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Summary A graph is a minor of another if the first can be obtained from a sub-
graph of the second by contracting edges. An excluded minor theorem describes the
structure of graphs with no minor isomorphic to a prescribed set of graphs. Splitter
theorems are tools for proving excluded minor theorems. We discuss splitter theo-
rems for internally 4-connected graphs and for cyclically 5-connected cubic graphs,
the graph minor theorem of Robertson and Seymour, linkless embeddings of graphs
in 3-space, Hadwiger’s conjecture on t-colorability of graphs with no Kt+1 minor,
Tutte’s edge 3-coloring conjecture on edge 3-colorability of 2-connected cubic graphs
with no Petersen minor, and Pfaffian orientations of bipartite graphs. The latter are
related to the even directed circuit problem, a problem of Pólya about permanents,
the 2-colorability of hypergraphs, and sign-nonsingular matrices.

1 Introduction

All graphs in this paper are finite, and may have loops and parallel edges.
A graph is a minor of another if the first can be obtained from a subgraph of
the second by contracting edges. An H minor is a minor isomorphic to H .
The following is Wagner’s reformulation [75] of Kuratowski’s theorem [27].

Theorem 1.1 A graph is planar if and only if it has no minor isomorphic to
K5 or K3,3.

Kuratowski’s theorem is important, because it gives a good characterization
(in the sense of J. Edmonds) of planarity, but we can also think of it as a
structural theorem characterizing graphs with no K5 or K3,3 minor. What
about excluding only one of these graphs? Wagner [75] characterized those
classes. To state his theorems we need one definition.

Let G1 and G2 be graphs with disjoint vertex-sets, let k ≥ 0 be an integer,
and for i = 1, 2 let Xi ⊆ V (Gi) be a set of cardinality k of pairwise adjacent
vertices. For i = 1, 2 let G′

i be obtained from Gi by deleting a (possibly empty)
set of edges with both ends in Xi. Let f : X1 → X2 be a bijection, and let G
be the graph obtained from the union of G′

1 and G′
2 by identifying x with f(x)

for all x ∈ X1. In those circumstances we say that G is a k-sum of G1 and G2.

Theorem 1.2 A graph has no minor isomorphic to K3,3 if and only if it can
be obtained from planar graphs and K5 by means of 0-, 1-, and 2-sums.
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By V8 we mean the graph obtained from a circuit of length eight by joining
each pair of diagonally opposite vertices by an edge.

Theorem 1.3 A graph has no minor isomorphic to K5 if and only if it can
be obtained from planar graphs and V8 by means of 0-, 1-, 2- and 3-sums.

There are many similar results in Graph Theory, known as excluded minor
theorems (see for example [5, 6, 16, 19, 27, 75, 76]). Such characterizations
can be useful: we often need to exclude certain minors when they are obvious
obstructions to some desired property, but knowledge of the structure which
their exclusion forces may enable us to establish that property for the remain-
ing graphs. Surveys of excluded minor theorems are given in [12] (for finite
minors) and [45] (for infinite minors). We show that Theorem 1.1 is not an
isolated result, but rather a beginning of a rich theory. We do not attempt to
give a complete survey, but instead concentrate on the developments of this
decade.

2 Seymour’s splitter theorem

Seymour’s splitter theorem is a tool for proving excluded minor theorems.
We say that a simple graph G is obtained from a simple graph H by splitting a
vertex if H is obtained from G by contracting an edge e, where both ends of e
have degree at least three in G. Since H is simple, it follows that e belongs to
no triangle of G. A graph is a wheel if it is obtained from a circuit on at least
three vertices by adding a vertex joined to every vertex on the circuit. (Paths
and circuits have no “repeated” vertices.) A graph G is k-connected if it has
at least k + 1 vertices, and G\X is connected for every set X ⊆ V (G) with
|X| < k. (We use \ for deletion.) The following is a classical result of Tutte
[71].

Theorem 2.1 Every simple 3-connected graph can be obtained from some
wheel by repeatedly applying the operations of adding an edge between two
nonadjacent vertices and splitting a vertex.

The converse also holds: if a graph can be obtained from a wheel (in fact, any
simple 3-connected graph) by means of the above two operations, then it is
simple and 3-connected. Seymour [61] proved the following strengthening.

Theorem 2.2 Let H be a simple 3-connected minor of a simple 3-connected
graph G such that if H is a wheel, then H is the largest wheel minor of G. Then
a graph isomorphic to G can be obtained from H by repeatedly applying the
operations of adding an edge between two nonadjacent vertices and splitting
a vertex.
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Thus a simple 3-connected graph can be built starting from almost any
simple 3-connected minor of itself, not necessarily a wheel. To illustrate the
use of Seymour’s theorem, let us deduce Theorem 1.2 from it. A separation
in a graph G is a pair of subgraphs (G1, G2) such that G1 ∪ G2 = G and
E(G1) ∩ E(G2) = ∅. The order of (G1, G2) is |V (G1) ∩ V (G2)|.

Proof of Theorem 1.2 The “if” part is easy. For the “only if” part let G be
a graph with no minor isomorphic to K3,3, and assume that the theorem holds
for all graphs H with |V (H)| + |E(H)| < |V (G)| + E(G)|. Assume first that
G is not a simple 3-connected graph. If v is an isolated vertex of G, then the
theorem follows by considering G\v. Otherwise, G has a separation (G1, G2)
of order k, where k ≤ 2, such that |E(G1)|, |E(G2)| ≤ |E(G)| − 1, and the
inequality is strict if k = 2. Moreover, we may assume that (G1, G2) is chosen
with k minimum. For i = 1, 2 let G′

i be Gi if the order of (G1, G2) is less than
two, and otherwise let G′

i be obtained from Gi by adding an edge joining the
two vertices of V (G1) ∩ V (G2). It follows from the minimality of k that G′

1

and G′
2 are minors of G. Thus, both G′

1 and G′
2 can be obtained from planar

graphs and K5 by means of 0-, 1-, and 2-sums. However, G is a k-sum of G′
1

and G′
2, as desired.

Thus we may assume that G is simple and 3-connected. If G is planar,
then the theorem holds, and so we may assume that G is not planar. By
Theorem 1.1, G has a minor isomorphic to K5. We claim that G is isomorphic
to K5. Indeed, if it is not, then, by Theorem 2.2 applied to H = K5 and to G,
a graph isomorphic to G can be obtained from K5 as stated in Theorem 2.2.
Since K5 is a complete graph, the next graph in the sequence is obtained from
it by splitting a vertex. There is, up to isomorphism, only one way to split a
vertex of K5. It is easy to check that the resulting graph has a minor isomorphic
to K3,3, and hence so does G, a contradiction. Thus G is isomorphic to K5, as
desired.

To prove Theorem 1.3 we need the following lemma. We say that a graph
G is internally 4-connected if G is simple, 3-connected and for every separation
(G1, G2) of G of order three, either |E(G1)| ≤ 3 or |E(G2)| ≤ 3.

Lemma 2.3 Let G be an internally 4-connected nonplanar graph. Then either
G is isomorphic to K3,3, or it has a minor isomorphic to K5 or V8.

Proof Let G be an internally 4-connected nonplanar graph. By Theorem 1.1
the graph G has a minor isomorphic to K5 or K3,3. In the former case we
are done, and so we may assume that G has a K3,3 minor, and that it is not
isomorphic to K3,3. Thus G has six distinct vertices v1, v2, . . . , v6 and nine
paths Pij (i = 1, 2, 3; j = 4, 5, 6) such that Pij has ends vi and vj , and the
paths are disjoint, except possibly for their ends. Let H denote the union of
the nine paths. We claim that we may assume the following.
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(∗) For distinct integers i, k = 1, 2, 3 and j, l = 4, 5, 6 the graph G has no
path with one end in V (Pij)−{vi, vj}, the other end in V (Pkl)−{vk, vl},
and otherwise disjoint from H .

Indeed, otherwise the union of H and the path give a V8 minor, as desired.
Thus we may assume that (∗) holds.

Since G is internally 4-connected and is not isomorphic to K3,3, we deduce
that at least two of the graphs (P14 ∪ P15 ∪ P16)\{v4, v5, v6}, (P24 ∪ P25 ∪
P26)\{v4, v5, v6}, (P34 ∪ P35 ∪ P36)\{v4, v5, v6} belong to the same component
of G\{v4, v5, v6}. By symmetry and (∗) we may assume that G has a path P
with one end in V (P14) − {v4} and the other end in V (P24) − {v4}.

Similarly, there exist an integer i ∈ {1, 2, 3}, distinct integers k, l ∈ {4, 5, 6}
and a path Q in G\{v1, v2, v3} with one end in V (Pik) − {vi} and the other
end in V (Pil) − {vi}. By considering the graph H ∪ P ∪ Q we deduce that G
has a K5 minor, as desired.

Proof of Theorem 1.3 Again, the “if” part is easy. For the “only if” part let
G be a graph with no minor isomorphic to K5, and assume that the theorem
holds for all graphs with fewer edges. If G is not internally 4-connected, then
we conclude the proof in a similar way as in the proof of Theorem 1.2. Thus we
may assume that G is internally 4-connected. If G is planar, then it satisfies
the conclusion of the theorem, and so we may assume that G is not planar.
By Theorem 1.1, G has a minor isomorphic to K3,3. By Lemma 2.3 either G
is isomorphic to K3,3, or it has a V8 minor. In the former case the theorem
holds, because K3,3 is a 3-sum of two planar graphs. Thus we may assume
that G has a V8 minor. Now it follows from Theorem 2.2 as in the proof of
Theorem 1.2 that G is isomorphic to V8, as desired.

3 A splitter theorem for internally 4-connected graphs

Many excluded minor theorems (e.g. the results of [17, 18, 75, 77]) can be
deduced using Theorem 2.2 as in the above proofs of Theorems 1.2 and 1.3. For
others, however, it is desirable to have versions of Theorem 2.2 for different
kinds of connectivity. Robertson [38] and Kelmans [25] obtained one such
version. This section discusses a splitter theorem for internally 4-connected
graphs, and its applications. We consider yet another splitter theorem in the
next section.

The straightforward analogue of Theorem 2.2 does not hold for internally
4-connected graphs for various reasons. Let us consider the following example.
Let H be a graph, and let C be a circuit in H with vertices v1, v2, . . . , vt (in
order). Assume that each vi has degree three, and let ui be the neighbor of
vi other than its two neighbors on C. Let G be obtained from H by adding,
for i = 1, 2, . . . , t, an edge ei joining vi and ui+1 (where ut+1 means u1). Then,
in general, there is no sequence J0, J1, . . . , Jk of internally 4-connected graphs
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such that J0 = H , Jk = G, and for i = 1, 2, . . . , k, Ji−1 is isomorphic to a
minor of Ji and differs from Ji only “a little”. (Notice that if H ′ is obtained
from H by adding a nonempty proper subset of {e1, e2, . . . , et}, then H ′ is not
internally 4-connected, because it has a vertex of degree three that belongs
to a circuit of length three.) Thus in the theorem to follow we allow the
intermediate graphs to fail the requirement of internal 4-connectivity, but only
in one area, and we insist that the next operation to be performed repairs this
connectivity violation, possibly at the expense of creating another violation
elsewhere.

Let us make this precise now. Let e be an edge of a graph G, and let v be a
vertex of degree three adjacent to both ends of e. We say that e is a violating
edge, and that (v, e) is a violating pair . We say that a graph G is almost
4-connected if G is simple, 3-connected and, for every separation (G1, G2) of
order three, either |E(G1)| ≤ 4 or |E(G2)| ≤ 4. Thus if a graph G is obtained
from an internally 4-connected graph H by applying one of the two operations
of Theorem 2.2, then G is almost 4-connected, and has at most two violating
edges. It turns out that we need two additional operations, which we now
introduce.

Let H be a graph, let e be a violating edge in H , let v be a vertex of
H such that v is not incident with or adjacent to either end of e, and let H
have no violating pair (w, e) such that v is adjacent to w in H . Let G be a
graph obtained from H by deleting e, and adding a new vertex and three edges
joining the new vertex to v and the two ends of e. We say that G was obtained
from H by a special addition.

Let H be a simple graph, let (v, e) be a violating pair in H , let u be the
neighbor of v that is not incident with e, let u have degree at least five, and let
G be obtained from H by splitting u, and then adding an edge between v and
the new vertex not adjacent to v in such a way that both new vertices have
degree at least four in G. We say that G was obtained from H by a special
split .

Finally, we need several exceptional families that will play the same roles
that the wheels played in Theorem 2.2. We say that an internally 4-connected
graph G is a biwheel if G has two vertices u, v such that G\{u, v} is a circuit,
and we say that it is a ladder if it belongs to one of the four infinite families
indicated in Figure 1. The following is a result of [21].

Theorem 3.1 Let H be an internally 4-connected minor of an internally 4-
connected graph G such that H has at least seven vertices and, if H is a
ladder or a biwheel, then it has at least nine vertices and it is the largest
ladder or biwheel minor of G. Then a graph isomorphic to G can be obtained
from H by repeatedly applying the operations of adding an edge between two
nonadjacent vertices, splitting a vertex, special addition and special split in
such a way that each intermediate graph is almost 4-connected, with at most
one violating edge, and no edge is a violating edge of two consecutive graphs
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Figure 1: Ladders

in the sequence.

For an application, let us consider the following unpublished theorem of
N. Robertson.

Theorem 3.2 An internally 4-connected graph G has no V8 minor if and only
if one of the following holds.

(a) G is planar, or

(b) G has two vertices u, v such that G\{u, v} is a circuit, or

(c) there is a set X ⊆ V (G) of cardinality four such that every edge of G
has at least one end in X, or

(d) G is isomorphic to the line graph of K3,3, or

(e) G has at most seven vertices.
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It is easy to see that in order to characterize graphs with no V8 minor it
suffices to restrict oneself to internally 4-connected graphs. Thus Theorem 3.2
can be turned into a characterization of all graphs with no V8 minor. One step
in the proof of the theorem is to show the following.

Lemma 3.3 If an internally 4-connected graph has a minor isomomorphic to
the line graph of K3,3, and has no V8-minor, then it is isomorphic to the line
graph of K3,3.

Lemma 3.3 can be proved using Theorem 3.1 just as we used Theorem 2.2
to prove Theorems 1.2 and 1.3. In fact, all we need to do is to verify that
two graphs have V8 minors. This time we do need the stronger Theorem 3.1,
because the operations used in Theorem 2.2 produce graphs which are not
internally 4-connected and have no V8 minors.

4 A splitter theorem for cyclically 5-connected cubic graphs

A graph is cubic if every vertex has degree three. To motivate the next
splitter theorem let us mention a special case of a theorem of Tutte [70] (the
proof is easy).

Theorem 4.1 Let G, H be 3-connected cubic graphs, and let H be a minor
of G. Then a graph isomorphic to G can be obtained from H by repeatedly
subdividing two distinct edges and joining the new vertices by an edge.

A cubic graph G is cyclically 5-connected if it is simple, 3-connected, and
for every set F ⊆ E(G) of cardinality at most four, at most one component
of G\F has circuits. For the results discussed in Section 10 below we need a
similar theorem for cyclically 5-connected cubic graphs. An ideal analogue of
Theorem 4.1 for cyclically 5-connected cubic graphs would assert that G can
be obtained as in Theorem 4.1 in such a way that all the intermediate graphs
are cyclically 5-connected. That is, unfortunately, not true, but the exceptions
can be conveniently described. We will do so now.

Let G be a cyclically 5-connected cubic graph. Let e, f be distinct edges
of G with no common end and such that no edge of G is adjacent to both e
and f , and let G′ be obtained from G by subdividing e and f and joining the
new vertices by an edge. We say that G′ is a handle expansion of G. It can be
shown that G′ is cyclically 5-connected. Let e1, e2, e3, e4, e5 (in order) be the
edges of a circuit of G of length five. Let us subdivide ei by a new vertex vi,
add a circuit (disjoint from G) with vertices u1, u2, u3, u4, u5 (in order), and
for i = 1, 2, . . . , 5 let us add an edge joining ui and vi to form a graph G′′. In
these circumstances we say that G′′ is a circuit expansion of G.

Let p be an integer such that p ≥ 5 if p is odd and p ≥ 10 if p is even. Let
G be a cubic graph with vertex-set {u0, u1, . . . , up−1, v0, v1, . . . , vp−1} such that
for i = 0, 1, . . . , p− 1, ui has neighbors ui−1, ui+1 and vi, and vi has neighbors
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ui, vi−2 and vi+2, where the index arithmetic is taken modulo p (see Figure 2).
We say that G is a biladder on 2p vertices. We remark that the Petersen
graph is a biladder on 10 vertices, and that the dodecahedron is a biladder on
20 vertices. The following theorem [51] generalizes [1, 7, 10, 33, 34].

Figure 2: Biladders

Theorem 4.2 Let G, H be cyclically 5-connected cubic graphs, let H be a
minor of G, and assume that if H is a biladder, then it is the largest bilad-
der minor of G. Then a graph isomorphic to G can be obtained from H by
repeatedly applying the operations of handle expansion and circuit expansion.

5 Excluding a general graph

We have mentioned several excluded minor theorems for specific excluded
minors. Robertson and Seymour [43] found a general structure theorem for
graphs with no minor isomorphic to an arbitrary fixed graph H . The theorem
gives only a necessary condition for excluding H , but the condition is necessary
and sufficient in the sense that no graph that possesses the structure has a
minor isomorphic to some other graph H ′, where H ′ is much larger than H .

We say that a graph G is a clique-sum of two graphs G1 and G2 if G is an
i-sum of G1 and G2 for some integer i ≥ 0. Roughly speaking, the theorem
of Robertson and Seymour says that for every graph H there exists an integer
k such that that every graph with no H minor can be obtained by means of
clique-sums from the class of graphs that are obtained by adding at most k
vertices (and any number of edges incident with these vertices) to graphs that
can be “almost” drawn on a surface the graph H cannot be drawn on. The
word almost means that the graph can be drawn in the surface, except for k
disks, where crossings are permitted, but that the number of edges crossing is
controlled in a certain way depending on k. Let us be more precise now.
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Let G be a graph, and let U be a cyclic ordering of a subset of its vertices.
We say that (Xu)u∈U is a vortex decomposition of the pair (G, U) if
(V1) u ∈ Xu for every u ∈ U ,
(V2)

⋃
u∈U Xu = V (G), and every edge of G has both ends in some Xu, and

(V3) if u1, u2, u3, u4 occur in U in the order listed, then Xu1∩Xu3 ⊆ Xu2∪Xu4 .
Let us remark that axiom (V3) is equivalent to saying that, for every vertex
v ∈ V (G), the set of all u ∈ U with v ∈ Xu is empty, or a contiguous interval,
or the whole of U . We say that (Xu)u∈U has width less than k if |Xu| ≤ k for
every u ∈ U .

A surface is a compact connected 2-manifold with (possibly empty) bound-
ary; the surface is closed if its boundary is empty. The unique surface obtained
from a closed surface Σ by removing the interiors of k disjoint closed discs will
be denoted by Σ− k. The components of the boundary of a surface Σ are the
cuffs of Σ. Thus, each cuff of a surface is homeomorphic to the unit circle.

Let G be a graph, and Σ a surface with cuffs C1, . . . , Ck. We say that G
can be nearly drawn in Σ if G has a set X of at most k vertices (where k is
the number of cuffs of Σ) such that G\X can be written as G0 ∪G1 ∪ . . .∪Gk,
where
(N1) G0 is embedded in Σ;
(N2) the graphs Gi (i = 1, . . . , k) are pairwise disjoint, and Ui := V (G0) ∩

V (Gi) = V (G0) ∩ Ci for each i = 1, 2, . . . , k;
(N3) for each i = 1, . . . , k, the pair (Gi, Ui) has a vortex decomposition

(Xu)u∈Ui
of width less than k, where the ordering of Ui is determined by

the cyclic ordering of points on Ci.
We can now state the excluded minor theorem of Robertson and Seymour [43].

Theorem 5.1 For every graph H there exists an integer k ≥ 0 such that every
finite graph with no H minor can be obtained by means of clique-sums from
graphs that can be nearly drawn in Σ − k for some closed surface Σ such that
H cannot be drawn in Σ.

6 The graph minor theorem

Is there an analogue of Theorem 1.1 for other surfaces? The following is a
result of Archdeacon [5], and Glover, Huneke and Wang [14].

Theorem 6.1 A graph G admits an embedding in the projective plane if and
only if G has no minor isomorphic to a member of an explicit list of 35 graphs.

For other surfaces no such theorem is known, and there is some evidence
that the list of graphs is too large to be useful. On the other hand, the following
landmark result of Robertson and Seymour [44] guarantees that the lists are
finite.
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Theorem 6.2 Every infinite set of graphs includes two distinct elements such
that one is isomorphic to a minor of the other.

The proof is based on Theorem 5.1. Let F be an infinite set of graphs, and
let F ∈ F . We may assume that no other member of F has an F minor, and
hence every member of F has a structure as described in Theorem 5.1. That
structure can be expoited to conclude the proof, but the argument is lengthy
and depends on the results of several other papers.

The following is another deep result of Robertson and Seymour [42].

Theorem 6.3 For every graph H there exists an O(n3) algorithm to decide
whether an input graph on n vertices has a minor isomorphic to H .

Theorems 6.2 and 6.3 have some surprising consequences.

Corollary 6.4 For every class of graphs closed under isomorphisms and tak-
ing minors there exists an O(n3) algorithm to decide if an input graph on n
vertices belongs to the class.

Proof Let L′ be the class of all graphs G such that G 6∈ F , but every proper
minor of G belongs to F , and let L contain one graph from each isomorphism
class of graphs in L′. Then no member of L is isomorphic to a minor of another,
and hence L is finite by Theorem 6.2. Thus membership to F can be tested
using Theorem 6.3 by testing the absence of minors isomorphic to a member
of L.

The above proof guarantees the existence of an algorithm, but gives no
clue as to how to construct one. Let us look at a special case. We say that a
piecewise-linear embedding of a graph G in 3-space is knotless if every circuit
of G forms a trivial knot. It is easy to see that contracting an edge in a knotless
embedding results in a knotless embedding. Thus, by Corollary 6.4 there exists
a polynomial-time algorithm to test whether an input graph has a knotless
embedding. Curiously, at the moment we know of no explicit algorithm (let
alone a polynomial-time one) to decide whether a given graph has a knotless
embedding.

7 Linklessly embeddable graphs

Related to knotless embeddings are the following two concepts, introduced
by Sachs [56, 57] and Böhme [8], respectively. We say that a (piecewise-linear)
embedding of a graph in 3-space is linkless if every two disjoint circuits of the
graph have zero linking number. We say that an embedding is flat if every
circuit of the graph bounds a (topological) disk disjoint from the rest of the
graph. By the Petersen family we mean the set of seven graphs depicted in
Figure 3. Those are precisely the graphs that can be obtained from K6 by
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Figure 3: The Petersen family

means of Y –∆ and ∆–Y exchanges. The Petersen graph belongs to this set,
and hence the name.

Sachs showed that no member of the Petersen family has a linkless embed-
ding, and conjectured that conversely every graph has a linkless embedding
unless it has a minor isomorphic to a member of the Petersen family. It turns
out that the related notion of flat embeddings has an interesting theory. The
following three results are proved in [50].

Theorem 7.1 A piecewise-linear embedding of a graph G in 3-space is flat
if and only if the fundamental group of the complement in 3-space of every
subgraph of G is free.

Theorem 7.2 Every two flat embeddings of a 4-connected graph in 3-space
are related by a homeomorphism of the 3-space.

Theorem 7.2 can be regarded as an analogue of Whitney’s classical result
[78] which states that every 3-connected planar graph has a unique planar
embedding. The following implies Sach’s conjecture.

Theorem 7.3 For a graph G, the following conditions are equivalent:
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(i) G has a flat embedding,

(ii) G has a linkless embedding,

(iii) G has no minor isomorphic to a member of the Petersen family.

As a structure theorem, Theorem 7.3 is not completely satisfactory, because
we do not know how to test in nondeterministic polynomial time whether a
given embedding is flat. It would be nice to have a graph-theoretical de-
scription of all linklessly embeddable graphs, perhaps along the lines of Theo-
rem 10.3.

There is a related result of Lovász and Schrijver [31], concerning the param-
eter µ introduced by Colin de Verdière [11]. Let G be a connected graph with
vertex-set {v1, v2, . . . , vn}. Then µ(G) is defined as the maximum dimension
of a kernel of a matrix M = (mij)

n
i,j=1 satisfying

(i) M is symmetric,

(ii) for distinct i, j ∈ {1, 2, . . . , n}, mij = 0 if vi and vj are not adjacent in
G, and mij < 0 otherwise,

(iii) M has exactly one negative eigenvalue of multiplicity one,

(iv) there is no nonzero symmetric matrix X = (xij)
n
i,j=1 such that MX = 0

and such that xij = 0 whenever i = j or mij 6= 0.

If G is not connected we define µ(G) to be the maximum of µ(H) over all
components H of G.

Colin de Verdière [11] showed that a graph is planar if and only if µ(G) ≤ 3.
This is a surprising result, given the way in which µ is defined. Lovász and
Schrijver [31] proved the following generalization, conjectured in [46].

Theorem 7.4 A graph G has a linkless embedding if and only if µ(G) ≤ 4.

It follows from [11] that this is indeed a generalization of Colin de Verdiére’s
result. It is tempting to ask whether there is any relationship between knot-
lessly embeddable graphs and µ(G) ≤ 5. As far as I am aware, it is not
even known whether K1,1,3,3, the complete 4-partite graph with parts of sizes
1, 1, 3, 3, respectively, has a knotless embedding.

8 The four color theorem

Our work on linkless embeddings was partly motivated by the fact that
the conjectured answer involved the Petersen family, which was of interest to
us because it includes both K6 and the Petersen graph—two graphs whose
exclusion is important for the p = 5 case of Hadwiger’s conjecture and Tutte’s
conjectures (see Sections 9 and 10 below). The latter problems generalize the
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Four Color Theorem (4CT), whose history dates back to 1852 when Francis
Guthrie, while trying to color the map of the counties of England, noticed
that four colors sufficed, and asked whether the same could be true for any
map. Since then the conjecture has attracted a lot of attention and motivated
many new developments. A proof was finally found by Appel and Haken [2, 3],
reprinted in [4], formally as follows.

Theorem 8.1 Every loopless planar graph is 4-colorable.

However, the history seems not to end here. The proof by Appel and Haken
is not completely satisfactory, because it relies on the use of computers, and
even the computer-free part is so complicated that no one has been able to
check it. This was partly remedied in a new proof recently found by Robertson,
Sanders, Seymour and the author [41], but their proof is still computer-assisted.
See [39, 40, 65] for recent surveys.

Another aspect of the 4CT is that there are several conjectures that, if true,
would generalize the 4CT. It might be possible to reduce some of them to the
4CT, while others may require a strengthening of the proof of the Four Color
Theorem. We will discuss two such generalizations in the next two sections.

9 Hadwiger’s conjecture

Hadwiger [15] made the following conjecture.

Conjecture 9.1 For every integer p ≥ 1, every loopless graph with no Kp+1

minor is p-colorable.

Conjecture 9.1 is trivial for p ≤ 2, for p = 3 it was shown by Hadwiger
[15] and Dirac [13] (the proof is not very difficult), but for p ≥ 4 it seems very
difficult, because it implies the Four Color Theorem. To see this let p ≥ 4, and
let G be a planar graph. Let H be obtained from G by adding p − 4 vertices
adjacent to each other and to every vertex of G. Then H has no Kp+1 minor
(because no planar graph has a K5 minor by the “easy” half of Theorem 1.1),
and hence H has a p-coloring by the assumed truth of Conjecture 9.1. In this
p-coloring vertices of G receive at most four colors, and so G is 4-colorable, as
desired.

Theorem 1.3 implies that Hadwiger’s conjecture for p = 4 is, in fact, equiv-
alent to the 4CT. Robertson, Seymour and the author managed to prove that
the next case (that is, p = 5) is also equivalent to the 4CT. More specifically,
in [47] they proved the following (without using the 4CT), which immediately
implies (assuming the 4CT) Hadwiger’s conjecture for p = 5. We say that a
graph G is apex if G\v is planar for some v ∈ V (G).

Theorem 9.2 Let G be a loopless graph with no K6 minor such that G is not
5-colorable, and, subject to that, |V (G)| is minimum. Then G is apex.
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While Theorem 1.3 gives a structural description of graphs with no K5 mi-
nor, Theorem 9.2 does not do the same for graphs with no K6 minor. Jorgensen
[22] made the following beautiful conjecture, which implies Theorem 9.2 by a
result of Mader [32].

Conjecture 9.3 Every 6-connected graph with no minor isomorphic to K6 is
apex.

At present, Hadwiger’s conjecture is open for all p ≥ 6.

10 Tutte’s edge 3-coloring conjecture

Tait [64] showed that the Four Color Theorem is equivalent to the following
statement.

Theorem 10.1 Every 2-connected cubic planar graph is edge 3-colorable.

The smallest 2-connected cubic graph that is not edge 3-colorable is the
Petersen graph. Tutte [72] conjectured that Theorem 10.1 holds with “planar”
replaced by “no Petersen minor”. Robertson, Sanders, Seymour and the author
were recently able to settle Tutte’s conjecture, as follows.

Theorem 10.2 Every 2-connected cubic graph with no minor isomorphic to
the Petersen graph is edge 3-colorable.

The proof proceeds in two steps. First we showed in [53] that Theorem 10.2
holds in general as long as it holds for two classes of graphs: apex (defined
above) and doublecross graphs (graphs that can be drawn in the plane with
two crossings on the same region). Then we adapted our proof of the Four
Color Theorem [41] to show the edge 3-colorability of 2-connected apex [59]
and doublecross graphs [58]. For the first part we used Theorem 4.2 to prove
the following in [52]. (Starfish is the graph depicted in Figure 4.)

Theorem 10.3 Let G be a cyclically 5-connected cubic graph with no Pe-
tersen minor, and assume that for every set A ⊆ V (G) with |A|, |V (G)−A| ≥ 6
there are at least six edges of G incident with both A and V (G)−A. Then G
is apex, or it is doublecross, or it is isomorphic to Starfish.

Another consequence of Theorem 10.3 is the result [55] that every cubic
graph of girth at least six has a subgraph isomorphic to a minor of the Petersen
graph. Huck [20] used this to show that the 5-cycle double cover conjecture
holds for cubic graphs with no Petersen minor.

We say that a graph G has a nowhere-zero 4-flow if there exists a function
f mapping E(G) into the nonzero elements of the Abelian group Z2 × Z2 in
such a way that, for every vertex v of G, the sum of f(e), over all edges e
incident with v, is zero. It follows that a cubic graph has a nowhere-zero 4-
flow if and only if it is edge 3-colorable. Tutte [72] also made the following
more general conjecture, known as the 4-flow conjecture.
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Figure 4: Starfish

Conjecture 10.4 Every 2-connected graph with no Petersen minor has a
nowhere-zero 4-flow.

It may be possible to extend the proof of Theorem 10.2 to prove Conjec-
ture 10.4, but no work in that direction has yet been done. Tutte made two
other conjectures about nowhere-zero flows, known as the 3-flow [72] and 5-
flow conjectures [69]. Both of them are still open. We refer to [62] for a survey
on nowhere-zero flows.

11 Pfaffian orientations

Finally, I discuss a structural result pertaining to matching theory. An
orientation D of a graph G is Pfaffian [23, 24, 30] if every even circuit C of G
such that G\V (C) has a perfect matching has an odd number of edges directed
in D in the direction of each orientation of C. The significance of Pfaffian ori-
entations is that if a graph G has one, then the number of perfect matchings of
G can be computed in polynomial time. Furthermore, the problem of deciding
whether a bipartite graph has a Pfaffian orientation is equivalent to several
other problems of interest—we mention these later. Little [28] obtained the
following “excluded minor” characterization. We say that a graph H is a
matching minor of a graph G if G has a subgraph K such that G\V (K) has a
perfect matching, and H is obtained from K by repeatedly contracting pairs
of edges incident with a common vertex of degree two.

Theorem 11.1 A bipartite graph has a Pfaffian orientation if and only if it
has no matching minor isomorphic to K3,3.

Theorem 11.1 is a beautiful result, but unfortunately it seems not to imply
a polynomial-time algorithm to test if a given bipartite graph has a Pfaffian
orientation. The next theorem, proven independently by McCuaig [35, 36]
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and by Robertson, Seymour and Thomas [54], can be used to design such an
algorithm. We say that a bipartite graph is a brace if every matching of size at
most two can be extended to a perfect matching. An argument similar to the
one in the proof of Theorem 1.2 shows that it suffices to characterize braces
that have a Pfaffian orientation. The Heawood graph is depicted in Figure 5.

Figure 5: The Heawood graph.

Let G0 be a graph, and let C be a circuit of G0 of length four such that
G0\V (C) has a perfect matching. Let G1, G2 be two subgraphs of G0 such
that G1∪G2 = G0, G1∩G2 = C, V (G1)−V (G2) 6= ∅ and V (G2)−V (G1) 6= ∅,
and let G be obtained from G0 by deleting a (possibly empty) subset of E(C).
In these circumstances we say that G is a C4-sum of G1 and G2. The following
result gives the desired characterization.

Theorem 11.2 A brace has a Pfaffian orientation if and only if either it is
isomorphic to the Heawood graph, or it can be obtained from planar braces
by repeated applications of the C4-sum operation.

Using Theorem 11.2 we were able to design a polynomial-time algorithm
[54] to decide if an input graph has a Pfaffian orientation:

Theorem 11.3 There exists an O(n3) algorithm that, given an input graph
G on n vertices, either outputs a Pfaffian orientation of G, or a valid statement
that G has no Pfaffian orientation.

I now describe some consequences of Theorem 11.2. Pólya [37] asked
whether given a square 0, 1-matrix A there is a matrix B obtained from A
by changing some of the 1’s into −1’s in such a way that the determinant of
B equals the permanent of A. This cannot be done for all matrices. How-
ever, given that the computing of permanents is #P-complete [73] it would
seem desirable to have a characterization of matrices for which this is possi-
ble. Theorem 11.2 gives such a characterization by a result of Vazirani and
Yannakakis [74].

Another consequence of Theorem 11.2 is a solution of the even directed cir-
cuit problem [66, 68, 63, 74]. The question is whether there exists a polynomial-
time algorithm to decide if a digraph has a circuit of even length. Again,
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Theorem 11.3 provides such an algorithm by [74]. There are other equivalent
formulations of the result in terms of 2-coloring of hypergraphs [29, 60], and
several others in terms of sign-nonsingular matrices [9, 26, 67].
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