A graph H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges. An H minor is a minor isomorphic to H.
THEOREM (Tutte) Every 3-connected simple graph can be obtained from a wheel by repeatedly adding edges (between nonadjacent vertices) and splitting vertices.
THEOREM (Tutte) Every 3-connected simple graph can be obtained from a wheel by repeatedly adding edges (between nonadjacent vertices) and splitting vertices.
THEOREM (Tutte) Every 3-connected simple graph can be obtained from a wheel by repeatedly adding edges (between nonadjacent vertices) and splitting vertices.
THEOREM (Tutte) Every 3-connected simple graph can be obtained from a wheel by repeatedly adding edges (between nonadjacent vertices) and splitting vertices.

SEYMOUR’S SPLITTER THM Let $H \not= K_4$ and $G \not= \text{wheel}$ be simple 3-connected, $H \leq_m G$. Then G can be obtained from H by repeatedly adding edges (between nonadjacent vertices) and splitting vertices.
KURATOWSKI’S THEOREM. A graph is planar \iff it has no K_5 or $K_{3,3}$ minor.
KURATOWSKI’S THEOREM. A graph is planar ⇔ it has no K_5 or $K_{3,3}$ minor.

THEOREM (Hall) A graph has no $K_{3,3}$ minor ⇔ it can be obtained by means of 0-, 1-, and 2-sums from planar graphs and K_5.
KURATOWSKI’S THEOREM. A graph is planar \iff it has no K_5 or $K_{3,3}$ minor.

THEOREM (Hall) A graph has no $K_{3,3}$ minor \iff it can be obtained by means of 0-, 1-, and 2-sums from planar graphs and K_5.

\[\text{Diagram} \]
KURATOWSKI’S THEOREM. A graph is planar \iff it has no K_5 or $K_{3,3}$ minor.

THEOREM (Hall) A graph has no $K_{3,3}$ minor \iff it can be obtained by means of 0-, 1-, and 2-sums from planar graphs and K_5.
KURATOWSKI’S THEOREM. A graph is planar ⇔ it has no K_5 or $K_{3,3}$ minor.

THEOREM (Hall) A graph has no $K_{3,3}$ minor ⇔ it can be obtained by means of 0-, 1-, and 2-sums from planar graphs and K_5.

COROLLARY. A simple 3-connected graph G has no $K_{3,3}$ minor ⇔ G is planar or $G \cong K_5$.
KURATOWSKI’S THEOREM. A graph is planar ⇔ it has no K_5 or $K_{3,3}$ minor.

THEOREM (Hall) A graph has no $K_{3,3}$ minor ⇔ it can be obtained by means of 0-, 1-, and 2-sums from planar graphs and K_5.

COROLLARY. A simple 3-connected graph G has no $K_{3,3}$ minor ⇔ G is planar or $G \cong K_5$.

PROOF of ⇒. We may assume G is nonplanar. By Kuratowski’s theorem G has a K_5 minor. By Seymour’s theorem G can be obtained from K_5 as stated. Now $G \cong K_5$, for otherwise G has a $K_{3,3}$ minor.
THEOREM (Wagner) A graph has no K_5 minor \iff it can be obtained by means of 0-, 1-, 2-, and 3-sums from planar graphs and V_8.
A graph G is **internally 4-connected (I4C)** if it is simple, 3-connected, has at least five vertices and for every separation (A, B) of order 3, one of A, B has at most 3 edges.
A graph G is internally 4-connected (I4C) if it is simple, 3-connected, has at least five vertices and for every separation (A, B) of order 3, one of A, B has at most 3 edges.
A graph G is **internally 4-connected (I4C)** if it is simple, 3-connected, has at least five vertices and for every separation (A, B) of order 3, one of A, B has at most 3 edges.
A graph G is internally 4-connected (I4C) if it is simple, 3-connected, has at least five vertices and for every separation (A, B) of order 3, one of A, B has at most 3 edges.

THM (Johnson, RT) Except for eight well-defined families, an I4C graph G can be “built” from an I4C minor of itself similarly as in Seymour’s theorem. The intermediate graphs are allowed to have one “violation” of I4C, but the next graph in the sequence “repairs” this violation.
LADDERS
Violating vertex, edge, pair
Violating vertex, edge, pair
SPECIAL ADDITION
SPECIAL ADDITION

e

v
SPECIAL ADDITION

\[e \rightarrow v \]

SPECIAL SPLIT

\[e \rightarrow e \]
THM Johnson, RT If $H \leq_m G$, H is not $K_{3,3}, K_5$, cube or octahedron, G is not a ladder or biwheel, then \exists sequence $J_0 = H, J_1, \ldots, J_k = G$

- each J_i is I4C except possibly for one violating edge
- no edge is violating in J_i and J_{i+1}
- J_i is obtained from J_{i-1} by (special) addition or (special) split
THM Johnson, RT If $H \leq_m G$, H is not $K_{3,3}, K_5$, cube or octahedron, G is not a ladder or biwheel, then \exists sequence $J_0 = H, J_1, \ldots, J_k = G$

- each J_i is I4C except possibly for one violating edge
- no edge is violating in J_i and J_{i+1}
- J_i is obtained from J_{i-1} by (special) addition or (special) split
THM Johnson, RT If $H \leq_m G$, H is not $K_{3,3}, K_5$, cube or octahedron, G is not a ladder or biwheel, then \exists sequence $J_0 = H, J_1, \ldots, J_k = G$

- each J_i is I4C except possibly for one violating edge
- no edge is violating in J_i and J_{i+1}
- J_i is obtained from J_{i-1} by (special) addition or (special) split
THM Johnson, RT If $H \leq_m G$, H is not $K_{3,3}, K_5$, cube or octahedron, G is not a ladder or biwheel, then \exists sequence $J_0 = H, J_1, \ldots, J_k = G$

- each J_i is I4C except possibly for one violating edge
- no edge is violating in J_i and J_{i+1}
- J_i is obtained from J_{i-1} by (special) addition or (special) split

THM Johnson, RT The minimal nonplanar I4C graphs other than $K_{3,3}, K_5$ are: $K_6^=, \overline{C}_7, K_{3,3} + \text{deg 4 vertex}, V_8, \text{cube+diagonal}$.
Application to Negami’s conjecture.

A graph K is a cover of a graph H if there exists an onto mapping $p : V(K) \rightarrow V(H)$ such that for every $v \in V(K)$ the neighbors of v in K are mapped bijectively onto the neighbors of $p(v)$ in H.
Application to Negami’s conjecture.

A graph K is a cover of a graph H if there exists an onto mapping $p : V(K) \rightarrow V(H)$ such that for every $v \in V(K)$ the neighbors of v in K are mapped bijectively onto the neighbors of $p(v)$ in H.
Application to Negami’s conjecture.

A graph K is a cover of a graph H if there exists an onto mapping $p : V(K) \to V(H)$ such that for every $v \in V(K)$ the neighbors of v in K are mapped bijectively onto the neighbors of $p(v)$ in H.
Application to Negami’s conjecture.

A graph K is a cover of a graph H if there exists an onto mapping $p : V(K) \to V(H)$ such that for every $v \in V(K)$ the neighbors of v in K are mapped bijectively onto the neighbors of $p(v)$ in H.

NEGAMI’S CONJECTURE. A connected graph has a planar cover \iff it is projective planar.
Application to Negami’s conjecture.

A graph K is a cover of a graph H if there exists an onto mapping $p : V(K) \to V(H)$ such that for every $v \in V(K)$ the neighbors of v in K are mapped bijectively onto the neighbors of $p(v)$ in H.

NEGAMI’S CONJECTURE. A connected graph has a planar cover \iff it is projective planar.

THM (Hliněný, RT) Modulo obvious constructions, there are at most 16 counterexamples to Negami’s conjecture.
Application to Negami’s conjecture.

A graph K is a cover of a graph H if there exists an onto mapping $p : V(K) \to V(H)$ such that for every $v \in V(K)$ the neighbors of v in K are mapped bijectively onto the neighbors of $p(v)$ in H.

NEGAMI’S CONJECTURE. A connected graph has a planar cover \iff it is projective planar.

THM (Hliněný, RT) Modulo obvious constructions, there are at most 16 counterexamples to Negami’s conjecture.

REMARK. It suffices to show that $K_{1,2,2,2}$ has no planar cover.
Robertson’s Theorem

THM An I4C graph G has no V_8 minor \iff

1. G is planar, or
2. $G \setminus X$ is edgeless for some $X \subseteq V(G)$, $|X| \leq 4$, or
3. $G \setminus u \setminus v$ is a cycle for some $u, v \in V(G)$, or
4. $G \cong L(K_{3,3})$, or
5. $|V(G)| \leq 7$
ROBERTSON’S THEOREM

THM An I4C graph G has no V_8 minor \iff

(1) G is planar, or

(2) $G \setminus X$ is edgeless for some $X \subseteq V(G)$, $|X| \leq 4$, or

(3) $G \setminus u \setminus v$ is a cycle for some $u, v \in V(G)$, or

(4) $G \cong L(K_{3,3})$, or

(5) $|V(G)| \leq 7$

PROOF Let G be nonplanar, I4C, no V_8 minor. We know $G \geq_m K_6^=, \overline{C}_7, K_{3,3} + \text{deg 4 vertex}, V_8, \text{or cube+diag}$.
THEOREM An $I4C$ graph has no octahedron minor \iff

(1) G is a Möbius ladder, or

(2) G is isomorphic to a minor of Petersen,

The last graph has all possible triads with feet in the 5-element independent set.
A cubic graph is **cyclically 5-connected** \((C_5C)\) if it is simple, 3-connected, \(\not\equiv K_4\), and for every set \(F \subseteq E(G)\) of size at most 4, at most 1 component of \(G \setminus F\) has cycles.

Biladders
Cyclically 5-connected graphs
THEOREM (Robertson, Seymour, RT) Let G be a C5C cubic graph that is not a biladder, and let H be a C5C minor of G. Then G can be obtained from H by repeatedly applying the operations of

(i) adding a handle

(ii) adding a pentagon.
THEOREM (Robertson, Seymour, RT) A C5C cubic graph G has no Petersen minor if and only if it is

(i) apex ($G \setminus v$ planar for some v), or

(ii) doublecross (2 crossings on the same region), or

(iii) has a “hamburger structure”, or

(iv) has a “hose structure”.

Structure of graphs with no K_6 minor is not known.
Structure of graphs with no K_6 minor is not known.

THEOREM (Mader) If G has n vertices and no K_6-minor, then G has at most $4n - 10$ edges.
Structure of graphs with no K_6 minor is not known.

THEOREM (Mader) If G has n vertices and no K_6-minor, then G has at most $4n - 10$ edges.

JORGENSEN’S CONJECTURE Every 6-connected graph with no K_6-minor is apex (\equivplanar + one vertex).
EXTREMAL PROBLEMS
For small t:
No K_t minor \Rightarrow at most $(t - 2)n - \binom{t-1}{2}$ edges
For small t:

No K_t minor \Rightarrow at most $(t - 2)n - \binom{t-1}{2}$ edges

No K_2 minor \Rightarrow at most 0 edges
For small t:
No K_t minor \Rightarrow at most $(t - 2)n - \binom{t-1}{2}$ edges
No K_2 minor \Rightarrow at most 0 edges
No K_4 minor \Rightarrow at most $2n - 3$ edges
For small t:
No K_t minor \Rightarrow at most $(t - 2)n - \binom{t-1}{2}$ edges
No K_2 minor \Rightarrow at most 0 edges
No K_4 minor \Rightarrow at most $2n - 3$ edges
No K_5 minor \Rightarrow at most $3n - 6$ edges
For small t:
No K_t minor \Rightarrow at most $(t - 2)n - \binom{t-1}{2}$ edges
No K_2 minor \Rightarrow at most 0 edges
No K_4 minor \Rightarrow at most $2n - 3$ edges
No K_5 minor \Rightarrow at most $3n - 6$ edges
No K_6 minor \Rightarrow at most $4n - 10$ edges
For small t:

No K_t minor \Rightarrow at most $(t - 2)n - \binom{t-1}{2}$ edges

No K_2 minor \Rightarrow at most 0 edges

No K_4 minor \Rightarrow at most $2n - 3$ edges

No K_5 minor \Rightarrow at most $3n - 6$ edges

No K_6 minor \Rightarrow at most $4n - 10$ edges

No K_7 minor \Rightarrow at most $5n - 15$ edges
For small t:

No K_t minor \Rightarrow at most $(t - 2)n - \binom{t-1}{2}$ edges

No K_2 minor \Rightarrow at most 0 edges

No K_4 minor \Rightarrow at most $2n - 3$ edges

No K_5 minor \Rightarrow at most $3n - 6$ edges

No K_6 minor \Rightarrow at most $4n - 10$ edges

No K_7 minor \Rightarrow at most $5n - 15$ edges

No K_8 minor $\not\Rightarrow$ at most $6n - 21$ edges
For small t:
No K_t minor ⇒ at most $(t - 2)n - \binom{t-1}{2}$ edges
No K_2 minor ⇒ at most 0 edges
No K_4 minor ⇒ at most $2n - 3$ edges
No K_5 minor ⇒ at most $3n - 6$ edges
No K_6 minor ⇒ at most $4n - 10$ edges
No K_7 minor ⇒ at most $5n - 15$ edges
No K_8 minor ⇒ at most $6n - 21$ edges
No K_8 minor ⇒ at most $6n - 20$ edges
For small t:

No K_t minor \Rightarrow at most $(t - 2)n - \binom{t-1}{2}$ edges

No K_2 minor \Rightarrow at most 0 edges

No K_4 minor \Rightarrow at most $2n - 3$ edges

No K_5 minor \Rightarrow at most $3n - 6$ edges

No K_6 minor \Rightarrow at most $4n - 10$ edges

No K_7 minor \Rightarrow at most $5n - 15$ edges

No K_8 minor $\not\Rightarrow$ at most $6n - 21$ edges

No K_8 minor \Rightarrow at most $6n - 20$ edges

No K_9 minor \Rightarrow at most $7n - 27$ edges??
For small t:

No K_t minor \Rightarrow at most $(t - 2)n - \left(\frac{t-1}{2}\right)$ edges

No K_2 minor \Rightarrow at most 0 edges

No K_4 minor \Rightarrow at most $2n - 3$ edges

No K_5 minor \Rightarrow at most $3n - 6$ edges

No K_6 minor \Rightarrow at most $4n - 10$ edges

No K_7 minor \Rightarrow at most $5n - 15$ edges

No K_8 minor \nRightarrow at most $6n - 21$ edges

No K_8 minor \Rightarrow at most $6n - 20$ edges

No K_9 minor \Rightarrow at most $7n - 27$ edges??

THM Thomason

No K_t minor \Rightarrow at most $(0.319 + o(1))t\sqrt{\log tn}$ edges
For small t:
No K_t minor \Rightarrow at most $(t - 2)n - \binom{t-1}{2}$ edges

THM Thomason
No K_t minor \Rightarrow at most $(0.319 + o(1))t\sqrt{\log tn}$ edges
For small t:
No K_t minor \Rightarrow at most $(t - 2)n - \binom{t-1}{2}$ edges

THM Thomason
No K_t minor \Rightarrow at most $(0.319 + o(1))t\sqrt{\log tn}$ edges

CONJECTURE $\forall t \exists N$ if G is $(t - 2)$-connected and $|G| > N$, then $|E(G)| \leq (t - 2)n - \binom{t-1}{2}$.
THM Jorgensen No $K_{4,4}$ minor $\Rightarrow \leq 4n - 8$ edges.
THM Jorgensen No \(K_{4,4} \) minor \(\Rightarrow \leq 4n - 8 \) edges.

THEOREM (Mader, conjectured by Dirac)
Every graph on \(n \) vertices and at least \(3n - 5 \) edges has a \(K_5 \) subdivision.
THM Jorgensen No $K_{4,4}$ minor $\Rightarrow \leq 4n - 8$ edges.

THEOREM (Mader, conjectured by Dirac)
Every graph on n vertices and at least $3n - 5$ edges has a K_5 subdivision.

CONJECTURE (Kelmans, Seymour)
Every 5-connected nonplanar graph has a K_5 subdivision.
THM Jorgensen No $K_{4,4}$ minor $\Rightarrow \leq 4n - 8$ edges.

THEOREM (Mader, conjectured by Dirac)
Every graph on n vertices and at least $3n - 5$ edges has a K_5 subdivision.

CONJECTURE (Kelmans, Seymour)
Every 5-connected nonplanar graph has a K_5 subdivision.

Implies Mader’s theorem (Kezdy, McGuiness)