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A SURVEY OF LINKLESS EMBEDDINGS
NEIL ROBERTSON, P. D. SEYMOUR and ROBIN THOMAS

ABSTRACT. We announce results sbout flat {linkless} embed-
dings of graphe in 3-space. A piecewise-linear embedding of
a2 graph in S—space iz called flaf if every circuit of the graph
bounds & disk disjoint from the resi of the greph. We have
shown that:

{i} An embedding is flst if and only if the fundamentsl group
of the complement in 3-space of the embedding of every sub-
graph iz free.

{1} If two flat embeddings of the same graph are not ambient
isotopic, then they differ on » subdivision of K5 or Kga.

{i#1) Any fiat embedding of & graph can be transformed to any
other flal embedding of the same graph by “3-switches,” an
analog of Z-switches from the theory of planar embeddings, In
particular, any two fiat embeddings of a 4—cornnected graph are
cither embient isotopic, or one is ambient isctopic to a mirror
image of the other.

{iv] A graph has & flat embedding if and only if it has no minor
isomorphic to one of seven specified graphs. These are the
graphs that can be obtained from Hg by means of ¥ A- and
LY —exchanges.
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L. INTRODUCTION
All spatial embeddings are assumed to be plecewise linear. If €, C' are disjoint
simple closed curves in §%, then their Jinking number, Ik{C, C"), is the number
of times {mod 2) that ¢ crosses over 7 in a regular projection of CUCY. In
this paper graphs are finite, undirected and may have loeps and multiple edges.
Bvery graph is regarded as a topological space in the cbvious way. We say that
an embedding of 2 graph & in §° is linkless if every two disjoint circuits of &
have zero linking number. The foliowing is a result of Sachs [16] and Conway
and Gordon 41
1.1} The graph K has no linkless embedding.

Proof. Let ¢ be an embedding of g into 5°. By studving the effect of &
cressing change in a regular projection, it is sasy to see that the mod 2 sum
5O1k{S{C1), ¢{Cs)), where the sum is taken over all unordered pairs of disjoint
circuits Oy, Oy of Kg, is an invariant independent of the embedding. By checking
an arbitrary embedding we can establish that this invariant equals 1. ]

A grapk is & minor of ancther if the first can be obtained from a subgraph
of the second by contracting edges. Our main result is 2 thecorem that a graph
ig linklessly embeddable if and only if it has no minor isomorphic to K or six
other closely related graphs. However, we find it much easier to work with the
following stronger concept, suggested by Bdhme {1} and Saran [18]. We say
that an embedding ¢ of & graph & in §% is fat if for every circuit € of G there
exists an open disk in S° disjoint from ¢(&) whose boundary is ¢{C). Clearly
every fiat embedding is linkless, but the converse is false. However, we shall see
iater that & graph admits 5 linkless embedding i and only if ¥ admits & flad
embedding, and so the classes of embeddable graphs are the same. The reason
why we prefer flat embeddings is that they work betier. For instance, thereisa
uniqueness theory parailel to the theory of planar embeddings, and a theorem
which characterizes flat embeddings in terms of the fundamental group of the
complement.

If & is a graph and X is & vertex or a set of vertices, we dencte by G\X
the graph obtained from & by deleting X. A graph G is nearly—planar if there
exists a vertex v of & such that G\v iz planar. It may be helpful fo notice the
following fact.

{1.2} Every nearly-planar graph admits & fat embedding.

Proof. Let & be neariy-planar, and let v be such that G\v is planar. We may
assume that & is simple, because 1t is easy to construct a flat embedding of a
graph given a fat embedding of its underlying simple graph. We embed G\v in
the zy-plane in B® C §°, embed v anywhere not in this plane, and embed all
edges from v to the planar graph as straight line segments. It is easy to check
that this defines a flat embedding. -]

The following lemma was proved by Béhme {i] {see also [18]].
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{1.3) Let ¢ be a flat embedding of 2 graph G into §°, and let Cy, Oy, ..., Cy
be a family of circuits of G such that for every i # §, the interseciion of C; and
Oy is either connecied or null. Then there exist pairwise disioint open disks
Dy, D, ... Dp, disjoint from $(G) and such that ¢(C;) is the boundary of I;
fori=12,...,n

An embedding ¢ of a graph G in 5% is spherical if there exists a surface
% € 8% homeomorphic to §% such that (@) C . Clearly if ¢ is spherical then
G is planar. We illustrate the use of (1.3) with the following, which is a special
cage of & theorem of Wu [221L

{1.4) Let ¢ be an ernbedding of & plapar graph & in 5%, Then ¢ is fat if and
only if it is spherical,

Proof. Clearly if ¢ is spherical then it is flat. We prove the converse only
for the case when & is 3—connecied. Let 1,05, ...,Cy be the collection of
face-boundaries in some planar embedding of G. These circuits satisfy the
hypothesis of {1.3). Let By, Dy, .., D, be the disks as in {1.3); then (G} U
By U Dy U U Dy s the desired sphera. 1

The paper is organized as follows. In Seciion 2 we present a characteriza-
tion of flat embeddings in terms of the fundamental group of the complement,
in Section 3 we discuss a unigueness theory of flat embeddings, in Section 4 we
state our main result, an excluded minor characterization of linklessly embed-
dable graphs, and finally in Section 5 we discuss three conjectures and some
algorithmic aspects of fat embeddings.

2. THE FUNDAMENTAL GROUP
The following is & result of Scharlemann and Thompson [18].

{2.1} Let ¢ be an embedding of 2 graph G in §%. Then ¢ is spherical if and
only if

{i) G is planar, and

{ii] for every subgraph G of G, the fundamental group of 5% — ${G') is free.
The “onily if” implication is easy to see. The point of the theorem is the comverse.
It is easy tc see that (ii) cannot be replaced by the weaker condition that the
fundamental group of 5% — 4(G) is free. We use (2.1} to prove the following

generalization.

{2.2} Let ¢ be an embedding of a graph G in §°. Then ¢ is flat if and only
if for every subgraph G' of G, the fundamental group of 8% — ¢{G") is free.

Proof. Here we only prove “only if.” Let G be a subgraph of & such that
7{8% ~ ¢{G"}} is not free. Choose a maximal forest F of &' and let G be
obtained from G’ by contracting &ll edges of F, and let ¢” be the induced
embedding of G, Then m:{8% — $"{G"}} = =1(5% — $(G')) is not free, but
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& iz planar, and so 97 Is not flat by {2.1) and (1.4). Hence ¢ is not fat, as

degired.

i

Let & be a graph, and let ¢ be an edge of G. We denote by G\e {G/¢) the
graph obtained from & by deleting {contracting) e. If ¢ is an embedding of &
in 5%, then it induces embeddings of G\e and {up to ambient isotopy) of G/e
in the obvious way. We denote these embeddings by ¢\e and ¢/e, respectively.
(2.3} Let ¢ be an embedding of a graph G in §°, and let € be a nonloop edge
of G. If boih ¢\e and ¢/e are Aai, then ¢ is Aat.

Proof. Suppose that ¢ iz not fat. By (2.2) there exists & subgraph &' of &
such that 1:(5% — ¢(G")) is not free. I e ¢ E(G'), then ¢\e is not flat by (2.2).
e & E(Q) then ¢/e is not fiat by (2.2}, because 71(8% ~ ($/e}{G'/e)}

71{5% — $(G'}} is not free.

i H

We say that & graph & is a coforest i every edge of G is a loop. The
following follews Immediately from (2.3}

{2.4} Lei ¢ be an embedding of a graph & in 5%, Then ¢ is flat if and only if
the induced embedding of every coforest minor of G is flat.

3. UNIQUENESS
We begin this section by recalling the following two classical results. The first
is Kuratowski’s theorem [8]. (A graph H is a subdivision of & graph & ¥ K can
be obiained from G by replacing edges by internally-disjoint paths.)

{3.1} 4 graph is planar if and only i it has no subgraph isomorphic fo a

Py

subdivision of Ky or Kas.

Let ¢ be an embedding of a graph G in 5%, Let P be a simple closed curve
in 5% meeting ¢(G) in a set 4 containing at most two points. Let I be 2 chord
of P (that ig, a simple curve with only its distinet endpoints in common with
P} and assume that every member of 4 is on D. Let B be the open disk of
§% _ P containing the interior of D. Let ¢’ be an embedding obtained from ¢
by taking 2 reflection through D in B, and by leaving ¢ unchanged in 5% - B,
We say that ¢ was obtained from ¢ by a 2—switch. The second classical result
is & theorem of Whitney [21], perhaps stated in a slightly unusual way,

We shall see in (3.10) that a similar theorem hoids for flat embeddings.

Let ¢y, ¢ be two embeddings of & graph @ in §%. We say that ¢;, ¢z are
ambient jsotopic if there exists an orientation preserving homeomorphism A of
5% onte 5% such that ¢; = Ady. (We remark that by a result of Fisher [5] & can
he rezlized by an ambient isotopy.) The following follews from (1.4} and {3.2).
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£3.3) Any two flat embeddings of a planar graph are amblent Isotopic,
{3.4) The graphs Ky and K33 have exactly two non-ambient isotopic fat
srbeddings.

Sketeh of proof. Let G be K33 or K, let € be an edge of &, and let H be Gle.
Notice that H is planar. From{1.3}it fAollows that if ¢ is 2 fat embedding of G,
then there is an embedded 2-sphere & C 5% with ¢{G)N T = ¢{F). If ¢, and
g are dal embeddings of &, we may assume (by replacing és by an ambient
isotopic embedding) that this 2~sphere ¥ is the same for both ¢; and ¢y. Now
@y is ambient isotopic bo ¢ if and only if ¢ile) and dole) belong to the sams
component of §7 — T, O
As a curiosity we deduce frem (3.1}, {3.3) and (3.4) that a graph has a unique
flat embedding if and only if it is planar,

Cur next objective is to determine the relation between different flat em-
beddings of a given graph. We denote by FflX the restriction of & mapping f
to aset X,

£3.8} Let &1, ¢2 be two flat embeddings of a graph G that are not ambient
isotopic. Then there exists & subgraph H of & isomorphic to & subdivision of
Ky or K3z for which ¢1[H and ¢31H are not ambient isotopic.

A question arises if there is any analogue of (3.5) when the embeddings are not
necessarily flat. The following follows immediately from {2.4).

£3.6) Let ¢y, ¢y be two embeddings of a graph & such that they are not
ambient isotopic and exacily one of them is dat. Then G has a coforest minor
¥ such that the embeddings of ¥ induced by ¢ and ¢y are not ambient isotopic,
We do not know i (3.5) remains true when none of ¢4, ¢2 is flal.

We denote the veriex-set and edge-set of a graph G by V{(G) and E{G)
respectively. Let & be a graph and let B, H» be subgraphs of @ isomorphic to
subdivisions of Kj or K3 3. We say that H; and H; are 1-adjacent if there exist
1€ 41,2} and & path P in G such that P has only its endpoints in common
with H; and such that Hy_; is a subgrapk of the graph cobtained from H; by
agding P. We say that H; and H; are 2-adjacent if there are seven vertices
3, Ug, .., 4y of G, and thirteen paths Ly of G (1 <1< 4and 5 <7< 7, or
i= 3 and j = 4}, such that

{i} each path L;; has ends wuy, 1y,

{ii} the paths L;; are mutually vertex-disioint except for their ends,
{iii} i, is the union of Ly; for 1= 2, 3,4 and = §,8,7, and
{iv} Hy is the unien of Ly; for i = 1,3, 4 and j = 5,6,7.

{Notice that if H; and H; are 2-adjacent, then they are both iscmorphic to
subdivisions of K33, and that Lss is used in neither H; nor Hj.) We denote
by K(@) the simple graph with vertex—set all subgraphs of & isomorphic to
subdivisions of Kg or K3z in which two distinct vertices are adjacent if they
are either l1-adjacent or 2-adjacent. The following is easy to see, using (3.4},
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(2.7Y Let ¢y, ¢; be two Hab embeddings of & graph G, and let H, H' be two
adiacent vertices of K{G). I ¢1|H is ambient isolopic to ¢s|H, then ¢:|H' is

ambient isotopic to ¢5[H'.
“We need the following purely graph-theoretic lemma.
{3.8) If G is a 4—connected graph, then K{G) is connecied.

We prove {3.8) in [12] by proving a stronger result, a necessary and sufficient
condition for H, H' ¢ V{(K{G}} to belong to the same component of X{G} in
an arbitrary graph &. The advantage of this approach is thai it permits an
inductive proof using the technigues of deleting and contracting edges.

If ¢ is an embedding of & graph @ in §° we denote by —¢ the embedding
of & obtained by composing ¢ with the antipodal map. The following is our

unigueness theorem.

{3.8} Let & be a 4—connected graph and let ¢y, ¢3 be two fat embeddings of
3. Then ¢, is ambient isotopic to either ¢y or —gs.

Proof. If G is planar then ¢ is ambient isotopic to ¢p by (3.3). Otherwise
there exists, by {3.1), a subgraph ¥ of & isomorphic to & subdivision of K5 or
K3 3. By replacing ¢; by —¢s we may assume by (3.4} that ¢.]H is ambient
isotapic to ¢z |H. From {3.7) and (3.8} we deduce that ¢:]H’ is ambient isotopic
to ¢ H' for every H' € V{K{G)}). By (3.5) ¢ and ¢y are ambient isofople, as

desired. 0

Actually, the 4~connectedness is not necessary for (3.8}, It turns cut that
what is necessary and sufficiens for the conclusion of (3.8} g, roughly, that no
two subgraphs isomorphic io subdivisions of K5 or Haz are “separated” by a

separation of order at most 3. Let us call such graphs Kuratowski 4—<onnected,

We now state & generalization of {3.9). Let ¢ be & flat embedding of a
graph G, and let & C S° be a surface homeomorphic to 5% meeting ¢(G) in
a set A containing at most three points. In one of the open balls into which
T divides §%, say B, choose an open disk D with boundary a simple closs
curve 8D such that 4 C 8D C . Let ¢ be an embedding obtained from ¢
by taking a reflection of ¢ through I in B, and leaving ¢ unchanged in & — B,
We say that ¢’ is obiained from @ by a S—switch. The following analog of (3.2}
generalizes {3.8).

{3.10) Let ¢1, by be two fat embeddings of a graph G in S8 Then ¢ can be
ohtained from ¢y by a series of 3—swiiches.

4. THE PETERSEN FAMILY

Let G be a graph and let v be a vertex of & of valency 3 with distinet
neighbors. Let H be obtained from & by deleting v and adding an edge belween
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every pair of neighbors of v. We say that ¥ was obtained from & by & Y A-
exchange and that G was obiained from H by a AV-exchange. We say that
twe graphs are ¥ A-equivalent if one can be obtained from a graph isomorphic
to the other by & sequence of the following operations and their inverses:

{i) Deleting a vertex of valency < 1

{i1) suppressing a vertex of valency 2 (that is, contracting an edge incident to

ity

{ii] deleting a parallel edge or a loop,
{iv) ¥V A-exchange.

{4.1} I G H are ¥ A-equivalent, then G has a flat embedding if and only if
H does.

It follows from (4.1} and (1.2} that if & graph is ¥ A~equivalent to & nearly—
planar graph, then it admits a flat embedding. The converse is false, because
Kz 5 minus & perfect malching is a counterexample.

The Petersen family is the set of all graphs that can be obiained from
K¢ by doing ¥ A~ and AY -exchanges. There are {up to isomerphism) exactly
seven such graphs, one of which is the Petersen graph. The Petersen family is
depicted in Figure 1. The following is cur main theorem.

(4.2} For a graph G, the following conditions are equivalent.
{i} G has a flat embedding,
{ii} & has a linkless embedding,
(iii} G has no minor isomorphic to a member of the Petersen family.

Here {1} = (i1} is trivial. Sachs {16} bas in fact shown that no membaer of
the Petersen family hes a linkless embedding, from which (u) = (iii} follows

because the property of having & %mkless embedding is closed under taking
minors. (Sachs stated his result in & weaker form, but the proof is adenuate.)
The hard part is that (i) = (i), whick we now briefly skeich.

Sketch of the proof that in {4.2), (ili} = {i). Suppose that & iz & minor—
minimal graph with no flat embedding. It can be shown that @ is “basically
G-counected”, which is a certain weaker form of S—connectivity (see the next
section for & precise definitien}. From (4.1) we may assume that & has no
irianples. Suppose that there are edges e, f of G and an end v of ¢ not adjacent
{o either end of f such that G\v, G\e/f, &/e/f are all Kuratowski 4—connected.
Since & is mipor-minimal with no flat embedding, there are flat embeddings
$1, G2, P of Gle, G/e, G/ f, respectively. By (3.9}, since ¢3\e and ¢,/ § are both
flat embeddings of the Kuratowski 4—connected graph Gle/f, we may assume
that ¢s\e ~ ¢1/f, and similarly that ¢3/e = ¢2/f. (Here and later o means
“ambient isoiopic to.”) From the fizst equation there is a I-edge uncontraction
of ¢3\e which yields an embedding ambient isotopic to ¢, and similarly there
is a l-edge uncontraction of ¢z/e yielding ¢;. These two uncontractions can
be viewed as “local” operations at a vertex commoen to ¢z\e and ¢a/e, and it
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Figure It The Petersen Family

can be argued {the details are quite complicated, see [14]) that they are the
“same” uncontraction operation. Lei ¢ be obiained from ¢z by performing this
uncontraciion; then ¢\e = ¢y and @/e =~ ¢;. Since ¢; and ¢ are fat, so is
¢ by (2.3}, a contradiction since G has no flat embedding. Thus no two such
edges e, f exish. Bui now a purely praph-thecretic argument [13] (using the

non-existence of such edges e, f, the high connectivity of & and that G is not
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2

neariy-planar) implies that G has a minor in the Petersen family.

There have been a number of other attempts {10, 18, 2] at proving (i) =
{1} and {iil} = (ii}. However, none of them is correct. The question whether
{iii) = (i} was first raised by Sachs [18], and that (i) and (i) are equivalent was
conjectured by Bdhme 1]

We mention the following corollary, which is vaguely related to the so-
called “strong embedding conjecture.” Let ¢ be an embedding of & graph @ in
a surface {—compact Z-manifold without boundary} £. We say that ¢ is k-
representative i every non-null-homotopic closed curve in ¥ meets P{ G at least
E times. The sirong embedding conjecture states that every 2—connecied graph
has a Z-representative embedding in some surface. It is also possible that every
J—connected graph has such an embedding in a nonerientable surface. From
{4.2) we deduce the following.

(4.3) If a graph G admils a 3-representative embedding into some nonori-
entable surface, then & has & minor isomorphic to & member of the Petersen
farnily other than K., (K44 minus an edge).

roof. Let ¢ be a 3-representative embedding of @ in & noncrientable surface
%. By [15, Proposition 7.3] we may assume (by taking a minor of G) that &
is 3—connected. We first show that G has a miner isemoerphic to a2 member
of the Petersen family, By (4.2} it suffices o show that & has no flat embed-
ding. Suppose for a contradiction that G has a flat embedding & into $°. Let
€, Oy, ..., Oy be the collection of face-boundaries in the embedding ¥; since

Gis 3ﬁconnected and ¢ is 3-representative, O, O, £, are cirenite and eat-
isfy the hypothesis of {1.3). Let I}, P;, ..., D, be the disks as in {1.3). Then

PEYU D UD .U Dn is homeomorpklc to ¥, a coniradiction because %
has no embedding in $%.

Thus & has a minor isomorphic to & member of the Petersen family, and
so we may assume that it has & minor isomorphic to K, 4 and to no other
member of the Petersen family. Now it is easy fo show, using the splitter
theorem [26] of the second author, thet & is isomerphic to K. But K hag
no 3-representative embedding in any nonorientable surface, and the theorem

follows. i

Conversely, every member of the Petersen family except K[, admits & 3-
*
representative embedding in the projective plane,

5. REMARKS
It would be nice {0 have a structural description of all linklessly embeddable
graphs. Let us say that a graph & has a hamburger structure if either [V(Q)] <
4 or there are vertices vy, vg,...,vs of & and three subgraphs G, G5, Gz of G
such that
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(i) G1 UG UG =G,
{if}] V{G)nV{G;) = {vy,v2,...,ws} for i # j, and
{11i} each Gy can be embedded in a closed disk with vertices vy, vs,..., 95 {in
this order} on the boundary.

It is not difficult to see that if & has 2 hamburger structure, then it has & flag
embedding. We say that a graph & is basically S—connected if & is simple,
3-connected, and cannct be expressed ag a unien of two subgraphs & and Gy,
where B{G{) N F{G;} = 8, and either

6) IV(G1) N V(Ga)l = 3 and |E(GL)l, 1B(Ga) > 4, or

(i) [V(G1) A V(Ga)] = 4 and [B(GO], [F(Ga)i > 7.

{5.1} Conjecture. Let & be a basically 5—connected, triangle—frec linklessly
embeddable graph. Then either there are two vertices uw,v of G such that
G\ {u, v} is planer, or else @ has a hamburger structure,

From (4.1) we see that the requirement that G be triangle—free is not restrictive.
One can alsc modify the definition of “hamburger structure” so thai (5.1} could
be true for all basically 8—connected linklessly embeddable graphs. The point
of (6.1} is that if G\{u,v} is planar then there is a simple polynomial-time
algorithm to test if & has a fat embedding. The algorithm is based on a study
of hometopy of paths joining the neighbors of w and © In G\{u, v}

A second relevant conjecture is the following, due to Jorgensea [7].

{5.2} Conjecture. Let & be z 6—connected graph with ne miner isomorphic
to Ks. Then G is nearly—planar,

This was moli | er states
that every loopless graph with no minor isomorphic to K¢ is 5~colorable. Mader
i8] showed thal every minor-minimal counterexample G is §—connected, in which
case (5.2} and the Four Color Theorem would imply that & is 5-colorable, a
contradiction. However, we believe that we have now obisined a proof of this
‘case of Hadwiger's conjecture, without proving (5.2). We do not even know if
(5.2} holds for linklessly embeddable graphs.

Cur third comjeciure relates linklessly embeddable graphs and a graph
parameter (G} introduced by Colin de Verdigre in [3]. We refer the reader
to that paper for a definition of w{G) {an Englisk translation appears in this
volume), which is in terms of the multiplicities of the second largest eigenvalues
of certain matrices associated with G.

£5.3) Conjecture. A graph G has a flat embedding if and only if 4{G) < ¢

The “if” part of (5.3} follows from cur main result, and so the problem is zbout
the converse.

Finally, let us mention two algorithmic aspects of flat embeddings. In {19
Scharlermann and Thompson deseribe an algorithm to test if & given embedding
is spherical. Using their algorithm, {1.4} and {%.4}, we can test if a given
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embedding is flat, by testing the flatness of all coforest minors. At the moment
there is no known polynomial-time algorithm to test if an embedding of & given
coforest is flat, because it includes testing if a given knot is trivial. On the other
hard, we can test if & given graph G has a flat embedding in time CUV{G)E).

This is done by testing the absence of minors isomorphic to members of the
Petersen family, using (4.2) and the algorithm [11] of the first two authors.
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