EXTRA CREDIT PROBLEM #1

Consider a 10 × 10 board. At the beginning each square is white. We make a series of the following moves. In each move, we paint black the four squares made by the intersection of a pair of rows and a pair of columns. A move can be made if at least one of the four squares is white. What is the maximum number of moves that can be made?

Solution (Shijie Xie). Let G be the bipartite graph with vertices the rows and columns of the board. Thus the squares of the board are in 1-1 correspondence with edges of G. Let

$N_i =$ number of squares (edges) painted black during move i
$c_i =$ number of components of the subgraph of G consisting of edges that were black before move i

$T_i = c_i - c_{i+1}$

Thus $N_1 = 4$, $c_1 = 20$, $c_2 = 17$, $T_1 = 3$.

Claim. $T_i \leq N_i - 1$ for every i.

The claim implies that after n moves

$$100 \geq N_1 + \cdots + N_n \geq T_1 + \cdots + T_n + n \geq 19 + n$$

and so $n \leq 81$.

To show that 81 moves are possible consider the moves that use rows i and 10 and columns j and 10 for all $i, j = 1, \ldots, 9$.
Random graphs

Let $0 < p < 1$, it may depend on n. Let $G(n, p)$ be the probability space of all graphs G with $V(G) = \{1, 2, \ldots, n\}$, where G has probability

$$p^{|E(G)|}(1 - p)^{\binom{n}{2} - |E(G)|}$$

Edges exist with probability p, independently of each other.

Definition. We say that a.e. graph in $G(n, p)$ has property Π if

$$\lim_{n \to \infty} P[G \text{ has } \Pi] = 1$$

Theorem. Let $0 < p < 1$ be fixed. Let k, ℓ be fixed. Then a.e. graph G in $G(n, p)$ has the property that for all distinct vertices $x_1, x_2, \ldots, x_k, y_1, y_2, \ldots, y_\ell$ there exists a vertex $v \in V(G) - \{x_1, x_2, \ldots, x_k, y_1, y_2, \ldots, y_\ell\}$ such that v is adjacent to x_1, x_2, \ldots, x_k and not adjacent to y_1, y_2, \ldots, y_ℓ.

Proof. For fixed $x_1, \ldots, x_k, y_1, \ldots, y_\ell$ let us say that v works if $v \in V(G) - \{x_1, \ldots, x_k, y_1, \ldots, y_\ell\}$, and v is adjacent to x_1, \ldots, x_k and not adjacent to y_1, \ldots, y_ℓ.

The probability that a given v works is $p^k(1 - p)^\ell$.

The probability it does not work is $1 - p^k(1 - p)^\ell$.

The probability that no v works is $(1 - p^k(1 - p)^\ell)^{n-k-\ell}$.
The probability that $\exists x_1, \ldots, x_k, y_1, \ldots, y_\ell$ such that no v works is

$$\leq n^{k+\ell}(1 - p^k(1 - p)\ell)n^{-k-\ell} \rightarrow 0$$
as $n \rightarrow \infty$. \square

Consequences. When p is fixed:

1. a.e. graph in $G(n, p)$ has diameter ≤ 2
2. for fixed k a.e. graph in $G(n, p)$ is k-connected.

Proof. If G is not k-connected, then $\exists a, b, y_1, \ldots, y_\ell$ where $\ell < k$, such that $\not\exists a - b$ path in $G\{y_1, y_2, \ldots, y_\ell\}$. Apply theorem to $a, b, y_1, y_2, \ldots, y_\ell$. $\exists v$ adjacent to a, b, not equal to $a, b, y_1, \ldots, y_\ell$, a contradiction.

3. For every fixed graph H, a.e. graph in $G(n, p)$ has an induced subgraph isomorphic to H.

Proof. Pick $v \in V(H)$. By induction a.e. graph in $G(n, p)$ has an induced subgraph isomorphic to $H \setminus v$. Let x_1, \ldots, x_k be the vertices of $H \setminus v$ adjacent to v and let y_1, \ldots, y_ℓ be the vertices of $H \setminus v$ not adjacent to v. Apply the theorem.
Markov’s inequality. Let X be a non-negative random variable on a probability space with $0 < EX < \infty$. Then for all $t > 0$

$$P[X \geq tEX] \leq \frac{1}{t}$$

Proof.

$$EX = \int X \, dP \geq \int_{[X \geq tEX]} X \, dP \geq tEX \int_{[X \geq tEX]} 1 \, dP =$$

$$= tEX \cdot P[X \geq tEX]$$

and so $P[X \geq tEX] \leq \frac{1}{t}$.

Corollary. $P[X \geq z] \leq \frac{EX}{z}$ for every $z > 0$.

Proof. Let $z = tEX$.

Theorem (Erdös 1959) For every two integers k, l there exists a graph G with $\chi(G) \geq k$ and no cycles of length at most l.

Proof. We will consider $G(n, p)$, where $p = p(n)$ will be determined later. We first prove that for a suitable choice of p a.e. graph in $G(n, p)$ has few short cycles. Let $X_i(G)$ be the number of cycles in G of length exactly i. Then

$$X(G) := \sum_{i=3}^{l} X_i(G)$$

is the number of cycles in G of length at most l. Now

$$EX = \sum_{i=3}^{l} EX_i = \sum_{i=3}^{l} \sum_{|A|=i} \sum_{\sigma} P[\sigma \text{ determines a cycle}] =$$

$$= \sum_{i=3}^{l} \binom{n}{i} \frac{1}{2} (i - 1)! p^i \leq \frac{1}{2} \sum_{i=3}^{l} \frac{n^i}{i!} (i - 1)! p^i \leq \sum_{i=3}^{l} (np)^i$$

Now it seems sensible to choose $p = p(n)$ so that $np = n^\theta$ for some $\theta > 0$. Thus the above is equal to

$$\sum_{i=3}^{l} n^{\theta i} \leq ln^{\theta l}$$
for n sufficiently large. If we choose $\theta < 1/l$, then $EX = o(n)$. By Markov's inequality

$$P[X \geq n/2] \leq \frac{2EX}{n} = o(1)$$

and so for all sufficiently large n we have $P[X \geq n/2] < 1/2$. That is,

(1) the probability that $G \in \mathcal{G}(n, p)$ has $\geq n/2$ cycles of length $\leq l$ is strictly less than $1/2$

Next we give a lower bound on $\chi(G)$. For that we will use the inequality $\chi(G)\alpha(G) \geq n$. So we need an upper bound on $\alpha(G)$ and so we need an upper bound on $P[\alpha(G) \geq t]$.

$$P[\alpha(G) \geq t] = P[G \text{ has an independent set of size } t] \leq$$

$$\sum_A P[A \text{ is an independent set in } G] = \binom{n}{t} (1 - p)^{\binom{t}{2}} <$$

$$< n^t (1 - p)^{\binom{t}{2}} \leq n^t e^{-p \binom{t}{2}} = \left[ne^{-p(t-1)/2}\right]^t$$

where the second inequality uses $1 + x \leq e^x$.

If $t - 1 = \frac{3}{p} \log n$, then

$$[ne^{-p(t-1)/2}]^t = \left[n \cdot n^{-3/2}\right]^t = o(1)$$

Thus for $t = \frac{3}{p} \log n$ and sufficiently large n
(2) \(P[\alpha(G) \geq t] < 1/2 \)

By (1) and (2) there exists a graph on \(n \) vertices with \(\leq n/2 \) cycles of length \(\leq l \) and \(\alpha(G) \leq t \). By deleting one vertex from each cycle of length \(\leq l \) we arrive at an induced subgraph \(G' \) on at least \(n/2 \) vertices with no cycle of length \(\leq l \) and \(\alpha(G') \leq t \). Now

\[
\chi(G') \geq \frac{|V(G')|}{\alpha(G')} \geq \frac{n/2}{t} \geq \frac{3}{p} \log n = \frac{n}{6n^{1-\theta} \log n} = \frac{n^\theta}{6 \log n} \to \infty
\]

and so for \(n \) sufficiently large we have \(\chi(G') \geq k \), as desired.