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In light of Theorem 3.2.9 one expects a characterization of even digraphs, anal-
ogous to Theorem 2.6.2. It is perhaps somewhat surprising that such a theorem
involves infinitely many obstructions, rather than one. To state the theorem we
need a couple of definitions and exercises.

Let D be a digraph. By an odd double cycle we mean the directed graph
obtained from an odd cycle by replacing each edge by two directed edges, one in
each direction. By splitting a vertex of a digraph D we mean replacing a vertex v
by two vertices v1 and v2 such that v1v2 is a directed edge of the new graph, every
edge that used to have head v now has head v1 and every edge that used to have
tail v now has tail v2. Finally, by a weak odd double cycle we mean any digraph
that can be obtained from an odd double cycle by repeatedly splitting vertices.

Exercise 3.2.11. Prove that every weak odd double cycle is even.

We are now ready to state the characterization of even digraphs due to Seymour and
Thomassen [72]. A shorter proof using Theorem 2.6.2 is given by McCuaig [48].
Our proof takes advantage of the argument of Norine, Little and Teo [56] used to
prove Theorem 2.6.2.

Theorem 3.2.12. A digraph is even if and only if it has a subdigraph isomorphic

to a subdivision of an odd double cycle.

Proof. The “if” part follows from Exercise 3.2.11. To prove “only if” let D be an
even digraph. Then there is a bipartite graph G and a perfect matching M in G such
that D = D(G, M). By Theorem 3.2.9 the graph G has no Pfaffian orientation, and
hence by Exercise 2.6.3 it has a subgraph isomorphic to a subdivision of a Möbius
ladder with an odd number of rungs such that H is M -covered, and every rung
of H is M -covered. It follows that D(H, M) is a weak odd double cycle in D, as
required.

Exercise 3.2.13. Let G be a bipartite graph with bipartition (A, B) and let D be
the orientation of G obtained by directing every edge from A to B. Then D is a
Pfaffian orientation of G if and only if G has no central cycle of length divisible by
four.

Exercise 3.2.14. Let D be an orientation of a bipartite graph with bipartition
(A, B), let F be the set of all edges of D that are directed from B to A, and let C
be a cycle in D. Then C is oddly oriented if and only if |E(C) ∩ F | + |E(C)|/2 is
odd.

Exercise 3.2.15. Prove that the following problem is polynomial-time equivalent
to EVEN DIRECTED CYCLE:
Instance: A directed graph D
Question: Does there exist a cycle in D whose edge-set can be written as a
symmetric difference of the edge-sets of an even number of cycles of D?

Exercise 3.2.16. Prove that it is NP-hard to decide whether a digraph has an
even cycle containing a given edge.
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26 3. SOME EQUIVALENT PROBLEMS

3.3. An economics example

To motivate the topic of the next section we present a simple example from
Brualdi and Shader [7] of a single-commodity trade. The example is similar to one
discussed by Samuelson [68].

Following [7] we consider a market for bananas, where the following variables
come into play: the supply S of bananas, the demand D for bananas, the price p of
bananas, and a parameter t, interpreted as people’s taste in bananas. We assume
that the supply S = S(p) depends on price only, and that if price increases, then so
will increase the supply, because farmers will produce more bananas. Further, we
assume the demand D = D(p, t) depends on price and people’s taste, that demand
increases as people’s taste in bananas increases, and that demand increases as price
decreases. Thus we have

(3.1)
dS

dp
> 0,

∂D

∂t
> 0,

∂D

∂p
< 0.

The price p = p(t) depends on people’s taste. Let x = x(t) denote the amount of
bananas on the market, given that taste is t. We assume market equilibrium; that
is

S(p) − x(t) = 0(3.2)

D(p, t) − x(t) = 0.(3.3)

By differentiating with respect to t we obtain, in matrix terms

(3.4)

[

dS
dp

−1

∂D
∂p

−1

][

dp
dt

dx
dt

]

=

[

0

−∂D
∂t

]

Inequalities (3.1) imply that the system (3.4) has a unique solution satisfying

(3.5)
dp

dt
> 0 and

dx

dt
> 0.

Thus we have proven that the economic assumptions made earlier imply that both
the price and the amount of bananas on the market increase as people’s taste for
bananas increases. The next section discusses the matrix property that made the
conclusion possible.

3.4. Sign-nonsingular matrices

We say that two real m × n matrices A = (aij) and B = (bij) have the same
sign pattern if for all pairs of indices i, j the entries aij and bij have the same sign;
that is, they are both strictly positive, or they are both strictly negative, or they
are both zero. A real m×m matrix A is sign-nonsingular if every real m×m matrix
with the same sign pattern is non-singular. Thus we have the following decision
problem.

3.4.1. SIGN-NONSINGULARITY
Instance: A square matrix A
Question: Is A sign-nonsingular?

The next exercise shows that SIGN-NONSINGULARITY is a combinatorial
problem.
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3.5. THE POLYTOPE OF EVEN PERMUTATION MATRICES 27

Exercise 3.4.2. A matrix A is sign-nonsingular if and only if some term in the
determinantal expansion of A is non-zero, and every two such terms have the same
sign.

There is a related notion for rectangular matrices. We say that a real m × n
matrix is an L-matrix if every m × m submatrix of A is sign-nonsingular. Klee,
Ladner and Manber [35] proved that it is NP-hard to test whether an m×n matrix
is an L-matrix, but the proof does not apply to square matrices.

Maybee [46] proved that SIGN-NONSINGULARITY is polynomial-time equiv-
alent to EVEN DIRECTED CYCLE. We show polynomial-time equivalence to BI-
PARTITE PFAFFIAN ORIENTATION as follows.

Theorem 3.4.3. Let G be a bipartite graph, let D be an orientation of G, and let

A be the directed bipartite adjacency matrix of D. Then A is sign-nonsingular if

and only if G has a perfect matching and D is a Pfaffian orientation of G.

Proof. By Exercise 3.4.2 the matrix A is sign-nonsingular if and only if some term
in the determinantal expansion of A is non-zero, and every two such terms have
the same sign. Some term in the determinantal expansion of A is non-zero if and
only if G has a perfect matching, and by Exercises 3.1.3 every two non-zero terms
have the same sign if and only if D is a Pfaffian orientation of G.

As the example in the previous section indicates, in economic analysis one may
not know the exact quantitative relationships between different variables, but there
may be some qualitative information such as that one quantity rises if and only
if another does. Thus we may want to deduce qualitative information about the
solution to a linear system Ax = b from the knowledge of the sign-patterns of the
matrix A and vector b. That motivates the following definition. We say that the
linear system Ax = b is sign-solvable if for every real matrix B with the same
sign-pattern as A and every vector c with the same sign-pattern as b the system
By = c has a unique solution y, and its sign-pattern does not depend on the choice
of B and c. The study of sign-solvability was first proposed by Samuelson [68]. We
formalize it as follows.

3.4.4. SQUARE SIGN-SOLVABILITY
Instance: An n × n matrix A and a vector b ∈ Rn

Question: Is the linear system Ax = b sign-solvable?

It follows from standard linear algebra that square sign-solvability can be de-
cided efficiently if and only if sign-nonsingularity can. We leave that as an exercise.

Exercise 3.4.5. Prove that SIGN-NONSINGULARITY is polynomial-time equiv-
alent to SQUARE SIGN-SOLVABILITY.

3.5. The polytope of even permutation matrices

A square 0-1 matrix A is a permutation matrix if every row and every column of
A contain exactly one 1. A real matrix with non-negative entries is doubly stochastic

if all row sums and all column sums are 1. A classical theorem of Birkhoff [4]
characterizes the convex hull of permutation matrices; we state it as an exercise.

Exercise 3.5.1. A matrix belongs to the convex hull of permutation matrices if
and only if it is doubly stochastic.
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28 3. SOME EQUIVALENT PROBLEMS

If A = (aij) is an n×n permutation matrix, then there is a unique permutation
σ of [n] such aij = 1 if and only if j = σ(i). We say that A is an even permutation

matrix if σ is an even permutation. Let Q(n) denote the convex hull of even
permutation matrices. This polytope has been studied, but the complexity status
of the following decision problem is not known.

3.5.2. THE EVEN PERMUTATION MATRIX POLYTOPE MEMBERSHIP
Instance: A rational n × n matrix A
Question: Does A ∈ Q(n)?

Cunningham and Wang [11] pointed out that by a fundamental result of
Grötschel, Lovász and Schrijver [25], the membership problem 3.5.2 is solvable
in polynomial time if there is a polynomial-time algorithm for the following opti-
mization problem, where C · X denotes

∑n

i,j=1 cijxij .

3.5.3. OPTIMIZATION OVER THE EVEN PERMUTATION MATRIX POLY-
TOPE
Instance: A rational n × n matrix C
Objective: Find the maximum of C · X over all X ∈ Q(n).

We are interested in a special case of Problem 3.5.3 when C is a 0-1 matrix and
we want to determine whether the maximum is n. In that case let G be a bipartite
graph with bipartite adjacency matrix C. Since a maximum of Problem 3.5.3 is
attained at a vertex of Q(n), we deduce that the maximum is n if and only if G
has an even perfect matching, by which we mean a perfect matching such that the
corresponding permutation (say as in Exercise 3.1.3) is even. Thus the following
is polynomial-time equivalent to the special case of Problem 3.5.3 when C is a 0-1
matrix and we want to determine whether the maximum is n.

3.5.4. EVEN PERFECT MATCHING
Instance A bipartite graph G
Question Does G have no even perfect matching?

We now show that Problem 3.5.4 is polynomial-time equivalent to BIPARTITE
PFAFFIAN ORIENTATION. For that we need an exercise.

Exercise 3.5.5. Let G be a bipartite graph with bipartition (X, Y ), and let D
be the orientation of G obtained by orienting each edge from X to Y . Then D is
Pfaffian if and only if either every perfect matching of G is even, or every perfect
matching of G is not even.

Theorem 3.5.6. The problems EVEN PERFECT MATCHING and BIPARTITE

PFAFFIAN ORIENTATION are polynomial-time equivalent.

Proof. By Corollary 2.5.17 it suffices to prove the polynomial time equivalence of
EVEN PERFECT MATCHING and the restriction of IS ORIENTATION PFAF-
FIAN to bipartite graphs. Let G be an instance of EVEN PERFECT MATCHING,
let (X, Y ) be a bipartition of G, and let D be the orientation of G obtained by di-
recting all edges from X to Y . We may assume that G has a perfect matching M ,
for otherwise the answer is clear. We may also assume that M is not even. By
Exercise 3.5.5 the graph G has no even perfect matching if and only if D is Pfaffian.

Conversely, let G, D be a bipartite instance of IS ORIENTATION PFAFFIAN.
We may assume that G has a perfect matching M , for otherwise D is Pfaffian. If
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M is not even, then let H := G; otherwise let H be obtained from G by adding
four vertices and two edges e1, e2 in such a way that F is a perfect matching in G
if and only if F ∪ {e1, e2} is a perfect matching in H , and one is even if and only if
the other one is not. Then by Exercise 3.5.5 D is a Pfaffian orientation of G if and
only if H has no even perfect matching, as desired.
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