An edge-coloring of G is a mapping $c: E(G) \rightarrow S$, where S is some set, such that $c(e) \neq c(f)$ for every two adjacent edges e, f. It is a k-edge-coloring if $|S| \leq k$. The edge-chromatic number or chromatic index of G, denoted by $\chi'(G)$, is the least integer k such that G has a k-edge-coloring.

Clearly $\Delta(G) \leq \chi'(G)$ and $\chi'(G) = \chi(L(G))$.

Observation. $\chi'(G) = \chi(L(G)) \leq \Delta(L(G)) + 1 \leq \ldots$
An **edge-coloring** of G is a mapping $c : E(G) \rightarrow S$, where S is some set, such that $c(e) \neq c(f)$ for every two adjacent edges e, f. It is a k-edge-coloring if $|S| \leq k$. The **edge-chromatic number** or **chromatic index** of G, denoted by $\chi'(G)$, is the least integer k such that G has a k-edge-coloring.

Clearly $\Delta(G) \leq \chi'(G)$ and $\chi'(G) = \chi(L(G))$.

Observation. $\chi'(G) = \chi(L(G)) \leq \Delta(L(G)) + 1 \leq 2\Delta(G) - 1$
An edge-coloring of G is a mapping $c : E(G) \rightarrow S$, where S is some set, such that $c(e) \neq c(f)$ for every two adjacent edges e, f. It is a k-edge-coloring if $|S| \leq k$. The edge-chromatic number or chromatic index of G, denoted by $\chi'(G)$, is the least integer k such that G has a k-edge-coloring.

Clearly $\Delta(G) \leq \chi'(G)$ and $\chi'(G) = \chi(L(G))$.

Observation. $\chi'(G) = \chi(L(G)) \leq \Delta(L(G)) + 1 \leq 2\Delta(G) - 1$

Theorem (Vizing) For every simple graph $\chi'(G) \leq \Delta(G) + 1$.

Example.

| $E(G)$ | $= 3k$ |
|--------|
| $\Delta(G)$ | $= 2k$ |
| $\chi'(G)$ | $= 3k$ |
An edge-coloring of G is a mapping $c: E(G) \rightarrow S$, where S is some set, such that $c(e) \neq c(f)$ for every two adjacent edges e, f. It is a k-edge-coloring if $|S| \leq k$. The edge-chromatic number or chromatic index of G, denoted by $\chi'(G)$, is the least integer k such that G has a k-edge-coloring.

Clearly $\Delta(G) \leq \chi'(G)$ and $\chi'(G) = \chi(L(G))$.

Observation. $\chi'(G) = \chi(L(G)) \leq \Delta(L(G)) + 1 \leq 2\Delta(G) - 1$

Theorem (Vizing) For every simple graph $\chi'(G) \leq \Delta(G) + 1$.

Example.

![Graph](image.png)

$|E(G)| = 3k$

$\Delta(G) = 2k$

$\chi'(G) = 3k$

Proof. By induction on $|E(G)|$. By induction we can color all but one edge of G using $\Delta(G) + 1$ colors. Let xy_1 be the uncolored edge. For every $v \in V(G)$ there is a “missing color” at v; that is, a color not used by any edge incident with v.
\[s \text{ missing} \]

\[x \quad \rightarrow \quad y_1 \quad \text{missing} \]
An **edge-coloring** of G is a mapping $c: E(G) \rightarrow S$, where S is some set, such that $c(e) \neq c(f)$ for every two adjacent edges e, f. It is a k-edge-coloring if $|S| \leq k$. The **edge-chromatic number** or **chromatic index** of G, denoted by $\chi'(G)$, is the least integer k such that G has a k-edge-coloring.

Clearly $\Delta(G) \leq \chi'(G)$ and $\chi'(G) = \chi(L(G))$.

Observation. $\chi'(G) = \chi(L(G)) \leq \Delta(L(G)) + 1 \leq 2\Delta(G) - 1$

Theorem (Vizing) For every simple graph $\chi'(G) \leq \Delta(G) + 1$.

Example.

\begin{align*}
|E(G)| &= 3k \\
\Delta(G) &= 2k \\
\chi'(G) &= 3k
\end{align*}

Proof. By induction on $|E(G)|$. By induction we can color all but one edge of G using $\Delta(G) + 1$ colors. Let xy_1 be the uncolored edge. For every $v \in V(G)$ there is a “missing color” at v; that is, a color not used by any edge incident with v.
An edge-coloring of G is a mapping $c: E(G) \rightarrow S$, where S is some set, such that $c(e) \neq c(f)$ for every two adjacent edges e, f. It is a k-edge-coloring if $|S| \leq k$. The edge-chromatic number or chromatic index of G, denoted by $\chi'(G)$, is the least integer k such that G has a k-edge-coloring.

Clearly $\Delta(G) \leq \chi'(G)$ and $\chi'(G) = \chi(L(G))$.

Observation. $\chi'(G) = \chi(L(G)) \leq \Delta(L(G)) + 1 \leq 2\Delta(G) - 1$

Theorem (Vizing) For every simple graph $\chi'(G) \leq \Delta(G) + 1$.

Example.

![Diagram](image)

$|E(G)| = 3k$

$\Delta(G) = 2k$

$\chi'(G) = 3k$

Proof. By induction on $|E(G)|$. By induction we can color all but one edge of G using $\Delta(G) + 1$ colors. Let xy_1 be the uncolored edge. For every $v \in V(G)$ there is a “missing color” at v; that is, a color not used by any edge incident with v.
An **edge-coloring** of G is a mapping $c: E(G) \rightarrow S$, where S is some set, such that $c(e) \neq c(f)$ for every two adjacent edges e, f. It is a k-edge-coloring if $|S| \leq k$. The **edge-chromatic number** or **chromatic index** of G, denoted by $\chi'(G)$, is the least integer k such that G has a k-edge-coloring.

Clearly $\Delta(G) \leq \chi'(G)$ and $\chi'(G) = \chi(L(G))$.

Observation. $\chi'(G) = \chi(L(G)) \leq \Delta(L(G)) + 1 \leq 2\Delta(G) - 1$

Theorem (Vizing) For every simple graph $\chi'(G) \leq \Delta(G) + 1$.

Example.

![Graph](image)

$|E(G)| = 3k$

$\Delta(G) = 2k$

$\chi'(G) = 3k$

Proof. By induction on $|E(G)|$. By induction we can color all but one edge of G using $\Delta(G) + 1$ colors. Let xy_1 be the uncolored edge. For every $v \in V(G)$ there is a “missing color” at v; that is, a color not used by any edge incident with v.
Construct this for as long as t_1, \ldots, t_k are pairwise distinct and the edges xy_i exist.

Case 1. t_k is missing at x.

Case 2. $t_k = t_j$ for some $j = 1, 2, \ldots, k - 1$.
An **edge-coloring** of G is a mapping $c: E(G) \rightarrow S$, where S is some set, such that $c(e) \neq c(f)$ for every two adjacent edges e, f. It is a k-edge-coloring if $|S| \leq k$. The **edge-chromatic number** or **chromatic index** of G, denoted by $\chi'(G)$, is the least integer k such that G has a k-edge-coloring.

Clearly $\Delta(G) \leq \chi'(G)$ and $\chi'(G) = \chi(L(G))$.

Observation. $\chi'(G) = \chi(L(G)) \leq \Delta(L(G)) + 1 \leq 2\Delta(G) - 1$

Theorem (Vizing) For every simple graph $\chi'(G) \leq \Delta(G) + 1$.

Example.

![Diagram](image)

\[|E(G)| = 3k\]
\[\Delta(G) = 2k\]
\[\chi'(G) = 3k\]

Proof. By induction on $|E(G)|$. By induction we can color all but one edge of G using $\Delta(G) + 1$ colors. Let xy_1 be the uncolored edge. For every $v \in V(G)$ there is a “missing color” at v; that is, a color not used by any edge incident with v.

15
Construct this for as long as t_1, \ldots, t_k are pairwise distinct and the edges xy_i exist.

Case 1. t_k is missing at x. Color xy_i using t_i for $i = 1, 2, \ldots, k$.

Case 2. $t_k = t_j$ for some $j = 1, 2, \ldots, k - 1$.
An edge-coloring of G is a mapping $c: E(G) \to S$, where S is some set, such that $c(e) \neq c(f)$ for every two adjacent edges e, f. It is a k-edge-coloring if $|S| \leq k$. The **edge-chromatic number** or **chromatic index** of G, denoted by $\chi'(G)$, is the least integer k such that G has a k-edge-coloring.

Clearly $\Delta(G) \leq \chi'(G)$ and $\chi'(G) = \chi(L(G))$.

Observation. $\chi'(G) = \chi(L(G)) \leq \Delta(L(G)) + 1 \leq 2\Delta(G) - 1$

Theorem (Vizing) For every simple graph $\chi'(G) \leq \Delta(G) + 1$.

Example.

![Graph Example](image)

$|E(G)| = 3k$

$\Delta(G) = 2k$

$\chi'(G) = 3k$

Proof. By induction on $|E(G)|$. By induction we can color all but one edge of G using $\Delta(G) + 1$ colors. Let xy_1 be the uncolored edge. For every $v \in V(G)$ there is a “missing color” at v; that is, a color not used by any edge incident with v.
Construct this for as long as \(t_1, \ldots, t_k \) are pairwise distinct and the edges \(xy_i \) exist.

Case 1. \(t_k \) is missing at \(x \). Color \(xy_i \) using \(t_i \) for \(i = 1, 2, \ldots, k \).

Case 2. \(t_k = t_j \) for some \(j = 1, 2, \ldots, k - 1 \).

Let \(H \) be the subgraph of \(G \) consisting of edges colored \(s \) or \(t_k \).

Notice that if we swap \(s \) and \(t_k \) in any component of \(H \) we get a valid edge-coloring.

Swap \(s, t_k \) in the component of \(H \) containing \(y_k \). Then \(s \) will be missing at \(y_k \). Color \(xy_k \) using \(s \), color \(xy_i \) using \(t_i \) for \(i = 1, 2, \ldots, k - 1 \).
An **edge-coloring** of G is a mapping $c: E(G) \rightarrow S$, where S is some set, such that $c(e) \neq c(f)$ for every two adjacent edges e, f. It is a k-edge-coloring if $|S| \leq k$. The **edge-chromatic number** or **chromatic index** of G, denoted by $\chi'(G)$, is the least integer k such that G has a k-edge-coloring.

Clearly $\Delta(G) \leq \chi'(G)$ and $\chi'(G) = \chi(L(G))$.

Observation. $\chi'(G) = \chi(L(G)) \leq \Delta(L(G)) + 1 \leq 2\Delta(G) - 1$

Theorem (Vizing) For every simple graph $\chi'(G) \leq \Delta(G) + 1$.

Example.

```
                    k
                     |
                     |
  a ----------------- b
                      |
                      |
  y_1 ----------------- y
```

$|E(G)| = 3k$

$\Delta(G) = 2k$

$\chi'(G) = 3k$

Proof. By induction on $|E(G)|$. By induction we can color all but one edge of G using $\Delta(G) + 1$ colors. Let xy_1 be the uncolored edge. For every $v \in V(G)$ there is a “missing color” at v; that is, a color not used by any edge incident with v.
Construct this for as long as t_1, \ldots, t_k are pairwise distinct and the edges xy_i exist.

Case 1. t_k is missing at x. Color xy_i using t_i for $i = 1,2,\ldots,k$.

Case 2. $t_k = t_j$ for some $j = 1,2,\ldots,k - 1$.

Let H be the subgraph of G consisting of edges colored s or t_k.

Notice that if we swap s and t_k in any component of H we get a valid edge-coloring. Either (x and y_j) or (x and y_k) are not in the same component of H.

Case 2a. x, y_j are not in the same component of H

Swap s, $t_k = t_j$ in the component of H containing y_j. Color xy_j using s, color xy_i using t_i for $i = 1,2,\ldots,j - 1$.

Case 2b. Analogous (replace j by k). \(\square\)
A communication model

A **discrete memoryless channel** has input alphabet Σ, output alphabet Σ_{out}

On input a we might receive a_1 or a_2 or a_3 or \ldots
On input b we might receive b_1 or b_2 or b_3 or \ldots
On input c we might receive c_1 or c_2 or c_3 or \ldots

a, b are confoundable if $a_j = b_i$ for some i, j.

Example. $\Sigma = \{a, b, c, d, e\}$

The graph indicates confoundable pairs.
Construct this for as long as t_1, \ldots, t_k are pairwise distinct and the edges xy_i exist.

Case 1. t_k is missing at x. Color xy_i using t_i for $i = 1, 2, \ldots, k$.

Case 2. $t_k = t_j$ for some $j = 1, 2, \ldots, k - 1$.

Let H be the subgraph of G consisting of edges colored s or t_k.

Notice that if we swap s and t_k in any component of H we get a valid edge-coloring. Either (x and y_j) or (x and y_k) are not in the same component of H.

Case 2a. x, y_j are not in the same component of H

Swap $s, t_k = t_j$ in the component of H containing y_j. Color xy_j using s, color xy_i using t_i for $i = 1, 2, \ldots, j - 1$.

Case 2b. Analogous (replace j by k). \hfill \Box
A communication model

A **discrete memoryless channel** has input alphabet Σ, output alphabet Σ_{out}

On input a we might receive a_1 or a_2 or a_3 or \cdots
On input b we might receive b_1 or b_2 or b_3 or \cdots
On input c we might receive c_1 or c_2 or c_3 or \cdots

a, b are confoundable if $a_j = b_i$ for some i, j.

Example. $\Sigma = \{a, b, c, d, e\}$

The graph indicates confoundable pairs.
Two sequences \((x_1, ..., x_t), (y_1, ..., y_t)\) of elements of \(\Sigma\) are **confoundable** if \(\forall i = 1, 2, ..., t\) either \(x_i = y_i\) or \(x_i, y_i\) are confoundable.

Objective. A set of pairwise unconfoundable sequences of length \(t\)
A communication model

A **discrete memoryless channel** has input alphabet Σ, output alphabet Σ_{out}

On input a we might receive a_1 or a_2 or a_3 or \cdots
On input b we might receive b_1 or b_2 or b_3 or \cdots
On input c we might receive c_1 or c_2 or c_3 or \cdots

a, b are confoundable if $a_j = b_i$ for some i, j.

Example. $\Sigma = \{a, b, c, d, e\}$

The graph indicates confoundable pairs.
Two sequences \((x_1, \ldots, x_t), (y_1, \ldots, y_t)\) of elements of \(\Sigma\) are **confoundable** if \(\forall i = 1, 2, \ldots, t\) either \(x_i = y_i\) or \(x_i, y_i\) are confoundable.

Objective. A set of pairwise unconfoundable sequences of length \(t\)

Example 1. Any sequence of \(a\)’s and \(c\)’s of length \(t\). That is a family of \(2^t\) pairwise unconfoundable sequences of length \(t\).
A communication model

A **discrete memoryless channel** has input alphabet \(\Sigma \), output alphabet \(\Sigma_{\text{out}} \)

On input \(a \) we might receive \(a_1 \) or \(a_2 \) or \(a_3 \) or \(\cdots \)

On input \(b \) we might receive \(b_1 \) or \(b_2 \) or \(b_3 \) or \(\cdots \)

On input \(c \) we might receive \(c_1 \) or \(c_2 \) or \(c_3 \) or \(\cdots \)

\(a, b \) are confoundable if \(a_j = b_i \) for some \(i, j \).

Example. \(\Sigma = \{a, b, c, d, e\} \)

The graph indicates confoundable pairs.
Two sequences \((x_1, ..., x_t), (y_1, ..., y_t)\) of elements of \(\Sigma\) are **confoundable** if \(\forall i = 1, 2, ..., t\) either \(x_i = y_i\) or \(x_i, y_i\) are confoundable.

Objective. A set of pairwise unconfoundable sequences of length \(t\)

Example 1. Any sequence of \(a\)’s and \(c\)’s of length \(t\). That is a family of \(2^t\) pairwise unconfoundable sequences of length \(t\).

Example 2. A bigger family. Notice that

\[
\begin{align*}
&aa, bd, cb, de, ec \\
\end{align*}
\]

are pairwise unconfoundable. Take any sequence of these of length \(t/2\). That will give a collection of pairwise unconfoundable words of size \(5^{t/2} = (2^{\log_5^t})^{1/2} = 2^{(1/2 \log_5 5)t}\)
A communication model

A **discrete memoryless channel** has input alphabet Σ, output alphabet Σ_{out}

On input a we might receive a_1 or a_2 or a_3 or \ldots
On input b we might receive b_1 or b_2 or b_3 or \ldots
On input c we might receive c_1 or c_2 or c_3 or \ldots

a, b are confoundable if $a_j = b_i$ for some i, j.

Example. $\Sigma = \{a, b, c, d, e\}$

The graph indicates confoundable pairs.
Two sequences \((x_1, ..., x_t), (y_1, ..., y_t)\) of elements of \(\Sigma\) are **confoundable** if \(\forall i = 1, 2, ..., t\) either \(x_i = y_i\) or \(x_i, y_i\) are confoundable.

Objective. A set of pairwise unconfoundable sequences of length \(t\)

Example 1. Any sequence of \(a\)’s and \(c\)’s of length \(t\). That is a family of \(2^t\) pairwise unconfoundable sequences of length \(t\).

Example 2. A bigger family. Notice that

\[
aa, bd, cb, de, ec
\]

are pairwise unconfoundable. Take any sequence of these of length \(t/2\). That will give a collection of pairwise unconfoundable words of size \(5^{t/2} = (2^{\log 5})^{t/2} = 2^{(1/2 \log 5)t}\).

Fekete’s lemma. If \((a_t)_{t \geq 1}\) is a sequence of positive real numbers satisfying

\[
a_{s+t} \geq a_s + a_t
\]

then \(\lim_{t \to \infty} \frac{1}{t} a_t\) exists and is equal to \(\sup_{t \geq 1} \frac{1}{t} a_t\).
Definition. For graphs K, L we define their product $K \boxtimes L$ by

$$V(K \boxtimes L) = V(K) \times V(L)$$

and

$$(k_1, \ell_1) \sim (k_2, \ell_2)$$ if

- $(k_1, \ell_1) \neq (k_2, \ell_2)$
- $k_1 = k_2$ or $k_1 \sim k_2$ in K
- $\ell_1 = \ell_2$ or $\ell_1 \sim \ell_2$ in L

Example. $K_2 \boxtimes K_2$

Example. $C_5 \boxtimes C_5$
Two sequences \((x_1, ..., x_t), (y_1, ..., y_t)\) of elements of \(\Sigma\) are **confoundable** if \(\forall i = 1, 2, ..., t\) either \(x_i = y_i\) or \(x_i, y_i\) are confoundable.

Objective. A set of pairwise unconfoundable sequences of length \(t\)

Example 1. Any sequence of \(a\)’s and \(c\)’s of length \(t\). That is a family of \(2^t\) pairwise unconfoundable sequences of length \(t\).

Example 2. A bigger family. Notice that

\[aa, bd, cb, de, ec \]

are pairwise unconfoundable. Take any sequence of these of length \(t/2\). That will give a collection of pairwise unconfoundable words of size \(5^{t/2} = (2^{\log 5})^{\frac{t}{2}} = 2^{(1/2 \log 5)t}\).

Fekete’s lemma. If \((a_t)_{t \geq 1}\) is a sequence of positive real numbers satisfying

\[a_{s+t} \geq a_s + a_t \]

then \(\lim_{t \to \infty} \frac{1}{t} a_t\) exists and is equal to \(\sup_{t \geq 1} \frac{1}{t} a_t\).
Definition. For graphs K, L we define their product $K \boxtimes L$ by

$V(K \boxtimes L) = V(K) \times V(L)$ and

$(k_1, \ell_1) \sim (k_2, \ell_2)$ if

- $(k_1, \ell_1) \neq (k_2, \ell_2)$ and
- $k_1 = k_2$ or $k_1 \sim k_2$ in K and
- $\ell_1 = \ell_2$ or $\ell_1 \sim \ell_2$ in L

Example. $K_2 \boxtimes K_2$

Example. $C_5 \boxtimes C_5$
Let $\gamma(G) := \chi(G^c) = \min \# \text{ of cliques covering the vertices of } G$.

Observations:

1. $\alpha(G_1 \boxtimes G_2) \geq \alpha(G_1)\alpha(G_2)$
2. $\alpha(C_5 \boxtimes C_5) = 5$
3. $\gamma(G_1)\gamma(G_2) \geq \gamma(G_1 \boxtimes G_2)$

Proof of (3). Let $K_1, ..., K_r$ be a cover by cliques of G_1.

Let $L_1, ..., L_s$ be a cover by cliques of G_2.

Then $\{K_i \times L_j : 1 \leq i \leq r, 1 \leq j \leq s\}$ is a cover of $G_1 \boxtimes G_2$ by rs cliques, as desired.
Definition. For graphs K, L we define their product $K \boxtimes L$ by

$$V(K \boxtimes L) = V(K) \times V(L)$$

and

$$(k_1, \ell_1) \sim (k_2, \ell_2) \text{ if }$$

- $(k_1, \ell_1) \neq (k_2, \ell_2)$ and
- $k_1 = k_2$ or $k_1 \sim k_2$ in K and
- $\ell_1 = \ell_2$ or $\ell_1 \sim \ell_2$ in L

Example. $K_2 \boxtimes K_2$

Example. $C_5 \boxtimes C_5$
Let \(\gamma(G) := \chi(G^c) = \min \#\) of cliques covering the vertices of \(G\).

Observations:
1. \(\alpha(G_1 \boxtimes G_2) \geq \alpha(G_1)\alpha(G_2)\)
2. \(\alpha(C_5 \boxtimes C_5) = 5\)
3. \(\gamma(G_1)\gamma(G_2) \geq \gamma(G_1 \boxtimes G_2)\)

Proof of (3). Let \(K_1, \ldots, K_r\) be a cover by cliques of \(G_1\).
Let \(L_1, \ldots, L_s\) be a cover by cliques of \(G_2\).
Then \(\{K_i \times L_j: 1 \leq i \leq r, 1 \leq j \leq s\}\) is a cover of \(G_1 \boxtimes G_2\) by \(rs\) cliques, as desired.

Let \(G^t := G \boxtimes G \boxtimes \cdots \boxtimes G\) \((t\) times). The **Shannon capacity** of \(G\) is defined as

\[
\lim_{t \to \infty} \frac{1}{t} \log \alpha (G^t)
\]

By (1), \(\alpha(G^{s+t}) \geq \alpha(G^s)\alpha(G^t)\)

\[
\log \alpha (G^{s+t}) \geq \log \alpha (G^s) + \log \alpha (G^t)
\]

By Fekete’s lemma \(\lim_{t \to \infty} \frac{1}{t} \log \alpha (G^t)\) exists and is equal to \(\sup_{t \geq 1} \frac{1}{t} \log \alpha (G^t)\).
If $\alpha(G) = \gamma(G)$, then

$$(\gamma(G))^t \geq \gamma(G^t) \geq \alpha(G^t) \geq (\alpha(G))^t$$

and so equality holds throughout. Thus the Shannon capacity of G is $\log \alpha(G)$.

What are the minimal graphs that do not satisfy $\alpha(G) = \gamma(G)$? Those are precisely minimally imperfect graphs.

Theorem (Lovász) The Shannon capacity of C_5 is $(\log 5)/2$.

We do not know the Shannon capacity of C_7 or other odd holes or odd antiholes.
Let $\gamma(G) := \chi(G^c) = \min \# \text{ of cliques covering the vertices of } G$.

Observations:
1. $\alpha(G_1 \boxtimes G_2) \geq \alpha(G_1)\alpha(G_2)$
2. $\alpha(C_5 \boxtimes C_5) = 5$
3. $\gamma(G_1)\gamma(G_2) \geq \gamma(G_1 \boxtimes G_2)$

Proof of (3). Let K_1, \ldots, K_r be a cover by cliques of G_1.

Let L_1, \ldots, L_s be a cover by cliques of G_2.

Then $\{K_i \times L_j : 1 \leq i \leq r, 1 \leq j \leq s\}$ is a cover of $G_1 \boxtimes G_2$ by rs cliques, as desired.

Let $G^t := G \boxtimes G \boxtimes \cdots \boxtimes G$ (t times). The **Shannon capacity** of G is defined as

$$\lim_{t \to \infty} \frac{1}{t} \log \alpha(G^t)$$

By (1), $\alpha(G^{s+t}) \geq \alpha(G^s)\alpha(G^t)$

$$\log \alpha(G^{s+t}) \geq \log \alpha(G^s) + \log \alpha(G^t)$$

By Fekete’s lemma $\lim_{t \to \infty} \frac{1}{t} \log \alpha(G^t)$ exists and is equal to $\sup_{t \geq 1} \frac{1}{t} \log \alpha(G^t)$.

38