\(G \text{ \(k \)-connected} \implies \delta(G) = \min \text{ degree} \geq k \)

\[K_{10^4+1} \quad \text{and} \quad K_{10^6+1} \]

Thm (Mader) Every graph of min degree at least \(4k \) has a \(k \)-connected subgraph.
Thoughts about a possible proof

1. Replace min degree by average degree

2. Let's try to prove \(n := |V(G)| \)

\[|E(G)| \geq \alpha n + \beta + 1 \implies G \text{ has } k\text{-connected subgraph} \]

\[
\begin{align*}
\bullet & \quad \bullet \\
G & \quad \quad \quad \quad 3 \quad \quad \\
\bullet & \quad \bullet \\
G_1 & \quad \quad \quad \quad \quad G_2
\end{align*}
\]

Is it possible that for some values of \(\alpha, \beta \):

(1) If \(G \) is counterexample, then so is \(G_1 \) or \(G_2 \)?

Know: \(|E(G)| \geq \alpha n + \beta + 1 \) \(\implies G \) has no \(k \)-connected subgraph

\(G_i \) is not a counterexample & \(G_i \) has no \(k \)-connected subgraph (because \(G \) has none) \(\implies |E(G_i)| \leq \alpha n + \beta \)

\(n := |V(G_i)| \) Need \(|V(G_i)| \geq ck \) (i = 1, 2)

Fails from \(\Sigma(G_i) \geq ck \), which we proved last.
\[|E(G)| \leq |E(G_1)| + |E(G_2)| \leq \alpha n_1 + \beta + \alpha n_2 + \beta \leq \alpha (n+k) + 2\beta = \alpha n + \beta + 2k + \beta \leq \alpha n + \beta \ ? \leq 0 ? \]

If \(\alpha k + \beta \leq 0 \), then above computation gives a contradiction, and hence proves \((\star)\)

Let's pick \(\beta := -2k \). Let \(\alpha = ck \). Thus we are trying to prove

\[(\star \star) \quad |V(G)| = ck \quad \Rightarrow \quad \text{G has a} \quad k\text{-connected subgraph}

For suitable \(c \), there is no graph \(G \) with \(|V(G)| = ck \)

and \(|E(G)| \geq ckn - ck^2 + 1 \). If \(|V(G)| = ck \), then

\[(ck)^2 - ck^2 + 1 \leq |E(G)| \leq \binom{ck}{2} = \frac{1}{2}(ck)^2 \]

\[\frac{1}{2}(ck)^2 < c k^2 \]

If \(c = 2 \), then the graph \(c \leq 2 \) does not exist.
If G is a minimum counterexample to $(\star \star)$

then the

$\Delta(G) \geq ck$.

If $|V(G)| > ck$

If ν has degree $\leq ck$, then

$$|E(G\setminus \varepsilon)| \geq ckn - ck^2 + 1 - ck =$$

$$= ck(n-1) - ck^2 + 1$$

$$\frac{|V(G\setminus \varepsilon)|}{|V(G\setminus \varepsilon)|}$$

$\Rightarrow G \setminus \nu$ is a smaller counterexample.
Matching

A matching in G is a set $M \subseteq E(G)$ such that every vertex of G is incident with at most one edge of M.

M saturates $v \in V(G)$ or v is saturated by M if v is incident with an edge of M.

A matching is perfect if it saturates every vertex.

A maximum matching is a matching M in G such that there is no matching M' with $|M'| > |M|$.

A maximal matching is a matching M such that there is no matching M' with $M \subseteq M'$.
An \textit{M-alternating path} is a path s.t. edges in \(M \) and edges not in \(M \) alternate along \(P \).

An \textit{M-augmenting path} is an \(M \)-alternating path that starts and ends in an \(M \)-unsaturated vertex.

Let \(M' := M + E(P) \). Then \(M' \) is a perfect matching with \(|M'| > |M| \).
Thm (Berge) A matching \(M \) in \(G \) is maximum if and only if there is no \(M \)-augmenting path.

Proof. \(\Rightarrow \) done

\(\Leftarrow \) Assume \(M \) is not maximum.

Let \(M' \) be a matching with \(|M'| > |M| \).

Look at the graph \(H \) with \(V(H) = V(G) \),

\(E(H) = M \triangle M' \). Then \(\Delta(H) \leq 2 \)

The components of \(H \) are:

- even cycles (same # of edge of \(M \) & \(M' \))
- paths

\(\Rightarrow \) I component \(P \) of \(H \) that has more edges in \(M' \) than in \(M \). That's an \(M \)-augmenting path. \(\square \)