A bipartite graph, bipartition \((A, B)\)

A matching \(M\) is a **complete matching from** \(A\) to \(B\) if it saturates every vertex of \(A\).

\[
\begin{array}{c|c|c}
A & \mathcal{X} & B \\
\hline
\end{array}
\]

If \(|A| = |B|\) then \([\text{complete from } A \text{ to } B \Rightarrow \text{perfect}]\)

Obstruction:

\[\begin{array}{c|c|c}
A & S & A \\
\hline
\end{array}\]

\[\begin{array}{c|c|c}
\mathcal{N}(S) & |\mathcal{N}(S)| < |S| \\
\hline
\end{array}\]

\(\Rightarrow \) complete matching \(A\) to \(B\)
Thm (Hall) A bipartite graph with bipartition \((A,B)\) has a complete matching from \(A\) to \(B\) if and only if \(|N(S)| \geq |S|\) for every \(S \subseteq A\).

\[N(S) = \{ v \in S : \exists x \text{ adjacent to } v \text{ in } S \} \]

Proof #1 Using Menger's thm

\(\Rightarrow\) already done

\(\Leftarrow\): If there exist \(|A|\) disjoint paths from \(A\) to \(B\), then their edge-sets form a complete matching from \(A\) to \(B\).

Thus \(\forall A \exists B \text{ disjoint } A-B \text{ paths. By Menger's theorem } \exists X \subseteq V(G) \text{ such that } G \setminus X \text{ has no } A-B \text{ path and } |X| < |A| \). Let \(S := A - X\).

\[|N(S)| \leq |X \cap B| = |X| - |X \cap A| < |A| - |X \cap A| \]

\(-|X \cap A| = |S|\), a contradiction. \(\square\)
Proof #2 From first principles

\[\Rightarrow \text{ only}\]

Case 1: \(|N(S)| > |S|\) for every \(\emptyset \neq S \subseteq A\).

- \(A\)
- \(B\)

Pick \(v \in A\), pick a nbr \(w\) of \(v\), apply induction to \(G \setminus \{u, v\}\).

Case 2: \(|N(S)| = |S|\) for some \(\emptyset \neq S \subseteq A\).

- \(S\)
- \(A\)
- \(B\)

Let \(G_1 := G \setminus \text{SUN}(S)\)

\(G_2 := G \setminus \text{SUN}(S)\)

Apply induction to \(G_1\) and \(G_2\).

\(G_1\) clearly satisfies the induction hypothesis. To see that \(G_2\) satisfies the induction hypothesis for \(L \subseteq A - S\), look at \(N_G(L \cup S)\).

\(|N_G(L \cup S)| \geq |L \cup S| = |L| + |S|\) \(\Rightarrow |N_{G_2}(L)| \geq |L|

\(\Rightarrow |N_G(S)| + |N_{G_2}(L)|\)
When does a (not necessarily bipartite) graph have a perfect matching?

Let \(o(H) \) = \# of odd components of \(H \)

If \(o(G \setminus X) > |X| \), then \(G \) has no perfect matching.

Thm (Tutte 1956) \text{TNCAS}

A graph \(G \) has a perfect matching if and only if

\[o(G \setminus X) \leq |X| \text{ for every } X \subseteq V(G). \]
Def

Let M be a matching in G. A cycle C in G of length $2k+1$ containing k edges of M is called an M-blossom. Let G/C denote the graph obtained from G by contracting all edges of C and deleting all loops and parallel edges.

Lemma Let M be a matching in G, and let C be an M-blossom in G. Let $G' = G/C$ and $M' = M - E(C)$. If M is a maximum matching in G then M' is a maximum matching in G'.
Proof. Suppose not. \(E \) \(M \)-augmenting path \(P' \) in \(G' \). Will exhibit an \(H \)-augmenting path in \(G \). Let \(v \) be the new vertex of \(G' \). \(VHA \) \(w \in V(P') \) for \(v \). \(P' \) is as desired.

The vertex \(w \) divides \(P \) into \(P_1 \) and \(P_2 \). Let \(u \) be the ends of \(P \). \(VHA \) by symmetry that the edge of \(P_2 \)
incident edge is in M. Then in G the path P_2 becomes a path from v to the tip of the blossom, and P_1 becomes a path from u to the blossom. Follow P_1 from u to $u' \in V(C)$, then follow C along the even path from u' to the tip, and then follow P_2. That gives an M-augmenting path in G. \square.