
CHAPTER 1

Matching theory

In this chapter we review the matching theory that will be needed later on.

1.1. Matchings and matching decomposition

All graphs in this book are finite, may have loops and parallel edges and are
undirected. Similarly, directed graphs or digraphs may have loops and parallel edges.
Most of our terminology is standard and can be found in many textbooks, such
as [5, 16, 84]. In particular, cycles and paths have no repeated vertices. A matching

in a graph G is a set M ⊆ E(G) such that every vertex of G is incident with at
most one edge of G. We say that M saturates a vertex v ∈ V (G) if v is incident
with an edge of M . A matching M in a graph G is a perfect matching if it saturates
every vertex of G. The following two classical theorems characterize graphs without
perfect matchings; their proofs can be found in almost any graph theory texbook.
The first is due to Hall [26] and the second is due to Tutte [80]. For a graph G

and X ⊆ V (G) we denote by N(X) the set of vertices of V (G) − X that have a
neighbor in X .

Theorem 1.1.1. Let G be a bipartite graph with bipartition (A, B). Then G has a

matching saturating every vertex of A if and only if |N(X)| ≥ |X | for every X ⊆ A.

Theorem 1.1.2. A graph G has a perfect matching if and only if for every set

X ⊆ V (G) the graph G\X has at most |X | components with odd number of vertices.

In many matching-related problems edges that do not belong to any perfect
matching are irrelevant and may be deleted. That motivates the following defini-
tions. Let G be a graph, and let k ≥ 0 be an integer. We say that G is k-extendable

if every matching M ⊆ E(G) of size at most k is contained in a perfect matching
of G. A 1-extendable connected graph is called matching-covered. Matching cov-
ered bipartite graphs are closely related to strongly connected graph by means of
an elementary, but important, construction. A digraph D is strongly connected if
for every two vertices u and v it has a directed path from u to v. It is strongly

k-connected , where k ≥ 1 is an integer, if for every set X ⊆ V (D) of size less than
k, the digraph D\X is strongly connected. Let G be a bipartite graph with bipar-
tition (A, B), and let M be a perfect matching in G. We define D =D(G, M) to be
the digraph obtained from G by directing every edge from A to B, and contracting
every edge of M .

Exercise 1.1.3. Let G be a connected bipartite graph with bipartition (A, B), let
M be a perfect matching in G, let D := D(G, M), and let k ≥ 0 be an integer.
Then the following conditions are equivalent:
(1) G is k-extendable
(2) for every set X ⊆ A either N(X) = B or |N(X)| ≥ |X |+ k,
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(3) D is strongly k-connected.

Exercise 1.1.4. Define k-extendability of bipartite graphs for k < 0 so that (1)
and (2) of Exercise 1.1.3 remain equivalent.

There is an ear-decomposition of matching-covered graphs, an analogue of the
better known ear-decomposition of strongly connected graphs, the following.

Exercise 1.1.5. Prove that a bipartite graph G is matching-covered if and only
if it can be written as G = G0 ∪ G1 ∪ · · · ∪ Gk, where k ≥ 0 is an integer, G0 is
isomorphic to K2, and for i = 1, 2, . . . , k the graph Gi is an odd path with both
ends in G0 ∪G1 ∪ · · · ∪Gi−1 and otherwise disjoint from it.

Exercise 1.1.6. Let G be a matching-covered bipartite graph with bipartition
(A, B), and let M be a perfect matching in G. Prove that for every a ∈ A and
every b ∈ B there exists an M -alternating path P in G with ends a and b such that
the first and last edge of P belong to M .

Let G be a graph, and let X ⊆ V (G). We use δ(X) to denote the set of edges
with one end in X and the other in V (G) −X . A cut in a graph G is any set of
edges of the form δ(X) for some X ⊆ V (G). The sets X and V (G) −X are called
the shores of the cut δ(X). A cut C is a tight cut if |C ∩M | = 1 for every perfect
matching M in G. Every cut of the form δ({v}) in a graph with a perfect matching
is tight; those are called trivial, and all other tight cuts are called nontrivial.

Exercise 1.1.7. Prove that the shores of a tight cut in a matching covered-graph
G induce connected subgraphs of G.

Let G be a graph. A set X ⊆ V (G) is called a barrier in G if G\X has exactly
|X | odd components. The following exercises give important examples of tight cuts.

Exercise 1.1.8. Let G be a graph, let X ⊆ V (G) be a barrier in G, and let C be
an odd component of G\X . Then δ(V (C)) is a tight cut.

Exercise 1.1.9. Let G be a matching-covered graph, let u, v be distinct vertices of
G such that G\{u, v} is disconnected, and let A be the vertex-set of a component
of G\{u, v}. Prove that if |A| is even, then δ(A ∪ {u}) is a nontrivial tight cut.
(Notice that if |A| is odd, then δ(A) is a tight cut of the form described in the
previous exercise).

We say a tight cut is a barrier cut if it is of the form described in Exercise 1.1.8,
and we say that it is a 2-separation cut if it is of the form described in Exercise 1.1.9.

Exercise 1.1.10. Let G be a a bipartite matching-covered graph with bipartition
(A, B). Prove that every nontrivial tight cut is of the form δ(X ∪ N(X)), where
X ⊆ A and |N(X)| = |X |+ 1 < |A|. Deduce that every nontrivial tight cut in G is
a barrier cut.

Exercise 1.1.11. Find a matching-covered graph G and a nontrivial tight cut C

in G that is not a barrier cut or a 2-separation cut.

On the other hand, Theorem 1.1.12 below implies that if a graph has a nontrivial
tight cut, then it has a nontrivial barrier or 2-separation cut. A brick is a 3-
connected graph G such that G\{u, v} has a perfect matching for every two distinct
vertices u, v of G. A brace is a bipartite graph such that every matching of size
at most two is a subset of a perfect matching. The following result of Edmonds,
Lovász and Pulleyblank [17, 18] characterizes graphs with no notrivial tight cut.
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Theorem 1.1.12. Let G be a matching covered graph. Then G has no nontrivial

tight cut if and only if G is a brick or a brace.

Exercise 1.1.13. For every matching-covered bipartite graph G with bipartition
(A, B) the following conditions are equivalent:

(i) G is a brace,
(ii) G has no tight cut,
(iii) for every set X ⊆ A either N(X) = B or |N(X)| ≥ |X |+ 2,
(iv) for every four distinct vertices a, a′ ∈ A, b, b′ ∈ B the graph G\{a, a′, b, b′}

has a perfect matching.

Let δ(X) be a cut in a graph G. Let G1 be obtained from G by identifying all
vertices in X into a single vertex, and let G2 be defined analogously by identifying
all vertices in V (G) − X . We say that G1 and G2 are the two C-contractions of
G. Let us clarify a technical point here. We assume that E(G1) ⊆ E(G); in other
words, during the contraction we keep the same edges, but change the incidences
of some. In particular, the operation of C-contraction may create parallel edges.

Exercise 1.1.14. Let G be a matching-covered graph, let C be a tight cut in G,
and let G1 and G2 be the two C-contractions. Let X ⊆ V (G)−V (G2). Then δ(X)
is a cut in both G and G1, and it is a tight cut in G if and only if it is a tight cut
in G1.

It follows from Excercises 1.1.7 and 1.1.14 that if G is matching-covered, then
so are G1 and G2. Many matching-related problems can be solved for G if we are
given the corresponding solutions for G1 and G2.

Let us now apply this construction recursively, as follows. Let G be a matching-
covered graph, and let initially L = {G}. If some graph H in L has a nontrivial
tight cut C, then we replace H by the two C-contractions of H , and continue
this process until L consists entirely of graphs with no nontrivial tight cut. By
Theorem 1.1.12 the members of L are bricks and braces. Let the list L′ consist of
the underlying simple graphs of members of L, each graph listed as many times
as it appears in the list. We say that the members of L′ are the bricks and braces

of G. Lovász [44] proved the following.

Theorem 1.1.15. For every matching-covered graph, the list of bricks and braces

of G is, up to isomorphism, independent of the choice of tight cuts during the

decomposition.

Thus for a matching-covered graph G we define b(G) to be the number of bricks
in the list of bricks and braces of G, and we define p(G) to be the number of those
bricks of G isomorphic to the Petersen graph. In particular, we say that a graph G

has at most one brick if b(G) ≤ 1.
The process of arriving at the graphs in L is usually called a tight cut decom-

position of G. However, for later reference we prefer an equivalent definition, as
follows. We say that two cuts δ(X) and δ(Y ) in a graph G cross if each of the four
sets X ∩ Y , X − Y , Y −X , and V (G) −X − Y is non-empty. A family F of cuts
in G is called laminar if no two members of F cross. Each of the tight cuts used
in process of obtaining L is a tight cut in G by Exercise 1.1.14; let F denote the
set of all those tight cuts in G. Then F is a maximal laminar family of nontrivial
tight cuts in G, and, conversely, every maximal laminar family of nontrivial tight
cuts gives rise to a list L as above. In light of these remarks we define a tight cut

Pfaffian orientations of graphs. 7 January 2009 Confidential draft. c© S. Norine and R. Thomas
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decomposition of a graph G to be any maximal laminar family of nontrivial tight
cuts in G. By Theorem 1.1.15 every two tight cut decompositions of the same graph
have the same cardinality.

1.2. Building bricks

The following theorem was conjectured by Lovász and proved by de Carvalho,
Lucchesi and Murty [12, 13]. A proof was also announced by Lovász and Vempala,
but has not yet appeared. By a prism we mean the unique 3-regular planar graph
on six vertices.

Theorem 1.2.1. Every brick G other than K4, the prism and the Petersen graph

has an edge e such that G\e is a matching-covered graph with at most one brick,

not isomorphic to the Petersen graph.

Theorem 1.2.1 is very useful, and therefore we give a proof, even though it is
quite long and technical. In fact, we will prove a stronger statement, also due to
de Carvalho, Lucchesi and Murty [14]. If v is a vertex of degree two in a graph
G adjacent to two distinct neighbors, and H is the graph obtained from G by
contracting both edges incident with v, then we say that H was obtained from G

by bicontracting the vertex v. We say that a graph H is a retract of a graph G if H

is obtained from G by repeatedly bicontracting all vertices of degree two.

Theorem 1.2.2. Every brick G other than K4, the prism and the Petersen graph

has an edge e such that the retract of G\e is a brick not isomorphic to the Petersen

graph.
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