Food for thought.

Suppose we have 3 internally disjoint s-t paths in G.

Suppose also $\not\exists$ a set $X \subseteq V(G) - \{s, t\}$ of size 3 or less such that $G \setminus X$ has no s-t path. Then, by Menger’s theorem, there exist 4 internally disjoint paths.

Where are they?
Block structure of (connected) graphs.

A **cut-vertex** in a multigraph G is a vertex v such that $E(G)$ can be partitioned into disjoint non-empty sets E_1, E_2 such that v is the only vertex such that both E_1 and E_2 include an edge incident with v.

Example 1.

![Diagram](image1)

Example 2. $G \setminus v$ disconnected.

![Diagram](image2)

Definition. A **block** is a connected multigraph with no cut-vertex.
Examples.

Every loopless and 2-connected multigraph.

Definition. A block of a multigraph G is a maximal submultigraph that is a block.

Proposition. (i) Every multigraph is a union of its blocks.

(ii) If B_1, B_2 are distinct blocks of G, then $|V(B_1) \cap V(B_2)| \leq 1$, and if $v \in V(B_1) \cap V(B_2)$, then v is a cut-vertex.

Proof. (i) Immediate.

(ii) Suppose $x, y \in V(B_1) \cap V(B_2)$, $x \neq y$

$\Rightarrow B_1 \cup B_2$ is block
If B_1, B_2 are 2-connected $\Rightarrow B_1 \cup B_2$ 2-connected.

Proof. Let $z \in V(B_1 \cup B_2)$. Then $B_1 \setminus z, B_2 \setminus z$ are connected, and they intersect $\Rightarrow (B_1 \setminus z) \cup (B_2 \setminus z) = (B_1 \cup B_2) \setminus z$ is connected.
Given a multigraph, define a graph F as follows: $V(F) = \mathcal{B} \cup \mathcal{C}$.

$\mathcal{B} = \text{all blocks of } G; \mathcal{C} = \text{all cut-vertices of } G.$

$B \in \mathcal{B}$ is adjacent to $c \in \mathcal{C}$ if $c \in V(B)$.

Theorem. F is a forest, and if G is connected, then it is a tree.

Definition. This is called the **block structure of a graph**.

Proof. Exercise.
Given a multigraph, define a graph F as follows: $V(F) = \mathcal{B} \cup \mathcal{C}$

$\mathcal{B} = \text{all blocks of } G$; $\mathcal{C} = \text{all cut-vertices of } G$.

$B \in \mathcal{B}$ is adjacent to $c \in \mathcal{C}$ if $c \in V(B)$.

Theorem. F is a forest, and if G is connected, then it is a tree.

Definition. This is called the block structure of a graph.

Proof. Exercise.
Theorem. (Ear structure of 2-connected graphs).
Let G be a 2-connected graph. Then G can be written as $G = G_0 \cup G_1 \cup \cdots \cup G_k$, where

(i) G_0 is a cycle, and

(ii) for $i = 1, 2, \ldots, k$, G_i is a path with both ends in $G_0 \cup \cdots \cup G_{i-1}$, and otherwise disjoint from it.

Proof. \exists cycle. We can pick G_0, G_1, \ldots, G_k satisfying (i) and (ii) with k maximum.
Theorem. (Ear structure of 2-connected graphs).

Let G be a 2-connected graph. Then G can be written as $G = G_0 \cup G_1 \cup \cdots \cup G_k$, where

(i) G_0 is a cycle, and

(ii) for $i = 1, 2, \ldots, k$, G_i is a path with both ends in $G_0 \cup \cdots \cup G_{i-1}$, and otherwise disjoint from it.

Proof. \exists cycle. We can pick G_0, G_1, \ldots, G_k satisfying (i) and (ii) with k maximum.
A lemma about 3-connected graphs

Theorem. Let G be a 3-connected graph on ≥ 5 vertices. Then G has an edge e such that G/e is 3-connected.

Proof. Suppose not. Thus $\forall e = uv \exists x \in V(G)$ such that $G\{u, v, x\}$ is disconnected. Pick $e = uv$ and x as above and a component K of $G\{u, v, x\}$ such that $|V(K)|$ is maximum. Note u has a nbr in K, for o.w. $G\{v, x\}$ is disconnected. Same for v, x. Same for other components. Let y be a nbr of x not in $V(K) \cup \{u, v\}$.
For the edge $e' = xy \ni z \in V(G)$ such that $G\{x, y, z\}$ is disconnected. Let K' be the subgraph induced by $V(K) \cup \{u, v\}$.

Claim. $K'\setminus z$ is connected.

Proof. Let $a, b \in V(K') - \{z\}$. We must show that there exists an a- b path in $K'\setminus z$. Since G is 3-connected there exists an a-b path P in $G\{z, x\}$. If P is a path in $K'\setminus z$, then we are done, and so we may assume not. Thus P leaves K' through u or v and re-enters through v or u. In either case it uses both u and v. Let P' be obtained from P by short cutting using the edge $e = uv$. Then P' is an a-b path in $K'\setminus z$, as desired. This proves the claim.

By the claim, $K'\setminus z$ is a subgraph of a component K'' of $G\{x, y, z\}$. But $|V(K'')| \geq |V(K')| - 1 \geq |V(K)| + 1$ contrary to the choice of u, v, x, K. □