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The following result is due to Jack Edmonds.

Theorem 1. Let G be a graph and let M ⊆ R
E(G) denote the incidence vectors of all perfect

matchings of G, then:

conv(M) = {x̄ ∈ R
E(G) : x̄ satisfies (1), (2), (3)}

x(δ(v)) = 1 ∀v ∈ V (G) (1)

x(e) ≥ 0 ∀e ∈ E(G) (2)

x(C) ≥ 1 ∀ odd cuts C (3)

Proof. Let P := {x̄ ∈ R
E(G) : x̄ satisfies (1), (2), (3)}. Clearly conv(M) ⊆ P , because all perfect

matchings satisfy constraints (1) − (3) and P is convex.

To show P ⊆ conv(M), suppose there exists x ∈ P − conv(M). Then ∃w̄ and scalar t such that
∑

e∈E(G)

w̄eye ≥ t ∀y ∈ conv(M)

and
∑

e∈E(G)

w̄exe < t

Run the weighted matching algorithm on G using weight vector w̄. Let yv, YC be the dual solution
and M be the corresponding matching found by the weighted matching algorithm. Then:

yu + yv +
∑

C∋e

YC = we ∀e = uv ∈ M

and YC 0 =⇒ |C ∩ M | ≥ 1.

From this we derive a contradiction:

t >
∑

e∈E(G)

wexe ≥ min
z∈P

∑

e∈E(G)

weze =
∑

e∈M

we ≥ t

Thus P ⊆ conv(M) which implies P = conv(M).

Definition: A graph G is said to be matching covered if it is connected and every edge belongs to
a perfect matching.

Definition: aff(M) = {
∑

k

i=1 λix̄i : x̄i ∈ M,
∑

k

i=1 λi = 1}.

Definition: lin(M) = {
∑

k

i=1 λix̄i : x̄i ∈ M}.

Definition: A cut C in a graph G is called a tight cut if |C ∩ M | = 1 for every perfect matching
M in G.
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Theorem 2. Let G be a matching covered graph, then

aff(M) = {x̄ ∈ R
E(G) : x̄(C) = 1 ∀ tight cuts C}.

Proof. Let P = {x̄ ∈ R
E(G) : x̄(C) = 1 ∀ tight cuts C}. Clearly aff(M) ⊆ P since all matchings,

and affine combinations of matchings must satisfy x̄(C) = 1 for all tight cuts C.

To show P ⊆ aff(M), suppose x̄1 ∈ P , so x̄1(C) = 1 for all tight cuts C. Let x̄2 = 1
|M|

∑

x̄∈M x̄

and let x̄3 = ǫx̄1 + (1 − ǫ)x̄2 for ǫ > 0. If ǫ is sufficiently small then x̄3 ∈ conv(M), and

x̄1 =
1

ǫ
x̄3 −

(

1 − ǫ

ǫ

)

x̄2 ∈ aff(M)

as desired.

Corollary 3. If G is a matching covered graph then:

lin(M) = {x̄ ∈ R
E(G) : x̄(C) = x̄(D) for any two tight cuts C,D}.

Example 1. Let G be a bipartite graph with bipartition (A,B) and let X ⊆ A such that |N(X)| =
|X| + 1, then δ(X ∪ N(X)) is a tight cut.

Example 2. Let G be a graph and X ⊆ V (G) such that |X| = o(G\X). Let H be an odd component

of G \ X with at least three vertices, then δ(V (H)) is a tight cut.

Example 3. Suppose G is not 3-connected and let G = G1 ∪ G2 where |V (G1) ∩ V (G2)| = 2, and

x ∈ V (G1) ∩ V (G2). If V (G1), V (G2) are odd, then δ(V (G2)) is a tight cut. If V (G1), V (G2) are

even, then δ(V (G2) \ {x}) is a tight cut.

Exercise 1. Find a tight cut in a matching covered graph that is not of any of the three forms in

the preceding examples.

Exercise 2. Prove that in a matching covered bipartite graph, every tight cut is of the form described

in Example 1.

Definition: A brace is a bipartite matching covered graph on at least four vertices that has no
tight cuts.

Exercise 3. Let G be a bipartite matching covered graph on at least four vertices. Prove that G is

a brace if and only if every matching of size two extends to a perfect matching.

Definition: A brick is a 3-connected graph G such that G\{u, v} has a perfect matching for every
two distinct vertices u, v ∈ V (G).

Theorem 4 (Lovász). A matching covered graph on at least four vertices has no non-trivial tight

cut if and only if it is a brace or a brick.
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