MATH/ISyE/CS 7510: Graph Algorithms \quad Spring 2009
Lecture 3 - January 21
Professor: Robin Thomas
Scribe: Dan Steffy

The following result is due to Jack Edmonds.
Theorem 1. Let G be a graph and let $\mathcal{M} \subseteq \mathbb{R}^{E(G)}$ denote the incidence vectors of all perfect matchings of G, then:

$$
\begin{align*}
& \operatorname{conv}(\mathcal{M})=\left\{\bar{x} \in \mathbb{R}^{E(G)}: \bar{x} \text { satisfies }(1),(2),(3)\right\} \\
& x(\delta(v))=1 \quad \forall v \in V(G) \tag{1}\\
& x(e) \geq 0 \quad \forall e \in E(G) \tag{2}\\
& x(C) \geq 1 \quad \forall \text { odd cuts } C \tag{3}
\end{align*}
$$

Proof. Let $P:=\left\{\bar{x} \in \mathbb{R}^{E(G)}: \bar{x}\right.$ satisfies (1), (2), (3) $\}$. Clearly $\operatorname{conv}(\mathcal{M}) \subseteq P$, because all perfect matchings satisfy constraints (1) - (3) and P is convex.

To show $P \subseteq \operatorname{conv}(\mathcal{M})$, suppose there exists $x \in P-\operatorname{conv}(\mathcal{M})$. Then $\exists \bar{w}$ and scalar t such that

$$
\begin{aligned}
& \sum_{e \in E(G)} \bar{w}_{e} y_{e} \geq t \quad \forall y \in \operatorname{conv}(\mathcal{M}) \\
& \text { and } \sum_{e \in E(G)} \bar{w}_{e} x_{e}<t
\end{aligned}
$$

Run the weighted matching algorithm on G using weight vector \bar{w}. Let y_{v}, Y_{C} be the dual solution and M be the corresponding matching found by the weighted matching algorithm. Then:

$$
\begin{gathered}
y_{u}+y_{v}+\sum_{C \ni e} Y_{C}=w_{e} \quad \forall e=u v \in M \\
\text { and } \quad Y_{C} 0 \quad \Longrightarrow \quad|C \cap M| \geq 1 .
\end{gathered}
$$

From this we derive a contradiction:

$$
t>\sum_{e \in E(G)} w_{e} x_{e} \geq \min _{z \in P} \sum_{e \in E(G)} w_{e} z_{e}=\sum_{e \in M} w_{e} \geq t
$$

Thus $P \subseteq \operatorname{conv}(\mathcal{M})$ which implies $P=\operatorname{conv}(\mathcal{M})$.
Definition: A graph G is said to be matching covered if it is connected and every edge belongs to a perfect matching.
Definition: aff $(\mathcal{M})=\left\{\sum_{i=1}^{k} \lambda_{i} \bar{x}_{i}: \bar{x}_{i} \in \mathcal{M}, \sum_{i=1}^{k} \lambda_{i}=1\right\}$.
Definition: $\operatorname{lin}(\mathcal{M})=\left\{\sum_{i=1}^{k} \lambda_{i} \bar{x}_{i}: \bar{x}_{i} \in \mathcal{M}\right\}$.
Definition: A cut C in a graph G is called a tight cut if $|C \cap M|=1$ for every perfect matching M in G.

Theorem 2. Let G be a matching covered graph, then

$$
\operatorname{aff}(\mathcal{M})=\left\{\bar{x} \in \mathbb{R}^{E(G)}: \bar{x}(C)=1 \forall \text { tight cuts } C\right\}
$$

Proof. Let $P=\left\{\bar{x} \in \mathbb{R}^{E(G)}: \bar{x}(C)=1 \forall\right.$ tight cuts $\left.C\right\}$. Clearly aff(M) $\subseteq P$ since all matchings, and affine combinations of matchings must satisfy $\bar{x}(C)=1$ for all tight cuts C.
To show $P \subseteq a f f(\mathcal{M})$, suppose $\bar{x}_{1} \in P$, so $\bar{x}_{1}(C)=1$ for all tight cuts C. Let $\bar{x}_{2}=\frac{1}{|\mathcal{M}|} \sum_{\bar{x} \in \mathcal{M}} \bar{x}$ and let $\bar{x}_{3}=\epsilon \bar{x}_{1}+(1-\epsilon) \bar{x}_{2}$ for $\epsilon>0$. If ϵ is sufficiently small then $\bar{x}_{3} \in \operatorname{conv}(\mathcal{M})$, and

$$
\bar{x}_{1}=\frac{1}{\epsilon} \bar{x}_{3}-\left(\frac{1-\epsilon}{\epsilon}\right) \bar{x}_{2} \in \operatorname{aff}(\mathcal{M})
$$

as desired.
Corollary 3. If G is a matching covered graph then:

$$
\operatorname{lin}(\mathcal{M})=\left\{\bar{x} \in \mathbb{R}^{E(G)}: \bar{x}(C)=\bar{x}(D) \quad \text { for any two tight cuts } C, D\right\} .
$$

Example 1. Let G be a bipartite graph with bipartition (A, B) and let $X \subseteq A$ such that $|N(X)|=$ $|X|+1$, then $\delta(X \cup N(X))$ is a tight cut.

Example 2. Let G be a graph and $X \subseteq V(G)$ such that $|X|=o(G \backslash X)$. Let H be an odd component of $G \backslash X$ with at least three vertices, then $\delta(V(H))$ is a tight cut.

Example 3. Suppose G is not 3-connected and let $G=G_{1} \cup G_{2}$ where $\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right|=2$, and $x \in V\left(G_{1}\right) \cap V\left(G_{2}\right)$. If $V\left(G_{1}\right), V\left(G_{2}\right)$ are odd, then $\delta\left(V\left(G_{2}\right)\right)$ is a tight cut. If $V\left(G_{1}\right), V\left(G_{2}\right)$ are even, then $\delta\left(V\left(G_{2}\right) \backslash\{x\}\right)$ is a tight cut.

Exercise 1. Find a tight cut in a matching covered graph that is not of any of the three forms in the preceding examples.

Exercise 2. Prove that in a matching covered bipartite graph, every tight cut is of the form described in Example 1.

Definition: A brace is a bipartite matching covered graph on at least four vertices that has no tight cuts.

Exercise 3. Let G be a bipartite matching covered graph on at least four vertices. Prove that G is a brace if and only if every matching of size two extends to a perfect matching.

Definition: A brick is a 3-connected graph G such that $G \backslash\{u, v\}$ has a perfect matching for every two distinct vertices $u, v \in V(G)$.

Theorem 4 (Lovász). A matching covered graph on at least four vertices has no non-trivial tight cut if and only if it is a brace or a brick.

