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Every planar map of connected countries can be colored using four colors in such a way that

countries with a common boundary segment (not just a point) receive different colors. It

is amazing that such a simply stated result resisted proof for one and a quarter centuries,

and even today it is not yet fully understood. In this article I concentrate on recent

developments: equivalent formulations, a new proof, and progress on some generalizations.

BRIEF HISTORY

The Four Color Problem dates back to 1852 when Francis Guthrie, while trying to color

the map of the counties of England, noticed that four colors sufficed. He asked his brother

Frederick if it was true that any map can be colored using four colors in such a way that

adjacent regions (i.e., those sharing a common boundary segment, not just a point) receive

different colors. Frederick Guthrie then communicated the conjecture to DeMorgan. The

first printed reference is by Cayley in 1878.

A year later the first “proof” by Kempe appeared; its incorrectness was pointed out

by Heawood eleven years later. Another failed proof was published by Tait in 1880; a gap

in the argument was pointed out by Petersen in 1891. Both failed proofs did have some

value, though. Kempe proved the five-color theorem (Theorem 2 below) and discovered

what became known as Kempe chains, and Tait found an equivalent formulation of the

Four Color Theorem in terms of edge 3-coloring, stated here as Theorem 3.

The next major contribution came from G. D. Birkhoff in 1913, whose work allowed

Franklin to prove in 1922 that the four color conjecture is true for maps with at most 25

regions. The same method was used by other mathematicians to make progress on the

four color problem. Important here is the work by Heesch who developed the two main

ingredients needed for the ultimate proof – “reducibility” and “discharging”. While the

concept of reducibility was studied by other researchers as well, the idea of discharging,

crucial for the unavoidability part of the proof, is due to Heesch, and he also conjectured

that a suitable development of this method would solve the Four Color Problem. This was

confirmed by Appel and Haken (abbreviated A&H), when they published their proof of the

Four Color Theorem in two 1977 papers, the second one joint with Koch. An expanded

version of the proof was later reprinted in [1].
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Let me state the result precisely. Rather than trying to define maps, countries, and

their boundaries, it is easier to restate Guthrie’s 1852 conjecture using planar duality. For

each country we select a capital (an arbitrary point inside that country), and join the

capitals of every pair of neighboring countries. Thus we arrive at the notion of a plane

graph, which is formally defined as follows.

A graph G consists of a finite set V (G), the set of vertices of G, a finite set E(G), the

set of edges of G, and an incidence relation between vertices and edges such that every

edge is incident with two distinct vertices, called its ends. (Thus I permit parallel edges,

but do not allow edges that are loops.) A plane graph is a graph G such that V (G) is a

subset of the plane, each edge e of G with ends u and v is a polygonal arc in the plane with

end-points u and v and otherwise disjoint from V (G), and every two distinct edges are

disjoint except possibly for their ends. A region of G is an arcwise connected component of

the complement of G. A graph is planar if it is isomorphic to a plane graph. (Equivalently,

one can replace “polygonal” in the above definition by “continuous image of [0, 1]” or, by

Fáry’s theorem, by “straight line segment,” and the class of planar graphs remains the

same.) For an integer k, a k-coloring of a graph G is a mapping φ : V (G) → {1, . . . , k}

such that φ(u) 6= φ(v) for every edge of G with ends u and v. An example of a plane

graph with a 4-coloring is given in the left half of Figure 1. The Four Color Theorem

(abbreviated 4CT) now can be stated as follows.

THEOREM 1. Every plane graph has a 4-coloring.

While Theorem 1 presented a major challenge for several generations of mathemati-

cians, the corresponding statement for five colors is fairly easy to see. Let us state and

prove that result now.

THEOREM 2. Every plane graph has a 5-coloring.

Proof. Let G be a plane graph, and let R be the number of regions of G. We proceed

by induction on |V (G)|. We may assume that G is connected, has no parallel edges, and

has at least three vertices. By Euler’s formula |V (G)|+R = |E(G)|+ 2. Since every edge

is incident with at most two regions, and the boundary of every region has length at least

three, we have 2|E(G)| ≥ 3R. Thus |E(G)| ≤ 3|V (G)| − 6. The degree of a vertex is the
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Figure 1. A 4-coloring and an edge 3-coloring.

number of edges incident with it. Since the sum of the degrees of all vertices of a graph

equals twice the number of edges, we see that G has a vertex v of degree at most five.

If v has degree at most four we consider the graph G\v obtained from G by deleting

v (and all edges incident with v). The graph G\v has a 5-coloring by the induction

hypothesis, and, since v is adjacent to at most four vertices, this 5-coloring may be extended

to a 5-coloring of G. Thus we may assume that v has degree five. I claim that J , the

subgraph of G induced by the neighbors of v, has two distinct vertices that are not adjacent

to each other. Indeed, otherwise J has
(

5
2

)

= 10 edges, and yet |E(J)| ≤ 3|V (J)| − 6 = 9

by the inequality of the previous paragraph. Thus there exist two distinct neighbors v1

and v2 of v that are not adjacent to each other in J , and hence in G. Let H be the

graph obtained from G\v by identifying v1 and v2; it is clear that H is a graph (it has no

loops), and that it may be regarded as a plane graph. By the induction hypothesis the

graph H has a 5-coloring. This 5-coloring gives rise to a 5-coloring φ of G\v such that

φ(v1) = φ(v2). Thus the neighbors of v are colored using at most four colors, and hence φ

can be extended to a 5-coloring of G, as desired.

For future reference, it will be useful to sketch another proof of Theorem 2. The initial
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part proceeds in the same manner, until we reach the one and only nontrivial step, namely

when we have a vertex v of degree five, and a 5-coloring φ of G\v giving the neighbors

of v distinct colors. Let the neighbors of v be v1, v2, . . . , v5, listed in the order in which

they appear around v; we may assume that φ(vi) = i. Let J13 be the subgraph of G\v

induced by vertices u with φ(u) ∈ {1, 3}. Let φ′ be the 5-coloring of G\v obtained from

φ by swapping the colors 1 and 3 on the component of J13 containing v1. If v3 does not

belong to this component, then φ′ can be extended to a coloring of G by setting φ′(v) = 1.

We may therefore assume that v3 belongs to said component, and hence there exists a path

P13 in G\v with ends v1 and v3 such that φ(u) ∈ {1, 3} for every vertex u of P13. Now let

J24 be defined analogously, and by arguing in the same manner we conclude that we may

assume that there exists a path P24 in G\v with ends v2 and v4 such that φ(u) ∈ {2, 4} for

every vertex u of P24. Thus P13 and P24 are vertex-disjoint, contrary to the Jordan curve

theorem.

EQUIVALENT FORMULATIONS

Another attractive feature of the 4CT, apart from the simplicity of its formulation, is that

it has many equivalent formulations, using the languages of several different branches of

mathematics. Indeed, in a 1993 article Kauffman and Saleur write: “While it has some-

times been said that the the four color problem is an isolated problem in mathematics,

we have found that just the opposite is the case. The four color problem and the gener-

alization discussed here is central to the intersection of algebra, topology and statistical

mechanics.”

Saaty [10] presents 29 equivalent formulations of the 4CT. In this article, let me repeat

the most classical reformulation, and then mention three new ones. A graph is cubic if

every vertex has degree three; that is, is incident with precisely three edges. An edge

3-coloring of a graph G is a mapping ψ : E(G) → {1, 2, 3} such that ψ(e) 6= ψ(f) for every

two edges e and f of G that have a common end. Examples of a cubic graph and an edge

3-coloring are given in the right half of Figure 1. A cut-edge of a graph G is an edge e such

that the graph G\e obtained from G by deleting e has more connected components than
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G. It is easy to see that if a cubic graph has an edge 3-coloring, then it has no cut-edge.

Tait (see also [3] or [4]) showed in 1880 that the 4CT is equivalent to the following.

THEOREM 3. Every cubic plane graph with no cut-edge has an edge 3-coloring.

The equivalence of Theorems 1 and 3 is not hard to see, and can be found in most

texts on Graph Theory. To illustrate where the equivalence comes from, let us see that

Theorem 1 implies Theorem 3. Let G be a cubic plane graph with no cut-edge; we may

assume that G is connected. The 4CT implies that the regions of G can be colored using

four colors in such a way that the two regions incident with the same edge receive different

colors (those two regions are distinct, because G has no cut-edge). Let us use the colors

(0, 0), (1, 0), (0, 1), and (1, 1) instead of 1, 2, 3, 4. Given such a 4-coloring, give an edge of

G the color that is the sum of the colors of the two regions incident with it, the sum taken

in Z2 ×Z2. Since the two regions incident with an edge are distinct, only the colors (1, 0),

(0, 1), and (1, 1) will be used to color the edges of G, giving rise to an edge 3-coloring of

G, as desired.

Let me now describe three striking reformulations of the 4CT. The first is similar but

deeper than a result found by Whitney and discussed in [10]. Let × denote the vector

cross product in R3. The vector cross product is not associative, and hence the expression

v1 × v2 × · · · × vk

is not well-defined, unless k ≤ 2. In order to make the expression well-defined, one needs

to insert parentheses to indicate the order of evaluation. By an association we mean an

expression obtained by inserting k− 2 pairs of parentheses so that the order of evaluation

is determined. Thus

(v1 × v2) × (v3 × v4) and ((v1 × v2) × v3) × v4

are two examples of associations. One can ask whether given two associations of v1 × v2 ×

· · ·×vk there exists some choice of vectors such that the evaluations of the two associations

are equal. This is easy to do by choosing v1 = v2 = · · · = vk. But how about making the

two evaluations equal and nonzero? Kauffman [5] has shown the following.
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THEOREM 4. Let i, j,k be the usual unit vector basis of R3. If two associations of

v1 × v2 × . . .× vk are given, there exists an assignment of i, j,k to v1, v2, . . . , vk such that

the evaluations of the two associations are equal and nonzero.

At this point interested readers might try to prove Theorem 4 before reading further.

After all, it is only a statement about the vector cross product in a 3-dimensional space,

and so it cannot be too hard. Or can it? Kauffman [5] has also shown:

THEOREM 5. Theorem 4 is equivalent to the Four Color Theorem.

Let me clarify that Kauffman proves Theorem 4 by reducing it to the Four Color Theorem,

and so despite Theorem 5 he did not obtain a new proof of the 4CT.

Where does Theorem 5 come from? To understand it we should think of an association

as a rooted tree, in the natural sense. Given two associations A1 and A2 of v1×v2×· · ·×vk

let us grow the corresponding trees T1 and T2 vertically in opposite directions, as in the

left half of Figure 2. Let us join the roots of T1 and T2 by an edge, identify the leaves

corresponding to the same variable, and suppress the resulting vertices of degree two,

forming a cubic plane graph H. This process is illustrated in the right half of Figure 2. It

is easy to see that H has no cut-edge, and hence has an edge 3-coloring by the 4CT. Let

us use the colors i, j,k instead of 1, 2, 3. Noticing that each variable vi corresponds to an

edge of H we see that this edge 3-coloring gives an assignment of i, j,k to the variables

v1, v2, . . . , vk, and it follows from the construction that for this assignment the absolute

values of the evaluations of A1 and A2 are equal to the color assigned to the edge of H that

joins the roots of T1 and T2. Thus we have shown that the 4CT gives an assignment such

that the corresponding evaluations are nonzero, and either they are equal, or one equals

the negative of the other. It can in fact be shown that the evaluations are indeed equal,

but we shall not prove that here.

This explains why the 4CT implies Theorem 4. To prove the converse one must show

that it suffices to prove Theorem 3 for cubic graphs H that arise in the above manner. That

follows from a deep theorem of Whitney on hamiltonian circuits in planar triangulations.

For the next reformulation let L denote the Lie algebra sl(N); that is, the vector

space of all real N × N matrices with trace zero and with the product [A,B] defined
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v1 × v2 × v3 × v4

Figure 2.

by [A,B] = AB − BA. Let {Ai} be a vector space basis of L. The metric tensor tij

is defined by tij = tr(AiAj), where tr denotes the trace of a matrix. Let tij denote

the inverse of the metric tensor, and let fijk be the structure constants of L, defined by

fijk = tr(Ai[Aj, Ak]). Now let G be a cubic graph, and let us choose, for every vertex

v ∈ V (G), a cyclic permutation of the edges of G incident with v. Our objective is to

define an invariant WL(G). To this end, let us break every edge of G into two half-edges,

and label all the half-edges by indices from {1, 2, . . . , dim L}. With each such labelling λ

we associate the product

π(λ) =
∏

v∈V (G)

fv

∏

e∈E(G)

te,

where te = tij if the two half-edges of e have labels i and j (notice that tij = tji), and

fv = fijk if the three half-edges incident with v have labels i, j, k, and occur around v in

the cyclic order listed (notice that fijk = fjki = fkij). Finally, we define WL(G) as the

absolute value of the sum of π(λ), taken over all labellings λ of the half-edges of G by

elements of {1, 2, . . . , dim L}. It follows that WL(G) does not depend on the choice of the

cyclic permutations. It can also be shown that WL(G) does not depend on the choice of

basis, but for our purposes it suffices to stick to one fixed basis. Further, it can be shown

that WL(G) is a polynomial in N of degree at most k = 1
2 |V (G)|+2, and so we can define

W
top
L (G) to be the coefficient of Nk in WL(G). The next result, due to Bar-Natan [2], is
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best introduced by a quote from his paper: “For us who grew up thinking that all there is

to learn about sl(N) is already in sl(2), this is not a big surprise:”

THEOREM 6. For a connected cubic graph G, Wsl(2)(G) = 0 implies W
top

sl(N)(G) = 0.

However, the following theorem of Bar-Natan, is surprising, regardless of what one grew

up thinking about the relationship of sl(2) and sl(N).

THEOREM 7. Theorem 6 is equivalent to the Four Color Theorem.

Similarly as Theorem 4, Theorem 6 is deduced from the Four Color Theorem, and hence

Theorem 7 does not yield a new proof of the 4CT.

There is an easy hint as to why Theorem 7 holds. Penrose has shown that Wsl(2)(G) is

a non-zero constant multiple of the number of edge 3-colorings of G. Bar-Natan has shown

that if G is a connected cubic graph, then W top

sl(N)(G) is 0 if G has a cut-edge, and is equal

to the number of embeddings of G in the sphere otherwise. The two results combined with

Theorem 3 immediately establish Theorems 6 and 7. The details may be found in [2].

The last reformulation, in terms of divisibility, is due to Matiyasevich [6].

THEOREM 8. There exist linear functions Ak, Bk, Ck and Dk (k = 1, 2, . . . , 986) of 21

variables such that the Four Color Theorem is equivalent to the statement that for every

two positive integers n,m there exist nonnegative integers c1, c2, . . . , c20 such that

986
∏

k=1

(

Ak(m, c1, c2, . . . , c20) + 7nBk(m, c1, c2, . . . , c20)

Ck(m, c1, c2, . . . , c20) + 7nDk(m, c1, c2, . . . , c20)

)

is not divisible by 7.

In fact, Matiyasevich found the functions Ak, Bk, Ck and Dk explicitly, and he conjectures

that a more general statement holds.

Let us try to understand where this theorem comes from. Let N denote the set of

nonnegative integers. For a positive integer n let Sn denote the infinite graph with vertex-

set N in which vertices i and j are adjacent if |i − j| = 1 or |i − j| = n. A discrete map

is a pair (n, µ), where n ∈ N, and µ : N → N is a mapping such that µ(i) = 0 for all but

finitely many i ∈ N. A discrete map (n, µ) gives rise to a graph as follows. Let H ′ be the

subgraph of Sn induced by all vertices i with µ(i) 6= 0, and let H be obtained from H ′ by
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contracting all edges with ends i, j, where µ(i) = µ(j). Then H is indeed a graph (it is

loopless), and µ is a coloring of H. We say that two discrete maps (n, µ) and (n′, µ′) are

equivalent if

• n = n′,

• µ(i) = 0 if and only if µ′(i) = 0,

• µ(i) = µ(i+ 1) if and only if µ′(i) = µ′(i+ 1), and

• µ(i) = µ(i+ n) if and only if µ′(i) = µ′(i+ n).

It is not too difficult to show that every planar graph arises as the planar graph H above

for some discrete map, and hence the 4CT is equivalent to

THEOREM 9. For every discrete map (n, µ) there exists an equivalent discrete map

(n, λ) such that λ(i) ∈ {0, 1, 2, 3, 4} for all i ∈ N.

By Theorem 2 we can in the above theorem confine ourselves to discrete maps (n, µ)

such that µ(i) ∈ {0, 1, 2, 3, 4, 5} for all i ∈ N. Each such function µ can be encoded as

an integer m =
∑

∞

i=0 µ(i)7i. Thus the phrase “for every two integers n,m” in Theorem 8

plays the role of “for every plane graph.” Similarly, the function λ can be encoded as

an integer, but we prefer to encode it using the twenty integers c1, c2, . . . , c20 defined for

i = 0, 1, . . . , 4 and j = 1, 2, 3, 4 by

c4i+j =
∑

(7k : µ(k) = i+ 1, λ(k) = j).

Now there are conditions the integers c1, c2, . . . , c20 have to satisfy in order to represent a

valid discrete map (n, λ) as in Theorem 9, but each such condition can be expressed in the

form “7 does not divide
(

A+7nB
C+7nD

)

,” where A,B,C,D are linear functions ofm, c1, c2, . . . , c20.

The reader may find more details in [6].

AN OUTLINE

The work of Appel and Haken undoubtedly represents a major breakthrough in mathe-

matics, but, unfortunately, there remains some scepticism regarding the validity of their

proof. To illustrate the nature of those concerns, let me quote from a 1986 article of Appel
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and Haken themselves: “This leaves the reader to face 50 pages containing text and dia-

grams, 85 pages filled with almost 2500 additional diagrams, and 400 microfiche pages that

contain further diagrams and thousands of individual verifications of claims made in the

24 lemmas in the main sections of text. In addition, the reader is told that certain facts

have been verified with the use of about twelve hundred hours of computer time and would

be extremely time-consuming to verify by hand. The papers are somewhat intimidating

due to their style and length and few mathematicians have read them in any detail.”

A discussion of errors, their correction, and other potential problems may be found in

the above article, in [1], and in F. Bernhart’s review of [1]. For the purpose of this survey,

let me telescope the difficulties with the A&H proof into two points:

(1) Part of the proof uses a computer, and cannot be verified by hand, and

(2) even the part that is supposedly hand-checkable has not, as far as I know, been

independently verified in its entirety.

To my knowledge, the most comprehensive effort to verify the A&H proof was undertaken

by Schmidt. According to [1], during the one-year limitation imposed on his master’s

thesis, Schmidt was able to verify about 40% of part I of the A&H proof.

Neil Robertson, Daniel P. Sanders, Paul D. Seymour and I tried to verify the Appel-

Haken proof, but soon gave up, and decided that it would be more profitable to work out

our own proof. So we did and came up with the proof that is outlined below. We were not

able to eliminate reason (1), but we managed to make progress toward (2).

The basic idea of our proof is the same as Appel and Haken’s. We exhibit a set of 633

“configurations,” and prove each of them is “reducible”. This is a technical concept that

implies that no configuration with this property can “appear” in a minimal counterexam-

ple to the Four Color Theorem. It can also be used in an algorithm, for if a reducible

configuration appears in a sufficiently connected planar graph G, then one can construct

in constant time a smaller planar graph G′ such that any 4-coloring of G′ can be converted

to a 4-coloring of G in linear time.

Birkhoff showed in 1913 that every minimal counterexample to the Four Color Theo-

rem is an “internally 6-connected” triangulation. In the second part of the proof we prove

that at least one of our 633 configurations appears in every internally 6-connected planar
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triangulation (not necessarily a minimal counterexample to the 4CT). This is called prov-

ing unavoidability, and uses the “discharging method” first suggested by Heesch. Here our

method differs from that of Appel and Haken.

The main aspects of our proof are as follows. We confirm a conjecture of Heesch that in

proving unavoidability, a reducible configuration can be found in the second neighborhood

of an “overcharged” vertex; this is how we avoid “immersion” problems that were a major

source of complication for Appel and Haken. Our unavoidable set has size 633 as opposed to

the 1476 member set of Appel and Haken, our discharging method uses only 32 discharging

rules, instead of the 487 of Appel and Haken, and we obtain a quadratic algorithm to 4-

color planar graphs, an improvement over the quartic algorithm of Appel and Haken. Our

proof, including the computer part, has been independently verified, and the ideas have

been and are being used to prove more general results. Finally, the main steps of our proof

are easier to present, as I will attempt to demonstrate below.

Before I turn to a more detailed discussion of configurations, reducibility and dis-

charging, let me say a few words about the use of computers in our proof. The theoretical

part is completely described in [7], but it relies on two results that are stated as having

been proven by a computer. The rest of [7] consists of traditional (computer-free) mathe-

matical arguments. There is nothing extraordinary about the theoretical arguments, and

so the main burden of verification lies in those two computer proofs. How is one sup-

posed be convinced of their validity? There are basically two ways. The reader can either

write his or her own computer programs to verify those results (they are easily seen to

be finite problems), or he or she can download our programs along with their supporting

documentation, and verify that those programs do what we claim they do.

The reducibility part is easier to believe, because we are doing almost the same thing

as many authors before us (including Appel and Haken) have done, and so it is possible

to compare certain numerical invariants obtained during the computation to gain faith in

the results. This is not possible in the unavoidability part, because our approach to it is

new. To facilitate checking we have written this part of the computer proof in a formal

language, so that it will be machine-verifiable. Every line of the proof can be read and

checked by a human, and so can (at least theoretically) be the whole argument. However,
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the entire argument occupies about 13, 000 lines, and each line takes some thought to verify.

Therefore, verifying all of this without a computer would require an amount of persistence

and determination my coauthors and I do not possess. The computer data, programs and

documentation are available by anonymous ftp1 and can also be conveniently accessed on

the World-Wide Web2.

Two of my students independently verified the computer work. Tom Fowler verified

the reducibility part (and in fact extended it to obtain a more general result — see later),

and Christopher Carl Heckman wrote an independent version of the unavoidability part

using a different programming language. Bojan Mohar also informed us that his student

Gašper Fijavž wrote independent programs and was able to confirm both parts of the

computer proof. The computer verification can be carried out in a matter of several hours

on standard commercially available equipment.

I should mention that both our programs use only integer arithmetic, and so we need

not be concerned with round-off errors and similar dangers of floating point arithmetic.

However, an argument can be made that our “proof” is not a proof in the traditional sense,

because it contains steps that most likely can never be verified by humans. In particular,

we have not proven the correctness of the compiler we compiled our programs on, nor have

we proven the infallibility of the hardware we ran our programs on. These have to be

taken on faith, and are conceivably a source of error. However, from a practical point of

view, the chance of a computer error that appears consistently in exactly the same way

on all runs of our programs on all the compilers under all the operating systems that our

programs run on is infinitesimally small compared to the likelihood of a human error during

the same amount of case-checking. Apart from this hypothetical possibility of a computer

consistently giving an incorrect answer, the rest of our proof including the programs can

be checked in the same way as traditional mathematical proofs. My coauthors and I

concede, however, that verifying a computer program is much more difficult than checking

a mathematical proof of the same length.

1 ftp://ftp.math.gatech.edu/pub/users/thomas/four
2 http://www.math.gatech.edu/˜thomas/FC/ftpinfo.html
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CONFIGURATIONS

First, we need a result of Birkhoff about connectivity of minimal counterexamples. Let G

be a plane graph. A triangle is a region of G bounded by precisely three edges of G. A plane

graph G is a triangulation if every region of G (including the infinite region) is a triangle.

See Figure 3 for an example. A graph G is internally 6-connected if for every set X of at

most five vertices, either the graph G\X obtained from G by deleting X is connected, or

|X| = 5 and G\X has exactly two connected components, one of which consists of a single

vertex. Thus every vertex of an internally 6-connected graph has degree at least five. For

example, the triangulation in Figure 3 is internally 6-connected. Let me formally state the

result of Birkhoff mentioned earlier. A proof can be obtained by pushing the arguments

presented in the two proofs of Theorem 2.

THEOREM 10. Every minimal counterexample to the Four Color Theorem is an inter-

nally 6-connected triangulation.

Next we need to introduce the concept of a configuration, which is central to the rest

of the proof. Configurations are technical devices that permit us to capture the structure

of a small part of a larger triangulation. A graph G is an induced subgraph of a graph

T if G is a subgraph of T , and every edge of T with both ends in V (G) belongs to G. If

(G, γ) is a configuration, one should think of G as an induced subgraph of an internally

6-connected triangulation T , with γ(v) being the degree of v in T . This notion can be

traced back to Birkhoff’s 1913 paper, and was used in various forms by many researchers

since then. Here is the formal definition of the version that we use.

A near-triangulation is a nonnull connected plane graph with one region designated

as special such that every region, except possibly the special region, is a triangle. A

configuration K is a pair (G, γ), where G is a near-triangulation, and γ is a mapping from

V (G) to the integers with the following properties:

(i) for every vertex v of G, if v is not incident with the special region of G, then γ(v) equals

deg(v), the degree of v, and otherwise γ(v) > deg(v); and in either case γ(v) ≥ 5,

(ii) for every vertex v of G, G\v has at most two components, and if there are two, then

the degree of v in G is γ(v)− 2,
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Figure 3. A configuration appearing in an internally 6-connected triangulation.

(iii) K has ring-size at least 2, where the ring-size ofK is defined to be
∑

(γ(v)−deg(v)−1),

summed over all vertices v incident with the special region of G such that G\v is

connected.

The significance of condition (i) will become clearer from the definition of “appears” below;

conditions (ii) and (iii) are needed for the definition of the “free completion,” discussed in

the next section.

When drawing pictures of configurations one possibility is to draw the underlying

graph, and write the value of γ next to each vertex. There is a more convenient way,

introduced by Heesch. The special region is the unbounded region, and the shapes of

vertices indicate the value of γ(v) as follows: A solid black circle means γ(v) = 5, a dot

(or what appears in the picture as no symbol at all) means γ(v) = 6, a hollow circle means

γ(v) = 7, a hollow square means γ(v) = 8, a triangle means γ(v) = 9, and a pentagon
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means γ(v) = 10. In Figure 4, seventeen of our 633 reducible configurations are displayed

using the indicated convention. The whole set can be found in [7] and can be viewed

electronically3.

Figure 4. A set of configurations.

Isomorphism of configurations is defined in the natural way. Any configuration iso-

morphic to one of the 633 configurations exhibited in [7] is called a good configuration.

Let T be a triangulation. A configuration (G, γ) appears in T if G is an induced subgraph

of T , every region of G except possibly the special region is a region of T , and γ(v) equals

the degree of v in T for every vertex v of G. See Figure 3 for an example of a configuration

isomorphic to the first configuration in Figure 4 appearing in an internally 6-connected

triangulation. We prove the following two statements.

THEOREM 11. If T is a minimal counterexample to the Four Color Theorem, then no

good configuration appears in T .

THEOREM 12. For every internally 6-connected triangulation T , some good configu-

ration appears in T .

3 ftp://ftp.math.gatech.edu/pub/users/thomas/fcdir/unavoidable.ps.gz

16



For example, the good configuration in the upper left corner of Figure 4 appears in the

center of Figure 3.

From Theorems 10, 11 and 12 it follows that no minimal counterexample exists, and

so the 4CT is true. I will discuss the proofs of the latter two theorems in the next two

sections.

REDUCIBILITY

Reducibility is a technique for proving statements such as Theorem 11. Qualitatively it

can be described by saying that it is obtained by pushing to the limit the arguments used

in the two proofs of Theorem 2. It was developed from Kempe’s failed attempt at proving

the 4CT by Birkhoff, Bernhart, Heesch, Allaire, Swart, Appel and Haken, and others.

I will explain the idea of reducibility by giving an example; interested readers may

find the precise definition in [7]. Let us consider the first configuration in Figure 4, and

let us call it K = (G, γ). Suppose for a contradiction that K appears in a minimal

counterexample T to the 4CT. Given that γ(v) is equal to the degree in T of the vertex v

of G, we can deduce what T looks like in a small “neighborhood” of G. In fact, since T is

internally 6-connected by Theorem 10, it follows that the graph S pictured in Figure 5 is

isomorphic to a subgraph of T , and so we may assume that S is actually a subgraph of T .

Notice that G is a subgraph of S, that R = S\V (G) is a (simple) circuit with vertex-set

{v1, v2, . . . , v6}, and that the length of R is equal to the ring-size of K. We call S the free

completion of K.

(Here we were lucky — for larger configurations it does not follow that the free com-

pletion is a subgraph of T . However, the most that can happen, given that G is an induced

subgraph of T , is that for some distinct vertices of R the corresponding vertices of T are

equal. On the other hand, this does not matter for the forthcoming argument, and so for

the purpose of this article, let me ignore this possibility.)

Now let us consider T ′ = T\V (G). Let K be the set of all 4-colorings of R, and let

C′ ⊆ K be the set of all those 4-colorings of R that extend to a 4-coloring of T ′. Since T is a

minimal counterexample, T ′ has a 4-coloring, and hence C ′ 6= ∅. To obtain a contradiction
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Figure 5. The free completion S of K.

let me prove that C′ = ∅. Let C be the set of all 4-colorings of R that extend to a 4-

coloring of S. Notice that C can be computed from the knowledge of K. Since T is a

counterexample to the 4CT, C ′ ⊆ K− C (otherwise a 4-coloring of R that extends to both

S and T ′ extends to a 4-coloring of T ). We need a method that would allow us to show

that a 4-coloring φ ∈ K − C does not belong to C ′. As an example let us consider the

4-coloring φ of R defined by (φ(v1), φ(v2), . . . , φ(v6)) = (1, 2, 1, 3, 1, 2), where v1, v2, . . . , v6

are the vertices of R, numbered as in Figure 5. To simplify the notation I shall write

φ = 121312, and similarly for other colorings. Suppose for a contradiction that φ ∈ C ′,

and let κ be a 4-coloring of T ′ extending φ. Let T14 be the subgraph of T ′ induced by

the vertices v ∈ V (T ′) with κ(v) ∈ {1, 4}, and let L be the component of T14 containing

the vertex v1. Let κ′ be obtained from κ by exchanging colors 1 and 4 on vertices of L,

and let φ′ be the restriction of κ′ to R. Thus φ′ ∈ C′. If v3, v5 6∈ V (L), then φ′ = 421312,

and if v3 6∈ V (L), v5 ∈ V (L) then φ′ = 421342. In either case φ′ ∈ C (see Figure 6), a

contradiction. Thus v3 ∈ V (L), and hence there exists a path P in T ′ with ends v1 and v3

such that κ(v) ∈ {1, 4} for every v ∈ V (P ). Let T23 be defined analogously, and let J be

the component of T23 containing v2. Since V (J) ∩ V (P ) = ∅ we deduce from the Jordan

curve theorem that v4, v6 6∈ V (J). Let κ′′ be obtained from κ be exchanging colors 2 and
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3 on vertices of J , and let φ′′ be the restriction of κ′′ to R. Then φ′′ = 131312, and hence

φ′′ ∈ C (see Figure 6), and yet φ′′ ∈ C′, a contradiction. Thus φ 6∈ C ′, as required. The

arguments for other colorings in K−C proceed similarly. The order in which colorings are

handled is important here, because for some colorings it is necessary to use the previously

established fact that other colorings in K − C do not belong to C ′.

2 1

3

1 3

4

2 1

2 1

4

4

3

2 4

3 1

1 4 4 3

3

2 1

4 2 1 2 3

2

Figure 6. Three colorings of R that extend into S.

The above argument is called D-reducibility in the literature. Notice the way we used

that T is a minimal counterexample — we used it to deduce that T ′ has a 4-coloring. This

may seem wasteful, for rather than deleting G we could replace it by a smaller graph G′.

Doing so yields a more powerful method, called C-reducibility. In our proof of the 4CT we

use a special case of C-reducibility, where G′ is obtained from G by contracting at most

four edges. C-reducibility is dangerous in general, because it requires checking that the

new graph obtained by substituting G′ for G is loopless, which can be rather tedious. By

limiting ourselves to graphs obtained by contracting at most four edges we were able to

eliminate these difficulties.

D- and C-reducibility can be automated and carried out on a computer. In fact, they

must be carried out on a computer, because we need to test configurations with ring-size

as large as 14, in which case there are almost 200, 000 colorings to be checked. At the

present time there is little hope of doing this part of the proof by hand. Even writing

down the proof in a formal language as we did for the discharging part does not seem

practical, because of the length of the argument.
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DISCHARGING

Discharging is a clever and effective use of Euler’s formula, first suggested by Heesch, and

later used by Appel and Haken and many others since then. In fact, discharging has

become a standard tool in graph theory. In what follows I will refer to Figure 7, which

some readers may find overwhelming at the first sight. I recommend focusing attention on

the first row, and thinking of the rest as being of secondary importance. The first row has

a geometric interpretation, discussed below. Also, we will make use of Heesch’s notational

convention introduced two paragraphs prior to Theorem 11.

Let T be an internally 6-connected triangulation. Initially, every vertex v is assigned

a charge of 10(6 − deg(v)). It follows from Euler’s formula that the sum of the charges of

all vertices is 120; in particular, it is positive. We now redistribute the charges according

to the following rules. Whenever T has a subgraph isomorphic to one of the graphs in

Figure 7 satisfying the degree specifications (for a vertex v of one of those graphs with a

minus sign next to v this means that the degree of the corresponding vertex of T is at

most the value specified by the shape of v, and analogously for vertices with a plus sign

next to them; equality is required for vertices with no sign next to them) a charge of one

(two in case of the first graph) is to be sent along the edge marked with an arrow.

This procedure defines a new set of charges with the same total sum. For instance, if

T is the triangulation depicted in Figure 3, then only the rule corresponding to the first

graph in Figure 7 applies, and it causes a charge of two to be sent along each edge in either

direction. Hence the net effect of all the rules is zero, and so every vertex ends up with a

final charge of 10.

Since the total sum of the new charges is positive, there is a vertex v in T whose new

charge is positive. We show that a good configuration appears in the second neighborhood

of v (that is, the subgraph induced by vertices at distance at most two from v). If the degree

of v is at most six or at least twelve, then this can be seen fairly easily by a direct argument.

(See [7] for details; for this argument the configurations of Figure 4 suffice. In fact, when

v has degree at most six this follows immediately from the geometric interpretation of the

first row of Figure 7 given at the end of this section.) For the remaining cases, however,

the proofs are much more complicated. Since the amount of charge a vertex of T receives
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Figure 7. Discharging rules.

only depends on its second neighborhood (and not on the rest of T ), it suffices to examine

all possible second neighborhoods of vertices of degree 7, 8, 9, 10 and 11. It is easy to

see that this reduces to a finite problem. Strictly speaking, there are infinitely many
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such second neighborhoods, but for vertices of degree at least twelve the actual degree

affects neither the amount of charge nor the presence of reducible configurations. Thus all

possible second neighborhoods can be divided into finitely many classes, where for every

two second neighborhoods in the same class, the same good configurations appear and the

central vertex has the same charge. Therefore, it suffices to examine all these equivalence

classes. As mentioned earlier, this part of the proof has actually been written down in a

formal language.

The rules corresponding to the first row in Figure 7 were derived from an elegant

method of Mayer, and have the following geometric interpretation. Let v ∈ V (T ) have

degree five, and assume, as we may in the proof of Theorem 12, that no good configuration

appears in the second neighborhood of v. The vertex v is originally assigned a charge of

ten. The rules in the first row are designed to send this charge from v to vertices of degree

at least seven. Let e be an edge incident with v, let u be the other end of e, and let x

be a common neighbor of u and v. Since T is internally 6-connected, there are exactly

ten such pairs (e, x). For each such pair a charge of one will be sent away from v into a

suitable vertex, found as follows. If the degree of u is at least seven, the unit of charge

will be deposited into u. Otherwise, if x has degree at least seven, the unit of charge will

be deposited into x. Finally, if both u and x have degree at most six, let z1 = v, z2 = u,

z3, z4, . . . be the neighbors of x listed in the order in which they appear around x. Since

no good configuration appears in the second neighborhood of v, one of these vertices has

degree at least seven, as is easily seen. Thus we may take the smallest integer i ≥ 2 such

that zi has degree at least seven, and the unit of charge corresponding to (e, x) will be

deposited into zi.

While this redistribution of charges seems natural, unfortunately it is not true that

a reducible configuration appears in the second neighborhood of every vertex of positive

charge. Therefore, we had to introduce additional rules to make small changes to this

distribution to take care of second neighborhoods of vertices with positive charge that no

reducible configuration appeared in. The additional rules were obtained by trial and error;

there is a lot of flexibility in their choice, but they were not designed with any geometric

intuition behind them.
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BEYOND THE FOUR-COLOR THEOREM

The new proof of the 4CT gives hope that other more general conjectures that are known

to imply the 4CT could be settled by an appropriate adaptation of the same methods. Let

me start by discussing a result of my student Tom Fowler on unique colorability. A graph

G is uniquely 4-colorable if it has a 4-coloring, and every two 4-colorings differ only by

a permutation of colors. Here is a construction. Start with the complete graph on four

vertices. Given a plane graph G constructed thus far, pick a triangle in G, and add a new

vertex adjacent to all vertices incident with the triangle. It is easy to see that every graph

constructed in this fashion is uniquely 4-colorable. Fiorini and Wilson conjectured in 1977

that every uniquely 4-colorable plane graph on at least four vertices can be obtained this

way. Fowler in his Ph.D. thesis extended our proof of the 4CT to prove this conjecture.

More precisely, he has shown

THEOREM 13. Every internally 6-connected triangulation has at least two different

4-colorings.

By Theorem 10 this generalizes the Four Color Theorem, and it implies the Fiorini-Wilson

conjecture by a result of Goldwasser and Zhang, who have shown that a minimal counterex-

ample is internally 6-connected. (The proof of the latter is analogous to that of Theorem

10.)

While the 4CT becomes false very quickly once we leave the world of planar graphs,

Tutte noticed that Theorem 3 remains true for a reasonably large class of nonplanar graphs.

The smallest cubic graph with no cut-edge and no edge 3-coloring is the famous Petersen

graph depicted in Figure 8. We say that a graph G has an H minor if a graph isomorphic

to H can be obtained from a subgraph of G by contracting edges. Tutte conjectured the

following.

CONJECTURE 14. Every cubic graph with no cut-edge and no edge 3-coloring has a

Petersen minor.

Tutte’s conjecture implies the 4CT by Theorem 3 (because the Petersen graph is not

planar, and contraction preserves planarity), but it seems to be much stronger. However,

it now appears that there is a good chance that Tutte’s conjecture can be proven. Indeed,
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Figure 8. The Petersen graph.

Robertson, Seymour and I have reduced the problem to the following two classes of graphs.

We say that a graph G is apex if G\v is planar for some vertex v of G, and we say that a

graph is doublecross if it can be drawn in the plane with two crossings in such a way that

the two crossings belong to the same region (see Figure 9). Robertson, Seymour and I [9]

have shown

THEOREM 15. Let G be a counterexample to conjecture 14 with |V (G)| minimum.

Then G is apex or doublecross.

Figure 9. An apex and a doublecross graph.
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Thus, in order to prove Conjecture 14 it suffices to prove it for apex and doublecross

graphs, two classes of graphs that are “almost” planar. In fact, my recent work with

Sanders suggests that it might be possible to adapt our proof of the 4CT to show that

no apex graph is a counterexample to Tutte’s conjecture. There is an indication that the

doublecross case will be easier, but we cannot confirm that yet.

There is a way to generalize the 4CT along the lines of (vertex) 4-coloring. Hadwiger

conjectured the following.

CONJECTURE 16. For every positive integer t, if a graph has no Kt+1 minor, then it

has a t-coloring.

This is trivial for t ≤ 2, and for t = 3 it was shown by Hadwiger and Dirac (this case is also

reasonably easy). However, for every t ≥ 4, Hadwiger’s conjecture implies the 4CT. To see

this, take a plane graph G, and construct a graph H by adding t− 4 vertices adjacent to

each other and to every vertex of G. Then H has no Kt+1 minor (because no plane graph

has a K5 minor), and hence has a t-coloring by the assumed truth of Hadwiger’s conjecture.

In this t-coloring, vertices of G are colored using at most four colors, as required. Thus

there is a rather sharp increase in the level of difficulty of Hadwiger’s conjecture between

t = 3 and t = 4. On the other hand, Wagner has shown in 1937 that Hadwiger’s conjecture

for t = 4 is in fact equivalent to the 4CT. (Notice that this result preceded the proof of the

4CT by four decades, and, in fact, inspired Hadwiger’s conjecture.) Recently, Robertson,

Seymour and I were able to show that the next case is also equivalent to the 4CT [8]. More

precisely, we managed to prove (without using the 4CT)

THEOREM 17. Let G be a counterexample to Hadwiger’s conjecture for t = 5 with the

minimum number of vertices. Then G is apex.

By the 4CT every apex graph has a 5-coloring, and so Hadwiger’s conjecture for t = 5

follows. The cases t ≥ 6 are still open.
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