞ and let y ∈ f and let x be in the infinite face f∞ − f . Since

f ⊂ f∞, there is a (topological) path P in Σ0 − (V (Ws)
⋃
E(Ws)) with endpoints

x and y. By the Jordan curve theorem, if P does not intersect the circuit defined

by {u, v, w} then x ∈ F . Therefore we may assume that P intersects the circuit
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{u, v, w}. However {u, v, w} ⊂ V (H) and {{{u, v}, {v, w}, {w, u}} ⊂ E(H) which

contradicts that P ⊂ Σ0 − (V (Ws)
⋃
E(Ws)). All of this establishes that every finite

face of G is a finite face of Ws.

Finally, let v ∈ V (G). Since v ∈ V (Ws) and since Ws appears in T , γK(v) =

dT (v) = γWs(v) and thus the proof that P appears in Ws is complete.

The converse statement follows more easily. This completes the proof of Lemma

7.1.2.

A rule is a 6−tuple (G, β, δ, r, s, t) where

(i) G is a near-trinagulation,

(ii) β is a map from V (G) to Z; δ is a map from V (G) to Z
⋃{∞} satisfying

β(v) ≤ δ(v) for every vertex v,

(iii) r > 0 is an integer, and

(iv) s and t are distinct, adjacent vertices of G, and for every v ∈ V (G), there is

a v, s−path and a v, t−path, each of length at most two, such that δ(w) ≤ 8 for the

internal vertex w of the path, if there is one.

A pass P obeys a rule (G, β, δ, r, s, t) if P is isomorphic to some (K, r, s, t), where

G(K) = G and β(v) ≤ γK(v) ≤ δ(v) for every v ∈ V (G).

A pictorial representation of the rules is given in Figure 7.1. As in the case of the

Four Color Theorem, there are only three possibilities for the ordered pair (β(v), δ(v))

for each v, listed below.

1) 5 ≤ β(v) = δ(v) ≤ 8 or

2) β(v) = 5 and 6 ≤ δ(v) ≤ 8 or

3) 5 ≤ β(v) ≤ 8 and δ(v) =∞.
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Case 1) can be described using the convention for vertices (Figure 4.1). Case

2) can be described by placing a plus sign close to the vertex v and case 3 can be

described by placing a minus sign close v. The identification of s and t is accomplished

by placing placing arrows on the edge joining s to t in such a way that it is directed

from the source s to the sink t. The number of arrows placed on this edge represents

the value of r, although only in the first rule, where r = 2, is more than one arrow

required.

These rules are almost identical to the rules for the Four Color Theorem in Robert-

son et.al., the differences being slight adjustments in the rules 2 − 7. This change

reflects the fact that the fourth configuration (see Figure 7.2) in the unavoidable set

used in [8] to prove the Four Color Theorem is not reducible for the Fiorini-Wilson-

Fisk conjecture using U-reducibility. The fourth configuration is reducible for the

Fiorini-Wilson conjecture using “Block-Count reducibility” [43], but we decided to

avoid this technique in order to be able to devise a polynomial time algorithm.
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Figure 7.1: Rules For Distributing Charge
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Figure 7.2: A Non U-reducible Configuration

Given a set of passes P we write P ∼ P if P is isomorphic to some pass in P.

If W is a cartwheel with hub w we denote by NP(W ) the quantity 10(6− γW (w)) +

∑
P∼Pt(W ) r(P ) − ∑P∼Ps(W ) r(P ). Here, P ∼ Pt(W ) (respectively, P ∼ Ps(W ))

denotes that we are summing over all passes P that are isomorphic to some pass of

P that appears in W and has t(P ) = w (respectively, s(P ) = w).

This quantity can be interpreted as follows. Every vertex v in a triangulation T

is endowed with a charge equal to 10(6− degT (v)). A discharging procedure is then

applied to the whole graph in such a way that all the charges are redistributed amongst

the vertices in such a way that no charge is lost. Passes in the set P correspond to

directions about how to redistribute these charges. If a vertex is a source for some
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pass P ∈ P then a charge equal to r(P ) flows from that vertex along the edge joined

to the sink vertex t(P ). The next lemma uses Euler’s formula and captures the idea

that charge is conserved by the discharging procedure.

Lemma 7.1.3 Let T be an internally 6−connected planar triangulation and let P be

any set of passes. Then
∑
NP(W ) = 120, where the summation is over all cartwheel

W that appear in T . Moreover, there is a cartwheel W appearing in T such that

NP(W ) > 0.

Proof: For convenience, we drop the subscript P from NP throughout the proof. By

Lemma 7.1.2, if P has source v and appears in T then P appears in Wv and conversely.

Therefore
∑

(r(P ) : P appears in T and s(P ) = v) =
∑

v∈V (T )

∑
P∼Ps(Wv) r(P )

and for the same reason
∑

(r(P ) : P appears in T and s(P ) = v) =
∑

v∈V (T )

∑
P∼Pt(Wv) r(P ).

Therefore,
∑

v∈V (T )NP (Wv) =
∑

v∈V (T ) 10(6− γW (v)) = 10(
∑

v∈V (T ) 6− dT (v)), since

Wv appears in T and v is not on the infinite face of Wv, implies that γW (v) = dT (v).

By Euler’s formula, we thus conclude that
∑

v∈V (T )NP (Wv) = 120 and therefore there

is some cartwheel W appearing in T with NP (W ) > 0. This completes the proof of

Lemma 7.1.3.

The main theorem therefore of this section is

Theorem 7.1.1 There is a set of passes P such that if W is a cartwheel appearing

in a triangulation T such that NP(W ) > 0, then some configuration isomorphic to

one in Appendix A appears in W and thus in T .

This theorem, together with Lemma 7.1.3 and Lemma 7.1.1 imply Theorem 1.2.7

of Chapter 1 and constitue the unavoidability part of the proof.
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7.2 Unavoidability when the Hub Degree is Small

We will dispose of the cases when the hub has degree 5, 6 or ≥ 12 in the next few

lemmas and theorems which have the same statements as some of the lemmas and

theorems in [8] and require slight modifications in the proofs because of the change

in rules.

Lemma 7.2.1 Let W be a cartwheel, with hub w having degree 5 or 6. For k =

1, . . . , 32 let pk (qk) be the sum r(Pk) where Pk is the set of all passes obeying rule k

and appearing in W , with sink (respectively source) w. If no configuration isomorphic

to one in Appendix A appears in W then

(i) p1 = q2 + q3

(ii) p3 = q4

(iii) p4 = q5 + q6

(iv) p5 = q7

Proof: Throughout the proof we abbreviate γW by γ. Also, given a near-triangulation

G without parallel edges in which each edge is in exactly two faces, and given a

triangular face of G that is incident to the distinct vertices x, y, z, the expression

tG({x, y}, z) will denote the unique vertex u /∈ {x, y, z} that is in the other face of G

incident to the edge {x, y}. If the edge {x, y} is in exactly one triangle of G, then

tG({x, y}) will denote the unique vertex not equal to x or y that is incident to the

face of G containing the edge {x, y}.

We start by proving (i). Let X be the set off all triples (x, y, z) such that w is

adjacent to x,y, and z, y is adjacent to both x and z and γ(x) = 5. Now X can be

written as a disjoint union X = {(x, y, z) ∈ X : γ(y) ≥ 7}⋃{(x, y, z) ∈ X : γ(y) ≤ 6
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and γ(z) ≥ 5}. Claim: |X| = p1, q2 = |{(x′, y′, z′) ∈ X : γ(y′) ≥ 7}| and q3 =

|{(x′, y′, z′) ∈ X : γ(y′) ≤ 6 and γ(z′) ≥ 5}|. Proof of claim: Let x be a neighbor

of w with γ(x) = 5 and suppose that a portion of the the clockwise listing in G(W )

of neighbors of w is x−2,x−1, x, x1, x2. Then p1 = 2|{x′ : x′ is adjacent to w and

γ(x′) = 5}| = |X| because x gives rise to exactly one element in {x′ : x′ is adjacent

to w and γ(x′) = 5} (itself) and precisely two triples (x, x−1, x−2) and (x, x1, x2) in

X. Now suppose a pass P obeys rule 2 where rule 2 is the 6−tuple (G2, β2, δ2, 1, s, t)

where G2 is a graph consisting of a triangle with vertices s, t and tG2({s, t}) where

γG2(s) = 6, γG2(t) = 7 and γG2(tG2({s, t})) = 5. Now for rule 2, β2(s) = 5 = δ2(s),

β(t) = 7, δ(t) = ∞ and β(tG2({s, t})) = 5 = δ(y). Such a P can be mapped to

the triple (x, y, z), where w will correspond to s, y to t, x to tG2({s, t}) and where

z is defined to equal tW ({w, y}, x). This mapping is well defined, because W being

a cartwheel with hub w means that the edge {w, y} is in exactly two faces. Also,

because the pass obeys rule 2, γ(x) = 5, and γ(y) ≥ 7 so (x, y, z) ∈ {(x′, y′, z′) ∈ X :

γ(y′) ≥ 7}. Conversely, if (x, y, z) ∈ {(x′, y′, z′) ∈ X : γ(y′) ≥ 7} then the triangle

formed by the vertices {x, y, w} gives rise to a unique pass P that obeys rule 2. Thus

q2 = |{(x′, y′, z′) ∈ X : γ(y′) ≥ 7}|.

Similarly, if a pass P obeys rule 3, where G3 is the graph underlying the picture

of the configuration corresponding to rule 3, where s is the source, t is the sink,

then we can make a correspondance between P and triple (x, y, z) as follows: w will

correspond to s, z to t, y to tG3({x, y}), and x to tG3({y, w}, z). It follows that

(x, y, z) ∈ {(x′, y′, z′) ∈ X : γ(y′) ≤ 6 and γ(z′) ≥ 5}. Conversely, if (x, y, z) ∈

{(x′, y′, z′) ∈ X : γ(y′) ≤ 6 and γ(z′) ≥ 5}, then the subdrawing of G(W ) induced by

x,y,z and w gives rise to a unique pass P obeying rule 3, and so q3 = |{(x′, y′, z′) ∈
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X : γ(y′) ≤ 6 and γ(z′) ≥ 5}|. This complets the proof of the claim. From here, it is

easy to see (i) because X = {(x′, y′, z′) ∈ X : γ(y′) ≥ 7}⋃{(x′, y′, z′) ∈ X : γ(y′) ≤ 6

and γ(z′) ≥ 5}.

We now prove (ii) for the case when γ(w) = 5. Let X now be the set of triples

(x, y, z) having the properties that w is adjacent to x, y, z, y is adjacent to x and

z, γ(x) ≤ 6, γ(y) ≤ 6, the three vertices x, y, and z are distinct, and the vertex

u = tW ({x, y}, w) satisfies γ(u) = 5.

We will describe a one to one and onto mapping between the set of passes obeying

rule 3, appearing in W and having sink w to the set X of ordered triples which

will establish that p3 = |X|. . Let P be a pass satisfying rule 3 which appears in

W and has sink w. Because P obeys rule 3, G(K(P )) is isomorphic to the near

triangulation G3. Define y′ = t, x′ = tG3({s, t}) and z′ = tW ({y′, w}, x′). Strictly

speaking, it would have been more proper to define x′ by tG(K(P )({s, t}), since x′ is

meant to be a vertex in W whereas tG3({s, t}) is a vertex in the near triangulation

G3. However, because G3 is isomorphic to G(K(P ), and because we want to keep

in mind the connection to G3, we risk this abuse. The definition of G3 insures that

x′ is well defined and the fact that W is a cartwheel implies that z ′ is well defined.

We now claim that (x′, y′, z′) ∈ X. First, note that γ(x
′) ≤ 6 and γ(y

′) ≤ 6 as a

because P obey’s rule 3. Moreover, P ’s obedience to rule 3 also implies that the

vertex u = tW ({x′, y′}, w) satisfies γ(u) = 5 because, in fact, u = tG3({x′, y′}, t). This

implies that (x′, y′, z′) ∈ X and so establishes a well defined mapping from the set of

passes which appear in W , have sink w and obey rule 3.

We now claim that this mapping is a one-to-one correspondence. First, note that

this mapping is onto because if (x′, y′, z′) is any triple in X, then a pass P can be
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constructed which maps to (x′, y′, z′) and which appears in W , has sink w and obeys

rule 3. Also, it is one to one because if two distinct passes P , and P ′ appear in W ,

have sink w and obey rule 3, they either have different sources, which give rise to

different values of y′ in the mapping, or if they have the same source, give rise to a

different value of z′ in the mapping. This proves |X| = p3.

We now prove that q4 = p3 and thus establish (ii) for the case when γ(z) = 5.

We do so by proving q4 = |X|, again by constructing a one to one and onto mapping

between the set of all passes which appear in W , have source w and obey rule 4 and

the set X. Let G4 be the near triangulation associated with rule 4 and let P be

a pass which appears in W , has source w, and which obeys rule 4. Define z ′ = t,

y′ = tG(K(P ))({s, t}), and x′ = tG(K(P ))({s, y′}, t), keeping in mind that G(K(P )) is

isomorphic to G4. By this definition, and from the fact that w = s, z ′,y′ and x′

are mutually adjacent to w, and y ′ is adjacent to x′ and z′. Let u be the vertex

tG(K(P ))({x′, y′}, w). Since P obeys rule 4, γ(z ′) ≥ 6, γ(y′) ≤ 6, γ(x′) ≤ 6 and

γ(u) = 5. It thus follows that (x′, y′, z′) ∈ X and this construction gives a well

defined mapping from the set of passes appearing in W with source w and obeying

rule 4 to the set X. This mapping also is one to one. However, it is not clear yet

that it is onto, because a triple (x′, y′, z′) ∈ X might have γ(z′) = 5 and would have

no pass mapped to it. We now show that this is impossible by showing that when

γ(w) = 5, then {(x, y, z) ∈

in much the same fashion that we proved p3

Two distinct passes P and P ′ which both obey rule

so with a From the associated drawing G3 of rule 3, identify are assuming that P

is a pass which appears in W with
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If γ(w) = 5, then p4 = p5 = p6 = p7 = q5 = q6 = q7 = 0. Therefore (iii) and (iv)

hold, so we may assume γ(w) = 6 and prove (ii), (iii) and (iv).

We first prove (ii). Let X be the set of triples (x, y, z) having the properties that

w is adjacent to x, y, z, y is adjacent to x and z, γ(x) ≤ 6, γ(y) ≤ 6, the three vertices

x, y, and z are distinct, and the vertex u = tW ({x, y}, w) satisfies γ(u) = 5. As in

the case when γ(w) = 5, we first show that |X| = p3 and then show that |X| = q4.

Let P be a pass which appears in W , has sink w and which obeys rule 3, and as

usual, let G3 be the near triangulation associated with rule 3 which is isomorphic to

G(K(P )). Define y = s, x = tG(K(P ))({s, t}) and z = tW ({y, w}, x). We now show

γ(z) ≥ 6. Suppose instead that γ(z) = 5. Remembering that γ(w) = 6, if γ(x) = 6

and γ(y) = 6, then conf(1,1,7) would appear in W , if γ(x) = 6, γ(y) = 5 then

conf(1,1,4) would appear in W , if γ(x) = 5, γ(y) = 6, then conf(1,1,5) would appear

in W , and if γ(x) = 5 = γ(y), then conf(1,1,2) would appear in W . Therefore, we may

assume γ(z) ≥ 6 and so X = {(x, y, z) ∈ X : γ(z) ≥ 5} = {(x, y, z) ∈ X : γ(z) ≥ 6}.

We will now show that p3 = |X| and that q4 = |{(x, y, z) ∈ X : γ(z) ≥ 6} which will

establish (ii).

We first describe a mapping from the set of passes obeying rule 3 and appearing

in W to the set X of ordered triples. Let P be a pass satisfying rule 3 which has

sink w. From the associated drawing G3 of rule 3, identify x with s, w with t, y with

tG3({x, w}), u with tG3({x, y}, w) and define z to equal tW ({x, w}, y). Since the pass

obeys rule 3, γ(u) = 5, γ(x), γ(y) ≤ 6 and thus (x, y, z) ∈ X. Conversely, a triple

(x, y, z) ∈ X gives rise to a unique pass P which obeys rule 3 and has sink w. Thus,

p3 = |X|.
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Now we show that there is a one to one correspondence from the set of passes

obeying rule 4, having source w and appearing in W to the set {(x′, y′, z′) ∈ X :

γ(z) ≥ 6}. Let P be such a pass, and let G4 be the near triangulation of rule 4 which

is isomorphic to G(K(P )). We now construct a unique triple (x, y, z) ∈ {(x′, y′, z′) ∈

X : γ(z) ≥ 6} from the pass P . Define z = t, y = tG4({w, z}), x = tG4({w, y}, z) and

u with tG4({x, y}, w). In this way, we establish that q4 = |{(x′, y′, z′) ∈ X : γ(z) ≥ 6}.

This completes the proof of (ii) for γ(w) = 6.

Now we establish (iii). This time let X be the set of triples (x, y, z) such that the

three vertices x, y and z are distinct and each adjacent to w, y is adjacent to both x

and z, u = tW ({x, y}, w), v = tW ({u, y}, x), γ(x), γ(y), γ(u) ≤ 6, γ(v) = 5.

We first show that if (x, y, z) ∈ X and γ(y) = 5 then γ(z) ≥ 7. Suppose to

the contrary that γ(y) = 5 and γ(z) ≤ 6, first considering the case that γ(z) = 5.

Since γ(y) = 5, the vertex z is adjacent to the vertex v in W . If γ(u) = 5 then

conf(1,1,1) appears on the vertices u, v, y, z so we assume γ(u) = 6. If γ(x) = 6 then

conf(1,1,8) appears on the vertices u, v, w, x, y, z, so we may assume γ(x) = 5. Then

conf(1,1,2) appears on the vertices w, x, y, z. Thus we may may assume γ(z) = 6.

If γ(x) = 5 then either conf(1,1,1) or conf(1,1,2) appear in W , so we may assume

γ(x) = 6. If γ(u) = 5 then conf(1,1,8) appears in W on u, v, w, x, y, z and if γ(u) = 6

then conf(1,3,1) appears in W on u, v, w, x, y, z. Thus we must have γ(z) ≥ 7 which

is what we desired to show.

We now show that if (x, y, z) ∈ X and γ(y) = 6 then γ(z) ≥ 6. Suppose to the

contrary that γ(z) = 5. If γ(x) = γ(u) = 5 then conf(1,1,2) appears on {u, v, x, y} and

if γ(x) = 5, γ(u) = 6 then conf(1,2,2) appears on u, v, w, x, y, z. If γ(x) = 6, γ(u) = 5

then conf(1,1,7) appears on u, w, x, y, z and of γ(x) = γ(u) = 6 then conf(1,3,3)
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appears on u, v, w, x, y, z. This proves that γ(z) ≥ 6.

We may write the set X as a disjoint union X = {(x′, y′, z′) ∈ X γ(y) =

5}⋃{(x′, y′, z′) ∈ X : γ(y) = 6}. From the results just proved, {(x′, y′, z′) ∈

X : γ(y) = 5} = {(x′, y′, z′) ∈ X : γ(y) = 5, γ(z) ≥ 7} and {(x′, y′, z′) ∈ X :

γ(y) = 6} = {(x′, y′, z′) ∈ X : γ(y) = 6, γ(z) ≥ 6}. The assertion (iii) now fol-

lows by verifying that p4 = |X|, q5 = |{(x′, y′, z′) ∈ X : γ(y) = 6, γ(z) ≥ 6}| and

q6 = |{(x′, y′, z′) ∈ X : γ(y) = 5, γ(z) ≥ 7}|. The proofs of these facts are similar to

the above; for instance when trying to establish p4 = |X| we will identify w with the

sink t, x with the source s, y with tG4({s, t}) etc. and when trying to establish the

assertions about q5 and q6 we will identify w with the source, z with the sink, with

etc. This completes the proof of (iii) for γ(w) = 6.

We now prove (iv). Let X be the set of triples (x, y, z) such that the three vertices

x, y and z are distinct and each adjacent to w, there is a vertex u 6= w adjacent to

x and y, there is a vertex v 6= x adjacent to u and y, and finally there is a vertex t

adjacent to v, y and z, γ(x) = γ(y) = 6, γ(u), γ(v) ≤ 6, γ(t) = 5.

We first establish that if (x, y, z) ∈ X then γ(z) ≥ 7. First assume that γ(z) = 5.

Then γ(v) = 6 or else conf(1,1,2) appears on t, v, z, y. If γ(u) = 6 then conf(1,4,5)

appears on t, u, v, w, x, y, z and so we assume γ(u) = 5. Therefore conf(1,1,7) appears

on u, w, x, y, z which is a contradiction. Therefore we may assume γ(z) = 6. Now if

γ(u) = 5, γ(v) = 5 then conf(1,1,2) appears on t, u, v, y and if γ(u) = 5, γ(v) = 6, then

conf(1,3,3) appears on t, u, w, x, y, z. If γ(u) = 6, γ(v) = 5 then conf(1,4,5) appears

on t, u, v, w, x, y, z and if γ(u) = γ(v) = 6 then conf(1,5,5) appears on t, u, v, w, x, y, z.

Thus we must have γ(z) ≥ 7 if (x, y, z) ∈ X. By this result X = {(x′, y′, z′) ∈ X :

γ(z) ≥ 7}. Now it can be shown that p5 = |X| by identifying w with the sink t,

157



x with the source s and y with tG5({s, t}) etc. Similarly, by identifying w with the

source s, z with the sink t, y with tG7({s, t}) etc. and x with tG7({w, y}, z), it follows

that q7 = |{(x′, y′, z′) ∈ X : γ(z) ≥ 7}|. This completes the proof of (iv) for γ(w) = 6

and completes the proof of Lemma 7.2.1.

Theorem 7.2.1 Let W be a cartwheel with hub w which appears in T and which sat-

isfies NP > 0. If dT (w) ≤ 6, then some configuration isomorphic to one in Appendix

A appears in W .

Proof: Suppose to the contrary that no configuration isomorphic to one in Appendix

A appears in W . First consider the case that γ(w) = dT (w) = 5. By consulting the

rules it can be seen that NP = 10 + p1 + p3− q1− q2− q3− q4 where we have adopted

the notation found in the statement of Lemma 7.2.1. Now the hypothesis of this

lemma applies since we are assuming no configuration isomorphic to one in Appendix

A appears in W . Thus p1 = q2 + q3 and p3 = q4. Also, q1 = 10. Hence NP = 0 which

contradicts the assumption that NP > 0. Therefore we may assume γ(w) = 6.

It can now be seen that NP = p1 + p3 + p4 + p5− q2− q3− q4− q5− q6− q7. From

(i), (ii), (iii) and (iv) of Lemma 7.2.1, we thus see NP = 0, which again contradicts

that NP = 0. This completes the proof of Theorem 7.2.1.

7.3 Unavoidability when the Hub Degree is Large

The next lemma and its proof are also taken from [8], with some small changes.

We will sometimes say that a subset A ⊂ V (W ) of vertices obeys a rule with source

s and sink t, or just that A obeys a rule if the source and sink are understood, to
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mean that the subdrawing induced by them together with the function γ restricted

to them forms a pass P with source s and sink t that obeys that rule.

Lemma 7.3.1 Let W be a cartwheel with hub w in which no configuration isomorphic

to one in Appendix A appears and let v be adjacent to w. The sum of r(P ) over all

passes P appearing W that have source v and sink w is at most 5.

Proof: Let Rk (k = 1, 2, . . . , 32) denote the sum of r(P ) for all passes P which

appear in W , have source and sink v and w respectively, and which obey rule k. The

proof that R = R1 + R2 + . . . + R32 ≤ 5 will be split up into cases according to

whether γ(v) = 5, 6, 7, 8 or ≥ 9. Before analyzing these cases, notice that Ri ≤ 2 for

1 ≤ i ≤ 32.

If γ(v) = 5 then R = R1 + R2 + R3 + R4 because the only rules in which the

source has degree 5 are rules 1, 2, 3, 4. Let the clockwise listing in W of neighbors

of v be w = v1,v2, v3, v4, v5, let s 6= v be a vertex in the triangular face containing

the edge v2 and v3, and let t 6= v be the vertex in a triangular face which includes

the edge v5 and v4. If γ(v5) ≥ 7 then R2, R3, R4 ≤ 1, because there would be

no way that {w, v5, v} could obey rule 2, or {w, v, v4, v5} could obey rule 3 or that

{w, v, v4, t} could obey rule 4. Hence we may assume γ(v5) ≤ 6 and by symmetry

that γ(v2) ≤ 6. If R2 = 0 then γ(v5) = γ(v2) = 6 and we may assume R3 = R4 = 2

and so γ(v4) = γ(v3) = γ(s) = γ(t) = 5. This implies that conf(1,1,2) appears on

v, v5, v4, t. Therefore we may assume R2 ≥ 1.

If R2 = 1 then we may assume by symmetry that γ(v2) = 5 and γ(v5) = 6 and

that one of R3 or R4 equals two, and the other is at least one. If R3 = 2 then

γ(v3) = γ(v4) = 5 and so conf(1,1,1) appears on v2, v, v3, v4. So assume R3 = 1 and

159



R4 = 2 which means that γ(s) = γ(t) = 5. If γ(v3) ∈ {5, 6} then either conf(1,1,1) or

conf(1,1,1) appears on v, v2, s, v3. Therefore we may assume that γ(v3) = 7 but this

implies that R4 ≤ 1 which is a contradiction.

So assume that R2 = 2 and therefore that γ(v2) = γ(v5) = 5. We may as-

sume that R3 + R4 ≥ 2 or else R ≤ 5. Therefore, at least two of the values in

{γ(s), γ(t), γ(v3), γ(v4)} must equal 5. First consider the case that γ(t) = 5. If

γ(v4) = 5 or γ(v4) = 6, then conf(1,1,1) or conf(1,1,2) appears on {v, v4, v5, t}. If

γ(v4) ≥ 7 then R3 +R4 ≥ 2 force γ(s) = γ(v3) = 5 which implies conf(1,1,1) appears

on {v, v2, v3, s}. Therefore, we may assume γ(t) ≥ 6 and by symmetry that γ(s) ≥ 6.

If γ(t) ≥ 7, then necessarily γ(v3) ≤ 6 and it can then be seen that either conf(1,1,1)

or conf(1,1,2) will appear in W . Hence, we may assume γ(t) = 6 and by symmetry

we may assume γ(s) = 6. Since R3 + R4 ≥ 2, we must have γ(v3) = γ(v4) = 5 and

thus conf(1,1,1) appears on {v5, v, v3, v4}, a contradiction. This completes the case

when R = 2, and finishes the γ(v) = 5 analysis.

Now assume that γ(v) = 6. Then R = R2 + R3 + R4 + R5 + R6 + R7 as every

other rule has source whose degree does not equal 6. Let w = v1, v2, v3, . . ., v6 be

the counterclockwise listing in W of the neighbors of v. Let w = v2,1, v = v2,2, v3 =

v2,3, . . . , v2,γ(v2) be the clockwise listing in W of neighbors of v2, and let w = v6,1, v =

v6,2, v5 = v6,3, . . . , v6,γ(v6) be the counterclockwise listing in W of the neighbors of v6.

First, it will be established that we may assume γ(v2) ≤ 6. If not, then R2, R3,

R4, R5, R6, R7 ≤ 1. Now if γ(v6) = 5 then R5 = 0, if γ(v6) = 6 then R6 = 0, and if

γ(v6) ≥ 7 then R = 0. Either way, R ≤ 5, and so we may assume that γ(v2) ≤ 6.

This implies that we may also assume γ(v6) ≤ 6 by a symmetric argument.

By symmetry, it suffices to split the rest of the γ(v) = 6 proof into three cases, 1)
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γ(v2) = γ(v6) = 5, 2) γ(v2) = 5, γ(v6) = 6, and 3) γ(v2) = γ(v6) = 6.

Proof of case 1) (γ(v2) = γ(v6) = 5). Under these assumptions, R2 = 2, R5 =

R7 = 0 so we must assume at least one of R3, R4 and R6 equals 2. First assume

R3 = 2, so γ(v5) = γ(v3) = 5. Now if γ(v2,4) ≥ 7 then R4, R6 ≤ 1 and since

equality must hold in both cases, γ(v6,4) = γ(v6,5) = 5 which means that conf(1,1,1)

appears on v6, v5, v6,4, v6,5 which is a contradiction. Thus γ(v2,4) ≤ 6 and by symmetry,

γ(v6,4) ≤ 6. This, in turn, implies that R6 ≤ 0, for otherwise one of γ(v2,5), or γ(v6,5)

equals 5 which would force either conf(1,1,1) or conf(1,1,2) to appear on v6, v5, v6,4, v6,5

or on v2, v3, v2,4, v2,5. Thus we may assume R3 = R4 = 2, so γ(v2,4) = γ(v6,4) = 5.

Then conf(1,1,3) appears on v2, v3, v2,4, v, v5, v6, v6,4 which is a contradiction. This

completes the case when R3 = 2.

It remains to consider the case that R3 = 1 because if R3 = 0 we are done. We

must have either R4 = 2 or R6 = 2. If R4 = 2 then γ(v2,4) = γ(v6,4) = 5. Since

γ(v3), γ(v5) ≤ 6, it follows that either conf(1,1,3), conf(1,1,6), or conf(1,2,4) appears

on v2, v3, v2,4, v, v5, v6, v6,4. Therefore we may assume R6 = 2, and γ(v2,5) = 5 =

γ(v6,5). Then conf(1,1,1) appears on either v2,5, v2,4, v3, v2 or v6,5, v6,4, v5, v6, which is

a contradiction. This completes the proof of case 1).

Proof of case 2) (γ(v2) = 5, γ(v6) = 6) The assumptions insure that R2 = 1, R5,

R6, R7 ≤ 1. Also, it must be that γ(v6,4) ≤ 6; otherwise R5 = R7 = 0, and R4 ≤ 1

which implies R ≤ 5. It will be shown that we may assume either a) R4 ≤ 1 or b)

R4 = 2 and R3 = 0. Assume neither a) or b) holds so R4 = 2 and R3 ≥ 1. Therefore

γ(v2,4) = γ(v6,4) = 5 and one of γ(v3), γ(v5) equals 5. Now R4 = 2 implies that

γ(v3) ≤ 6 and γ(v5) ≤ 6. We may assume that γ(v3) = γ(v2,4) = γ(v6,4) = 5 and

γ(v5) = 6, or else conf(1,1,6) or conf(1,2,5) appears on v, v2, v3, v2,4, v5, v6, v6,4 which
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is contrary to the hypothesis that no configuration isomorphic to one in Appendix A

appears in W . Thus R3 = 1. If γ(v2,5) = 5, then conf(1,1,1) appears on v2, v3 v2,4,

v2,5, so it must be that γ(v2,5) ≥ 6 and R6 = 0. Since R3 + R4 = 3 and R6 = 0, we

must conclude that R5 = R7 = 1 which forces conf(1,1,2) to appear on v6, v6,4, v6,5,

v6,6. This proves that either a) or b) is true.

If b) is true, then we may assume R5 = R6 = R7 = 1 and therefore that γ(v6,6) =

γ(v6,5) = γ(v6,4) = 5, so conf(1,1,2) appears on v6, v6,4, v6,5, v6,6 which is impossible.

Therefore assume a) is true. Now R4 = 1 because if R4 = 0 it must be that R3 = 2

and R5 = R6 = R7 = 1, and then conf(1,1,1) would appear in W . Also we may assume

R3 = 2 and γ(v3) = γ(v5) = 5, otherwise R ≤ 5 or R3 = R4 = R5 = R6 = 1, the

latter implying that either conf(1,1,1), or conf(1,1,2) or conf(1,1,5) would appear in

W . Now R6 = 0, or else conf(1,1,1) or conf(1,1,2) appear on {v2, v3, v2,4, v2,5}. Thus,

we must have R5 = R7 = 1 which with the condition that γ(v6,4) ≤ 6 implies that

conf(1,1,5) or conf(1,1,2) appears in W .

Proof of case 3) (γ(v2) = 6, γ(v6) = 6) The assumptions imply that R2 = R6 = 0

so R = R3 + R4 + R5 + R7. First, R3 + R4 ≤ 3 because R3 = R4 = 2 implies that

conf (1,2,4) appears on v, v2, v3, v5, v6, v2,4, v6,4. If γ(v2,4) ≥ 7, then R4, R5, R7 ≤ 1

and so R ≤ 5. Therefore we may assume γ(v2,4) ≤ 6 and by symmetry, γ(v6,4) ≤ 6.

Also, if γ(v2,5) ≥ 7, then R5, R7 ≤ 1 which implies R ≤ 5. Therefore, γ(v2,5) ≤ 6

and by symmetry, γ(v6,5) ≤ 6. We may assume R5 + R7 ≥ 3 because R3 + R4 ≤ 3.

Therefore, by symmetry, we may assume γ(v6,5) = γ(v6,6) = 5. If either γ(v6,4) or

γ(v5) equals 5, then either conf(1,1,5) appears on v6, v5, v6,4, v6,5, v6,6 or conf(1,1,2)

appears in W . Thus γ(v5) = γ(v6,4) = 6 and this implies that R3 + R4 ≤ 2. Hence,

we must assume that R5 + R7 = 4, and therefore that γ(v6,6) = γ(v6,5) = 5. By the
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reasoning just used, this forces γ(v3) and γ(v2,4) to equal 6 and R3 +R4 = 0 so R = 4.

This completes the proof of case 3 and the case that γ(v) = 6.

Now we assume that γ(v) = 7 Let w = v1, v2, v3, v4, v5, v6, v7 be the counter-

clockwise listing in W of the neighbors of v. Let s 6= v be the unique vertex in

the triangular face containing the edge {v2, v3} and let t be the unique vertex in the

triangular face containing the edge {v6, v7}. We break the proof down into cases with

various values for γ(v2) and γ(v7).

If γ(v2) = γ(v7) = 5, then the only rules that a pass P with source v, sink w that

appears in W could obey are 8, 9, 10, 11, 12, and 13, so R = R8+R9+R10+R11+R12+

R13. Notice that R12 ≤ 1 and if R10 ≥ 1, then R9 < 2 or else conf(1,7,2) appears on

v, v4, v5, v6, v7 or on v, v2, v3, v4, v5. Assume first that R10 = 2, so γ(v3) = γ(v6) = 5.

It follows that R11 = R13 = 0 and R9 ≤ 1. If R9 = 0 then R ≤ 5 so assume R9 = 1.

By symmetry, we may assume γ(v4) = 5. If R12 = 0, then R = R8 + R9 + R10 ≤ 5

so assume that R12 = 1. Then conf(1,7,3) appears on v, v2, v3, v4, v5, v6, t, which is

a contradiction. Assume then that R10 = 1. Again, R9 ≤ 1, R11 = 0. and since

R12 + R13 ≤ 1, R ≤ 5. Finally, assume R10 = 0. It follows that R12 = R13 = 0.

Therefore, we may assume R8 = R9 = R11 = 2. But this is impossible since R8 = 2

implies γ(v3) = γ(v6) = 5 which forces R11 = 0. This completes the proof when

γ(u1) = γ(u2) = 5.

Now assume {γ(v2), γ(v7)} = {5, 6}. By symmetry we may take γ(v2) = 6

and γ(v7) = 5. Therefore R = R8 + R9 + R14 + R15 + R16 + R17 + R18 + R19,

and R14, R15, R16, R17, R18, R19 ≤ 1. If R9 = 2, then γ(v4) = γ(v5) = 5 so either

conf(1,7,2) or conf(1,7,4) appears on v, v4, v5, v6, v7 which is impossible, so R9 ≤ 1.

Also R16 + R18 ≤ 1, because γ(v6) must be 5 if the pass obeys rule 16 and 6 if the
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pass obeys rule 18. Similarly, R15 + R17 ≤ 1 and R14 + R19 ≤ 1. Finally, if R8 = 2,

then γ(v3) = γ(v6) = 5 which forces R16 = R18 = 0, so R8 + R16 + R18 ≤ 2 whence

R = (R8 +R16 +R18)+R9 +(R15 +R17)+(R14 +R19) ≤ 5 as desired. This completes

the proof when {γ(u1), γ(u2)} = {5, 6}.

Assume then that γ(v2) = γ(v7) = 6. Thus R = R8 + R9 + R20 + R21 + R22.

Now R20 ≤ 1 because otherwise γ(v3) can’t equal two different values, and simi-

larly R22 ≤ 1. Moreover, R20 + R22 ≤ 1 because a pass obeying rule 20 must have

γ(v4) = γ(v5) and a pass obeying rule 22 must have γ(v4) 6= γ(v5). It will now be

established that R8 + R21 ≤ 2. If R8 = 2, then R21 = 0 or else conf(1,7,2) appears

on v, v3, v4, v5, v6. If R21 = 2, then we may assume that {γ(v3), γ(v6)} = {5, 6} or

else R8 = 0 or conf(1,7,2) appears in W . However, now conf(4,10,6) appears in W

on w, v, v2, v3, v4, v5, v6, v7, tW ({w, v7}, v). t = tW ({v7, w}, v) and u is either v3 or v6.

Thus R8 + R21 ≤ 2 and R = (R8 + R21) + (R20 + R22) + R9 ≤ 5, as desired. This

completes the proof of the case γ(v2) = γ(v6) = 6.

The next case is {γ(v2), γ(v7)} = {5, 7}, so R = R8 + R9 + R18 + R19 + R23 +

R24 +R25. We may assume by symmetry that γ(v2) = 5 and γ(v7) = 7. This implies

that R8, R9, R18, R19, R23, R24, R25 ≤ 1. Also, R18 +R19 ≤ 1, because R18 > 0 implies

γ(w) = 7 and R19 > 0 implies γ(w) ≥ 8. It will now be shown that R23+R24+R25 ≤ 1.

If R25 > 0 then γ(v6) = 5 and if R24 > 0 then γ(v6) = 6, so R24 + R25. If R23 = 1

then γ(v6) = 5 and γ(t) = 5 so R24 = R25 = 0. Thus R23 + R24 + R25 ≤ 1. This

shows R ≤ 4.

The last case for γ(v) = 7 is γ(v2) ≥ 6 and γ(v7) ≥ 7 and it follows that R =

R8 +R9 +R21 +R22 +R26 +R27. Since γ(v2) ≥ 7, R8, R9, R21, R22, R26, R27 ≤ 1. Also,

R21 > 0 implies γ(v4) = γ(v5) = 5 which forces R22 = 0. Thus R ≤ 5.
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Now we consider the γ(v) = 8 case and let the counter-clockwise listing of vertices

of v be w = v1, v2, v3, v4, v5, v6, v7, v8. The only rules with γ(v) = 8 are 28, 29, 30, 31, 32

and therefore R = R28 +R29 +R30 +R31 +R32. By inspection, R30, R31, R32 ≤ 1 and,

if fact, R30 +R31 +R32 ≤ 1 which implies R ≤ 5.

If γ(v) ≥ 9 then R = 0. This completes the proof of Lemma 7.3.1.

Theorem 7.3.1 Let W be a cartwheel with NP(W ) > 0 and with hub w having degree

at least 12. Some configuration isomorphic to one in Appendix A appears in W .

Proof: Suppose that no configuration isomorphic to one in Appendix A appears in

W . Let X be the set of neighbors of w and for x ∈ X, let c(x) denote the sum of

r(P ) over all passes P ∈ P that appear in W with source x and sink w. By Lemma

7.1.2,
∑

x∈X c(x) ≤ 5|X| = 5γ(w). Therefore NP(W ) = 10(6− γ(w)) +
∑

x∈X c(x) ≤

60− 5γ(w) ≤ 0 since γ(w) ≥ 12. This contradicts the hypothesis that NP(W ) > 0.

7.4 Computer Aided Cases for Unavoidability

Theorem 7.2.1 and Theorem 7.3.1 dispose of the cases when the hub has degree 5, 6

or some integer that is at least 12. We invoke Theorem 7.4.1 to take care of the other

cases.

Theorem 7.4.1 If W is a cartwheel with hub w, with NP(W ) > 0 and 7 ≤ γ(w) ≤

11, then some configuration isomorphic to one in Appendix A appears in W .

Proof: The formal proof of this was generated by computer. Each individual step

of this proof can be checked by hand and so it is in principle possible to check the
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entire proof by hand. However, this computer generated proof is very long, and so a

hand check is not very practicable. Instead, the formal proof can be checked using

the same computer program [44] that Robertson et. al. used in [8] to prove the Four

Color Theorem.

Theorems 7.2.1, 7.3.1 and 7.4.1 together constitute a proof of Theorem 1.2.7, and

thus conclude the Unavoidability part of Theorem 1.2.3.
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Appendix A

The Unavoidable Set

This Appendix contains pictures of the 942 configurations that comprise the un-

avoidable set used to prove Theorem 1.2.6 and Theorem 1.2.7. The value in γK(v) ∈

{5, 6, . . .} that is associated with every vertex v in each configuration’s K’s graph is

represented pictorially according to Figure 4.1 in Section 4.2.

We now give some motivation for the definition of configurations that is found in

Section 4.2. When considering configurations, we must remember that they basically

represent subgraphs whose removal will allow a coloring to be found by induction. As

such, they will be “contained” in some large triangulation, say T . The purpose then

of assigning a value in {5, 6, . . .} to each vertex of a configuration is to specify what

the degree of that vertex is in T . This explains the condition that γK(v) = dT (v)

in the Section 4.2 definition of what it means for a configuration K to appears in a

triangulation T .

We mention again the convention that the configuration in row y and collumn z

of page x of this Appendix A will be referred to by conf(x, y, z).
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