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ABSTRACT

Let k be an integer. A graph G is k-arrangeable (concept introduced by Chen and Schelp)

if the vertices of G can be numbered v1, v2, . . . , vn in such a way that for every integer i with

1 ≤ i ≤ n, at most k vertices among {v1, v2, . . . , vi} have a neighbor v ∈ {vi+1, vi+2, . . . , vn}

that is adjacent to vi. We prove that for every integer p ≥ 1, if a graph G is not p8-

arrangeable, then it contains a Kp-subdivision. By a result of Chen and Schelp this implies

that graphs with no Kp-subdivision have “linearly bounded Ramsey numbers,” and by a

result of Kierstead and Trotter it implies that such graphs have bounded “game chromatic

number.”

28 April 1994, revised 8 May 1994.
Published in The mathematics of Paul Erdös, II, 236–239, Algorithms Combin., 14,
Springer, Berlin, 1997.

* Supported in part by NSF under Grant No. DMS-9011850.
** Supported in part by NSF under Grant No. DMS-9303761, and by ONR under Con-

tract number N00014-93-1-0325.

1



In this paper graphs are finite, may have parallel edges, but may not have loops. We

begin by defining the concept of admissibility, introduced by Kierstead and Trotter [6].

Let G be a graph, let M ⊆ V (G), and let v ∈ M . A set A ⊆ V (G) is called an

M -blade with center v if either

(i) A = {a} and a ∈ M is adjacent to v, or

(ii) A = {a, b}, a ∈ M − {v}, b ∈ V (G) − M , and b is adjacent to both v and a.

An M -fan with center v is a set of pairwise disjoint M -blades with center v. Let k be an

integer. A graph G is k-admissible if the vertices of G can be numbered v1, v2, . . . , vn in

such a way that for every i = 1, 2, . . . , n, G has no {v1, v2, . . . , vi}-fan with center vi of size

k + 1.

As pointed out in [6] the concepts of arrangeability and admissibility are asymptoti-

cally equivalent in the sense that if a graph is k-arrangeable, then it is 2k-admissible, and

if it is k-admissible, then it is (k2 − k + 1)-arrangeable.

Let p be an integer. A graph G has a Kp-subdivision if G contains p distinct vertices

v1, v2, . . . , vp and
(

p

2

)

paths Pij (i, j = 1, 2, . . . , p, i < j) such that Pij has ends vi and vj ,

and if a vertex of G belongs to both Pij and Pi′j′ for (i, j) 6= (i′, j′), then it is an end of

both. The following is our main result.

(1) Theorem. Let p ≥ 1 be an integer. If a graph G is not 1

2
p2(p2 + 1)-admissible, then

it has a Kp-subdivision.

We first prove Theorem (1), and then discuss its applications. For the proof, we need

the following result of Komlós and Szemerédi [7].

(2) Theorem. Let p ≥ 1 be an integer. If a simple graph on n vertices has at least 1

2
p2n

edges, then it has a Kp-subdivision.

We first prove a lemma.

(3) Lemma. Let p ≥ 1 be an integer, let G be a graph, and let M be a non-empty subset

of V (G). If for every v ∈ M there is an M -fan in G with center v of size 1

2
p2(p2 + 1), then

G has a Kp-subdivision.

Proof. Let p, G, and M be as stated in the lemma, and for v ∈ M let Fv be a fan in G
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with center v of size 1

2
p2(p2 +1). We may assume that G is minimal subject to M ⊆ V (G)

and the existence of all Fv (v ∈ M). Let |M | = m, let e1 be the number of edges of G

with both ends in M , and let e2 be the number of edges of G with one end in M and the

other in V (G) − M . Then from the existence of the fans Fv for v ∈ M we deduce that

2e1 + e2 ≥ 1

2
p2(p2 + 1)m.

We claim that if |V (G)−M | ≥ p2m−e1, then G has a Kp-subdivision. Indeed, by our

minimality assumption for every w ∈ V (G) − M there exist vertices u, v ∈ M such that

{u, w} ∈ Fv. For w ∈ V (G)−M let us denote by e(w) some such pair of vertices. Let J be

the graph obtained from G by deleting V (G)−M and for every w ∈ V (G)−M adding an

edge between the vertices in e(w). Then |E(J)| ≥ p2m, and since every pair of vertices is

joined by at most two (parallel) edges, J has a simple subgraph J ′ on the same vertex-set

with at least 1

2
p2m edges. By (2) J ′ has a Kp-subdivision L. Every edge of L that does

not belong to G joins two vertices u, v with {u, v} = e(w) for some w ∈ V (G) − M . By

replacing each such edge by the edges uw, vw we obtain a Kp-subdivision in G. This

proves our claim, and so we may assume that |V (G) − M | ≤ p2m − e1.

Now |V (G)| ≤ (p2 + 1)m − e1, and

|E(G)| ≥ e1 + e2 = 2e1 + e2 − e1 ≥
1

2
p2(p2 + 1)m − e1

≥
1

2
p2((p2 + 1)m − e1) ≥

1

2
p2|V (G)|,

and hence G has a Kp-subdivision by (2), as required.

Proof of Theorem (1). Let p be an integer, and let G be a graph on n vertices with no

Kp-subdivision. We are going to show that G is 1

2
p2(p2 + 1)-admissible by exhibiting

a suitable ordering of V (G). Let i ∈ {0, 1, . . . , n} be the least integer such that there

exist vertices vi+1, vi+2, . . . , vn with the property that for all j = i, i + 1, . . . , n, G has no

(V (G) − {vj+1, vj+2, . . . , vn})-fan with center vj of size p2( 1

2
p2 + 1) + 1. We claim that

i = 0. Indeed, otherwise by Lemma (3) applied to M = V (G) − {vi+1, vi+2, . . . , vn} there

exists a vertex vi with no M -fan with center vi of size 1

2
p2(p2 + 1), and so the sequence

vi, vi+1, . . . , vn contradicts the choice of i. Hence i = 0, and v1, v2, . . . , vn is the desired

enumeration of the vertices of G.
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We now mention two applications of Theorem (1). Let G be a class of graphs. We

say that G has linearly bounded Ramsey numbers if there exists a constant c such that

if G ∈ G has n vertices, then for every graph H on at least cn vertices, either H or its

complement contain a subgraph isomorphic to G. The class of all graphs does not have

linearly bounded Ramsey numbers, but some classes do. Burr and Erdös [3] conjectured

the following.

(4) Conjecture. Let t be an integer, and let G be the class of all graphs whose edge-sets

can be partitioned into t forests. Then G has linearly bounded Ramsey numbers.

Chvátal, Rödl, Szemerédi and Trotter [5] proved that for every integer d, the class of

graphs of maximum degree at most d has linearly bounded Ramsey numbers, and Chen

and Schelp [4] extended that to the class of k-arrangeable graphs. Chen and Schelp also

showed that every planar graph has arrangeability at most 761, a bound that has been

subsequently lowered to 10 by Kierstead and Trotter [6]. From Chen and Schelp’s result

and Theorem (1) we deduce

(5) Corollary. For every integer p ≥ 1, the class of graphs with no Kp-subdivision has

linearly bounded Ramsey numbers.

For the second application we need to introduce the following two-person game, first

considered by Bodlaender [2]. Let G be a graph, and let t be an integer, both fixed in

advance. The game is played by two players Alice and Bob. Alice is trying to color the

graph, and Bob is trying to prevent that from happening. They alternate turns with Alice

having the first move. A move consists of selecting a previously uncolored vertex v and

assigning it a color from {1, 2, . . . , t} distinct from the colors assigned previously (by either

player) to neighbors of v. If after |V (G)| moves the graph is (properly) colored, Alice wins,

otherwise Bob wins. More precisely, Bob wins if after less than |V (G)| steps either player

cannot make his or her next move. The game chromatic number of a graph G is the least

integer t such that Alice has a winning strategy in the above game. Kierstead and Trotter

[6] have shown the following.

(6) Theorem. Let k and t be positive integers. If a k-admissible graph has chromatic

number t, then its game chromatic number is at most kt + 1.
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They have also shown that planar graphs have admissibility at most 8, and hence

planar graphs have game chromatic number at most 33 by (6) and the Four Color Theorem

[1]. From (1), (2) and (6) we deduce

(7) Corollary. Let p be a positive integer. Then every graph with no Kp-subdivision

has game chromatic number at most 1

2
p4(p2 + 1).
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