CLIQUE-SUMS, TREE-DECOMPOSITIONS AND
COMPACTNESS

Igor KŘÍŽ*
Dept. of Mathematics, University of Chicago, Chicago, IL 60637, USA

Robin THOMAS*
School of Mathematics, Georgia Institute of Technology, Atlanta, GA 30332, USA

Received 1 May 1987
Revised 3 May 1988

We develop a technique for extending excluded minor theorems to infinite graphs, and in
particular we answer a question of Neil Robertson.

1. Introduction

The aim of this paper is to extend certain results of finite graph theory to
infinite graphs and to show a limitation of this.

Recall that a graph G is a minor of a graph H if G can be obtained from a
subgraph of H by contraction of edges. There are several so-called excluded
minor theorems in finite graph theory, i.e. statements describing finite graphs
without minors isomorphic to members of a given list of finite graphs. The
celebrated Kuratowski’s theorem [4] is also of this form: Finite graphs without
minors isomorphic to $K_{3,3}$ and K_5 are planar.

Note that this theorem is exact in the sense that it in fact characterizes the class
of graphs with no $K_{3,3}$ and K_5 minor. Some other excluded minor theorems are
listed in Table 1 below; the first six of them are exact. (For the definition of
k-sums see Section 2.4.)

These statements have a common feature: The describing structure involves
clique-sums of graphs from a certain basic class I. We develop a general technical
tool to treat this situation, the concept of a k-decomposition over a class I (for
definition see 2.3). This concept covers the notion of tree-width introduced by
Robertson and Seymour [6] in the sense that graphs of tree-width $\leq k$ are exactly
those admitting a k-decomposition over

$$I_k = \{(V, E) \mid |V| \leq k + 1\}.$$

The first idea of such a kind was probably due to Wagner [13].

*This research was partly carried out at Charles University, Sokolovská 83, 186 00 Praha 8,
Czechoslovakia.
Table 1.

<table>
<thead>
<tr>
<th>Excluded minor(s)</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_3</td>
<td>1-sums of graphs with ≤ 2 vertices (graphs of tree-width $= 1$)</td>
</tr>
<tr>
<td>K_4</td>
<td>2-sums of graphs with ≤ 3 vertices (graphs of tree-width $= 2$)</td>
</tr>
<tr>
<td>K_5</td>
<td>3-sums of planar graphs and the four rung Möbius ladder [12]</td>
</tr>
<tr>
<td>$K_{3,3}$ minus one edge</td>
<td>2-sums of planar graphs and K_5 [13]</td>
</tr>
<tr>
<td>All finite 4-connected graphs</td>
<td>2-sums of the five-sided prism, the four rung Möbius ladder and graphs with ≤ 4 vertices (see [11])</td>
</tr>
<tr>
<td>Arbitrary H finite planar</td>
<td>k-sums of graphs with $\leq k + 1$ vertices (graphs of tree-width $\leq k$) for some k depending on H [6]</td>
</tr>
<tr>
<td>Arbitrary H finite</td>
<td>k-sums of graphs which are (p, q, h)-representable over some surface Σ in which H cannot be embedded (for some k, p, q, h depending on H) [7]</td>
</tr>
</tbody>
</table>

Let us briefly recall the definition of tree-width and the basic results. We start with a

Theorem 1.1. Let G be a finite graph and let $k > 0$. Then the following conditions are equivalent:

(i) k is the least integer such that G can be constructed by repeated clique-sums, starting from graphs in Γ_k.

(ii) k is the least integer such that G admits a k-decomposition over Γ_k.

(iii) k is the least integer such that G is a subgraph of a chordal graph not containing K_{k+2}.

Definition 1.2. The number k from the above theorem is called the **tree-width** of G.

It can be shown, for instance, that the graphs of tree-width ≤ 1 are precisely the forests, and the graphs of tree-width ≤ 2 are the series-parallel graphs. The complete graph K_n has tree-width $n - 1$ and the $n \times n$ grid (adjacency graph of the $n \times n$ chessboard) has tree-width n. For tree-width the following compactness theorem holds.

Theorem 1.3 [9]. If every finite subgraph of G has tree-width $\leq k$, then G has tree-width $\leq k$; in other words, G admits a k-decomposition over Γ_k iff each finite subgraph of G does.

A simpler proof of 1.3 can be found in [10] or [3]. In this paper we prove a generalization of Theorems 1.1, 1.3 with Γ_k replaced by an arbitrary class Γ'.
satisfying certain natural assumptions (see 2.2, 3.5, 3.9). As an immediate consequence we obtain infinite versions of the theorems of Table 1.

Our results apply only to the case of k-sums for fixed k. In Section 4 we present a counterexample showing that the technique cannot be extended to the case of unbounded clique-sums, that is, Proposition 3.4 does not hold for $|V(K_1) \cap V(K_2)| \leq k$ replaced by $|V(K_1) \cap V(K_2)| < \omega$. The counterexample presented also shows that 1.1 fails for $k = \omega$. More exactly, we construct a graph G such that $k = \omega$ satisfies 1.1(iii) while the k satisfying 1.1(ii) is arbitrarily large.

2. Definitions

2.1. A graph may be infinite, and may have multiple edges but may not have loops. A clique in a graph is a complete subgraph. If M is a set, then $K(M)$ denotes the complete graph on M. A graph is chordal if every cycle with at least four vertices has a chord.

If G is a graph and $A \subseteq V(G)$, then $G \upharpoonright A$ means the graph induced by A in G. A cut in G is a set $C \subseteq V(G)$ such that G becomes disconnected after deleting vertices from C. A k-cut in G is a cut C such that $|C| \leq k$ and $G \upharpoonright C$ is complete. If $G_a = (V_a, E_a)$ are graphs, then $\bigcap G_a$, $\bigcup G_a$ are the graphs $(\bigcap V_a, \bigcap E_a)$ and $(\bigcup V_a, \bigcup E_a)$, respectively.

2.2. Let Γ be a class of graphs with the following properties.

(Γ1) If G is a graph and $e_1, e_2 \in E(G)$ are two distinct edges with the same endpoints and if $G \upharpoonright e_i \in \Gamma$ then $G \in \Gamma$.

(Γ2) If $G \in \Gamma$ and H is a k-subsimplex of G, then $H \in \Gamma$.

(Γ3) If G is such that for every finite subgraph H of G there exists a finite subgraph $H' \in \Gamma$ of G containing H, then $G \in \Gamma$.

2.3. Let G be a graph. A tree-decomposition of G is a pair (T, X), where T is a tree and $X = (X^t : t \in V(T))$ is such that

(T1) $\bigcup_{t \in V(T)} X^t = V(G)$,

(T2) every edge e of G has both endpoints in some X^t,

(T3) if $t, t', t'' \in V(T)$ and t' is on the path between t' and t'', then $X^t \cap X^{t'} \subseteq X^{t''}$.

We say that a tree-decomposition (T, X) is a k-decomposition of G over Γ, if

(T4) $|X^t \cap X^{t'}| \leq k$ for every $(t, t') \in E(T)$,

(T5) $G^* \upharpoonright X^t \in \Gamma$ for every $t \in V(T)$,

where G^* is the graph obtained from G by joining every edge which has both its endpoints in some $X^t \cap X^{t'}$ for $(t, t') \in E(T)$.

2.4. Let G_1, G_2 be two graphs such that $G_2 \upharpoonright (V(G_1) \cap V(G_2))$ is edge-less and let H_t be the graph obtained from G_t by adding new edges joining every pair of vertices in $V(G_1) \cap V(G_2)$. We say $G_1 \cup G_2$ is the clique-sum of H_t and H_2 and if
\(|V(G_1) \cap V(G_2)| \leq k\) we also say it is the \(k\)-sum of \(H_1\) and \(H_2\). We say that a graph \(G\) is \(k\)-summable over \(\Gamma\) if there exists a transfinite sequence \(\{G_\alpha\}_{\alpha < \lambda}\) of graphs such that \(G_0 \in \Gamma, G_1 = G, G_{\alpha + 1}\) is a \(k\)-sum of \(G_\alpha\) and some graph from \(\Gamma\) and for \(\alpha\) a limit ordinal
\[(1) \quad V(G_\alpha) = \bigcup_{\beta < \alpha} V(G_\beta)\]
\[(2) \quad E(G_\alpha) = \bigcup_{\beta < \alpha} \cap_{\gamma > \beta} E(G_\gamma).\]
The least \(\lambda\) with this property is called the \textit{rank} of \(G\). Relations (1) and (2) will be abbreviated \(G_\alpha = \liminf_{\beta < \alpha} G_\beta\).

\(2.5\). A graph \(G\) is called a \(k\)-simplex if it does not contain a \(k\)-cut. If \(G\) is a graph, then each induced subgraph \(H\) of \(G\), which is a \(k\)-simplex, is called a \(k\)-subsimplex. A graph \(G\) is a \(k\)-complex over \(\Gamma\) if every finite \(k\)-subsimplex belongs to \(\Gamma\).

\(3.\) The main results

\textbf{Lemma 3.1.} Let \(G\) be a graph and \(S_1, S_2\) two distinct maximal \(k\)-subsimplices. Then \(S_1 \cap S_2\) is a clique of size at most \(k\).

\textbf{Proof.} Suppose not. Let \(K\) be a clique in \(G\) of size \(\leq k\). Then \((S_1 \cap S_2) \setminus V(K) \neq \emptyset\) and both \(S_1 \setminus V(K), S_2 \setminus V(K)\) are connected. Hence \((S_1 \cup S_2) \setminus V(K)\) is connected and thus \(S_1 \cup S_2\) is a \(k\)-simplex, contrary to the maximality of \(S_1\) and \(S_2\). \(\square\)

\textbf{Proposition 3.2.} Let \(G\) be a \(k\)-simplex and \(G_0\) a finite subgraph. Then there exists a finite \(k\)-subsimplex of \(G\), which contains \(G_0\).

\textbf{Proof.} Assume we have already constructed a finite induced subgraph \(G_n\) of \(G\) such that \(G_n\) contains \(G_0\) and each of its \(k\)-cuts has size at least \(n\). Let \(C_1, \ldots, C_s\) be its \(k\)-cuts. Since \(G\) is a \(k\)-simplex, there is an induced finite subgraph of \(G\), which contains \(G_n\) and is such that for no \(i\), \(C_i\) is a cut of it. Let \(G_{n+1}\) denote a minimal such subgraph. If \(C\) is a \(k\)-cut of \(G_{n+1}\), it follows by minimality that \(C \cap V(G_n)\) is a \(k\)-cut of \(G_n\) and thus \(C \supseteq C_i\) for some \(i = 1, \ldots, s\). Hence every \(k\)-cut of \(G_{n+1}\) is of size at least \(n + 1\). Now \(G_{k+1}\) is the desired graph. \(\square\)

\textbf{Corollary 3.3.} If \(G\) is a \(k\)-complex over \(\Gamma\), then every \(k\)-subsimplex belongs to \(\Gamma\).

\textbf{Proof.} Let \(S\) be a \(k\)-subsimplex of \(G\) and \(S'\) a finite subgraph of \(S\). By Proposition 3.2 there is a finite \(k\)-subsimplex \(S''\) of \(G\) which contains \(S'\). Then \(S'' \in \Gamma\), and hence \(S \in \Gamma\) by (T3). \(\square\)
Proposition 3.4. Let G be a chordal graph such that $|V(K_1) \cap V(K_2)| \leq k$ for any two distinct maximal cliques K_1, K_2 of G. Then G admits a tree-decomposition (T, X) such that $G \upharpoonright X^t$ is a maximal clique in G for any $t \in V(T)$.

Proof. We just sketch the proof, and for the remaining details we refer to [3]. Consider the complete edge-valued graph $\Delta(G)$ on the set of all maximal cliques of G with the value of edge $\{K_1, K_2\}$ equal to $|V(K_1) \cap V(K_2)|$. Construct a "maximal" skeleton T of $\Delta(G)$ by adding at each step an edge of the maximal possible value, not to obtain a cycle. Put $X = \{t \mid t \in V(T)\}$. Then (T, X) is the desired tree-decomposition. □

Theorem 3.5. The following are equivalent for every integer $k \geq 2$:

(i) G is k-summable over Γ.

(ii) G is a subgraph of a k-complex over Γ.

(iii) G admits a k-decomposition over Γ.

Proof. (i)→(ii). We proceed by induction on rank of G. First we show that if $G_{\alpha+1}$ is a k-sum of G_α and $G \in \Gamma$ and H_α, H are k-complexes over Γ containing G_α, G, respectively, then there exists a k-complex $H_{\alpha+1}$ over Γ such that $H_{\alpha+1}$ contains $G_{\alpha+1}$ and $H_{\alpha+1} \upharpoonright V(G_\alpha) = H_\alpha$. Indeed, it is sufficient to put $H_{\alpha+1}$ to be the graph obtained from $H_\alpha \cup H$ by deleting those edges from H which join vertices in $V(H_\alpha) \cap V(H)$. Now if α is a limit ordinal and $G_\alpha = \operatorname{liminf}_{\beta < \alpha} G_\beta$, let H_β be k-complexes over Γ defined as above and put $H_\alpha = \bigcup_{\beta < \alpha} H_\beta$. It is easily seen that H_α is a k-complex over Γ which contains G_α.

(ii)→(iii). Let H be a k-complex over Γ which contains G. We put

$$H^* := \bigcup \{K(V(S)) \mid S \text{ is a } k\text{-subsimplex of } H\}.$$

Since every chordless cycle of H of length at least four is a k-subsimplex of H, we see that H^* is chordal. We claim

(*) If K^* is a maximal clique in H^*, then $K = H \upharpoonright V(K^*)$ is a k-subsimplex of H.

Choose a minimal system $\{S_\alpha\}$ of k-subsimplexes of H with the property that K^* is a subgraph of $K \cup \bigcup_\alpha K(V(S_\alpha))$. We shall show that $S := \bigcup_\alpha S_\alpha \cup K$ is a k-subsimplex of H. Let V be a clique in S of size $\leq k$. We shall show that $S \setminus V$ is connected. Let first $u, v \in K \setminus V$. If u, v are not joined by an edge in S, then, since they are joined in K^*, there exists an α such that $u, v \in V(S_\alpha)$. Hence they are joined by a path in $S_\alpha \setminus V$.

Now let $u \in V(S_\beta) \setminus V$. Since $\{S_\alpha\}$ is assumed minimal, it follows that $K \upharpoonright V(S_\beta)$ is not a clique. Hence $(V(S_\beta) \cap V(K)) \setminus V \neq \emptyset$. Let $v \in (V(S_\beta) \cap V(K)) \setminus V$; now u, v are joined by a path in $S_\beta \setminus V$. This shows that $S \setminus V$ is connected, and hence S is a k-simplex. Now the maximality of K^* implies that $K = S$, proving (*).

If K_1^*, K_2^* are distinct maximal cliques in H^*, then $K_1 = H \upharpoonright V(K_1^*)$, $K_2 = H \upharpoonright
$H \upharpoonright V(K^*_2)$ are maximal k-subsimplices of H by (\ast), and hence $|V(K^*_2) \cap V(K^*_2)| = |V(K_1) \cap V(K_2)| \leq k$ by Lemma 3.1. Thus, the assumptions of Proposition 3.4 are satisfied.

Let (T, X) be the tree-decomposition of H^* from Proposition 3.4. If $(t, t') \in E(T)$, then $H \upharpoonright (X' \cap X'')$ is the intersection of two maximal k-subsimplices of H by (\ast). Hence by Lemma 3.1 $|X' \cap X''| \leq k$ and $H \upharpoonright (X' \cap X'')$ is a clique. From this and Corollary 3.3 it follows that if G^* is as in $(T5)$ then $G^* \upharpoonright X'$ is a subgraph of $H \upharpoonright X' \in \Gamma$. Hence (T, X) can be converted to a k-decomposition over Γ of G by adding a leaf $r(t, e)$ with $X'(t, e) = e$ for every $e \in E(H \upharpoonright X') \setminus E(G^*)$.

(iii)\Rightarrow(i). Let (T, X) be a k-decomposition over Γ of G. There are subtrees $(T_\alpha)_{\alpha < \kappa}$ of T such that $T_0 = (\{t_0\}, \emptyset)$, the one-point tree, $T_1 = T$, $T_{\alpha + 1}$ is obtained from T_α by joining a vertex $t_{\alpha + 1}$ of degree one and $T_\alpha = \bigcup_{\beta < \alpha} T_\beta$ for α a limit ordinal. Let G^* be the graph obtained from G by joining all edges

$$e^G_{(t, t')} \mid (t, t') \in E(T), u, v \in X' \cap X'', u \neq v,$$

where $e^G_{(t, t')} \upharpoonright (t, t') \in E(T)$, $u, v \in X' \cap X''$, $u \neq v)$, where $e^G_{(t, t')} \upharpoonright (t, t') \in E(T)$, $u, v \in X' \cap X''$, $u \neq v$.

It is easily seen that $G_\alpha \in \Gamma$, $G_\alpha = G$, $G_{\alpha + 1}$ is the k-sum of G_α and $G_\alpha \in \Gamma$ and that for a limit ordinal α $G_\alpha = \liminf_{\beta < \alpha} G_\beta$. Hence G is k-summable over Γ. □

Corollary 3.6. Let Γ satisfy the following condition:

Let G be a graph and $e \in E(G)$. If $G \setminus e \in \Gamma$ then $G \in \Gamma$. Then (i), (ii), (iii) of the preceding theorem are equivalent to:

(iv) G is a subgraph of a chordal graph H such that every clique of H belongs to Γ and any two distinct maximal cliques of H have at most k vertices in common.

Remark 3.7. The method of proof (ii)\Rightarrow(iii) in Theorem 3.5 gives another existence theorem for prime graph decompositions of infinite graphs. To make this statement precise let us call a graph G prime if there is no complete subgraph of G which is a cut. A prime graph decomposition is a tree-decomposition (T, X) of G such that $G \upharpoonright X'$ is prime for any $t \in V(T)$ and $G \upharpoonright (X' \cap X'')$ is complete for any $(t, t') \in E(T)$. An infinite graph need not have a prime decomposition, but every graph without infinite cliques does (see [2]). Thus, the following corollary is another theorem of this kind.

Corollary 3.8. Let H be a graph and k an integer such that

$$|V(G_1) \cap V(G_2)| \leq k$$

for any two distinct maximal prime induced subgraphs G_1, G_2 of H. Then H admits a prime graph decomposition.
Proof. We use the proof of (ii)→(iii) from 3.5 with "k-simplex" replaced by "prime" and "k-subsimplex" replaced by "induced prime subgraph", we also drop the restriction on the size of V and instead of Lemma 3.1 we use our assumption. Then the tree-decomposition (T, X) of H thus produced is as desired, because for t ∈ V(T), H □ X′ is maximal prime by (*) and for {t, t′} ∈ E(T), H □ (X′ ∩ X′′) is complete, being the intersection of two maximal prime graphs. □

Theorem 3.9. Let G be such that every finite subgraph of G is a subgraph of a k-complex over Γ. Then G is a subgraph of a k-complex over Γ.

Proof. We shall prove the theorem for graphs without multiple edges for simplicity. The general case is then trivial.

For each α ∈ (V(G)) we introduce a logical variable Aα. Consider the system of formulas

(1) Aα
(2) \(\bigvee_{\alpha \in E} \neg A_{\alpha} \vee \bigwedge_{\alpha \in (\ell)} A_{\alpha} \) for every finite graph (V, E) which is a k-simplex not belonging to Γ such that \(V \subseteq V(G), E \subseteq (\ell) \).

A valuation v: \(\{ A_{\alpha} \mid \alpha \in (V(G)) \} \rightarrow 2 \) satisfies (1), (2) iff the graph with vertex set V(G) and edges \(\{ \alpha \mid A_{\alpha}[v] = 1 \} \) is a k-complex over Γ which contains G. By assumption, each finite subsystem of (1), (2) can be fulfilled. Use Logical Compactness. □

3.10. Now we are able to extend the results of Table 1 to infinite graphs. The last statement answers a question of Robertson [8] as to whether the excluded minor theorem from [7] can be extended to the infinite case. As in the finite case, the first six results are exact.

Table 2.

<table>
<thead>
<tr>
<th>Excluded minor(s)</th>
<th>Structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>K_3</td>
<td>tree-width ≤1</td>
</tr>
<tr>
<td>K_4</td>
<td>tree-width ≤2</td>
</tr>
<tr>
<td>K_5</td>
<td>graphs 3-summable over the four rung Möbius ladder and graphs with every finite subgraph planar</td>
</tr>
<tr>
<td>K_{3,3}</td>
<td>2-summable over K_3 and graphs with every finite subgraph planar</td>
</tr>
<tr>
<td>K_5 minus one edge</td>
<td>2-summable over wheels, K_{3,3}, the prism and graphs with ≤4 vertices</td>
</tr>
<tr>
<td>All finite 4-connected graphs</td>
<td>2-summable over the five-sided prism, the four rung Möbius ladder and graphs with ≤4 vertices</td>
</tr>
<tr>
<td>Arbitrary finite planar H</td>
<td>bounded tree-width</td>
</tr>
<tr>
<td>Arbitrary finite H</td>
<td>k-summable over graphs with each finite subgraph (p, q, h)-representable over some Σ H cannot be drawn on.</td>
</tr>
</tbody>
</table>
4. An example

4.1. Theorem 1.1 does not hold for infinite \(k \). In fact for any cardinal \(\kappa \) there exists a chordal graph \(G \) with each clique at most countable such that every tree-decomposition \((T, X) \) contains an \(X' \) of cardinality \(\gtrsim k \).

Let the vertices of \(G \) be all sequences of elements of \(\kappa \) of length \(\leq \omega \) including the empty sequence and let \(\{u, v\} \in E(G) \) if \(u \) is a proper initial segment of \(v \). Clearly \(G \) is a chordal graph in which all cliques are at most countable. We prove the following

Theorem 4.2. Any tree-decomposition \((T, X) \) of \(G \) contains an \(X' \) of cardinality \(\gtrsim k \).

Proof. Suppose the contrary. Sequences of ordinals will be indicated by juxtaposition. We shall construct finite sequences \(\lambda_0, \ldots, \lambda_n, \ldots \in V(G) \) and distinct vertices \(t_0, \ldots, t_n, \ldots \in V(T) \) such that for all \(n \)

(i) there exist ordinals \(\alpha_0, \ldots, \alpha_n, \ldots < \kappa \) such that \(\lambda_n = \alpha_0 \cdot \alpha_1 \cdots \alpha_{n-1} \),

(ii) \(X' \) contains \(\lambda_0, \ldots, \lambda_n \) but does not contain any \(\lambda \in V(G) \) with \(\lambda_{n+1} \) as an initial segment,

(iii) if \(t \) is on the path between \(t_n \) and \(t_{n+1} \) and \(X' \supseteq \{\lambda_0, \ldots, \lambda_{n+1}\} \), then \(t = t_{n+1} \).

Let \(\lambda_0 \) be the empty sequence and choose \(t_0 \) such that \(\lambda_0 \in X^0 \). Now assume we have already constructed \(\lambda_0, \ldots, \lambda_n, t_0, \ldots, t_n \). Since \(|X^n| < \kappa \), there exists an ordinal \(\alpha_n \in \kappa \) such that \(\lambda \notin X^\alpha \) whenever \(\lambda_{n+1} = \lambda_n \alpha_n \) is the initial segment of \(\lambda \).

Now choose \(t_{n+1} \in V(T) \) such that \(\lambda_0, \ldots, \lambda_n, \lambda_{n+1} \in X^{n+1} \) (this is possible since \(G \upharpoonright \{\lambda_0, \ldots, \lambda_{n+1}\} \) is a complete graph) and such that the distance of \(t_{n+1} \) from \(t_n \) in \(T \) is the least possible. Obviously this choice of \(t_{n+1} \) implies (iii). This completes the construction.

We claim that for any \(n \in \omega \), \(t_{n+1} \) lies on the path between \(t_n \) and \(t_{n+2} \). Should this not be the case, we have the following possibilities:

(a) \(t_n \) is on the path between \(t_{n+1} \) and \(t_{n+2} \). Then

\[
\lambda_{n+1} \in X^{n+1} \cap X^{n+2} \subseteq X^n
\]

by (T3), a contradiction.

(b) \(t_n \) is not on the path between \(t_{n+1} \) and \(t_{n+2} \). Then denote by \(t \) that vertex of \(T \), which belongs to the path between \(t_{n+1} \) and \(t_{n+2} \) and whose distance from \(t_n \) is the least possible. By the assumptions, \(t \notin \{t_n, t_{n+1}\} \) and

\[
\{\lambda_0, \ldots, \lambda_{n+1}\} \subseteq X^{n+1} \cap X^{n+2} \subseteq X',
\]

by (T3), a contradiction to (iii) (realize that \(t \) lies on the path between \(t_n, t_{n+1} \)).

It follows from the claim that there is an infinite path \(s_0, s_1, \ldots \) in \(T \) containing \(t_0, t_1, \ldots \) in this order. Let, say \(s_n = t_n \). Then \(i_1 < i_2 < \cdots \). Let \(\lambda \in V(G) \) be the infinite sequence with initial segments \(\lambda \). Since \(G \upharpoonright \{\lambda_0, \ldots, \lambda_n, \lambda\} \) is a
complete graph, we have for each \(n \) a vertex \(u_n \in V(T) \) such that
\[
\lambda_0, \ldots, \lambda_n, \lambda \in X^{u_n}.
\]
Let \(j_n \) be such that the distance between \(u_n \) and \(s_n \) is the least possible. Now we distinguish two cases.

If \(j_{n+1} > i_n \) for any \(n \), take \(n \) such that \(i_n > j_1 \). Then we have \(j_{n+1} > i_n > j_1 \) and hence \(s_{i_n} \) lies on the path between \(u_n, u_{n+1} \). By (T3) we conclude
\[
\lambda \in X^{u_n} \cap X^{s_{i_n}} \subseteq X^{s_{i_n}} \cap X^{s_{i+1}} \subseteq X^{s_n} = X^{i_n},
\]
contradicting (ii).

If \(j_{n+1} \leq i_n \) for some \(n \), then by (T3)
\[
\lambda_{n+1} \in X^{u_{n+1}} \cap X^{s_{i_n}} = X^{s_{i_n}} \cap X^{s_{i+1}} \subseteq X^{s_n} = X^{i_n},
\]
again contradicting (ii). \(\square \)

Acknowledgments

We are indebted to Reinhard Diestel for useful discussion on excluded minor theorems and to the referee for many improvements.

References
