
10. PLANAR GRAPHS CONTINUED

10A. SEPARATORS

A1. Exercise. Prove that for every tree T on n vertices there exists a separation (T1, T2) of T of

order at most one such that |V (T1)|, |V (T2)| > 1
3

n.

A2. Exercise. Prove that for every series–parallel graph G on n vertices there exists a separation

(G1, G2) of G of order at most two such that |V (G1)|, |V (G2)| > 1
3

n.

A3. Definition. A planar drawing Γ is a triangulation if every face of Γ is bounded by a circuit

of length three. A near-triangulation is a planar drawing such that every face, except possibly the

unbounded one, is bounded by a circuit of length three.

A4. Lemma. Let Γ be a simple near-triangulation with the unbounded face bounded by a circuit

C. Let u and v be two distinct vertices of C, let P1 and P2 be the two subpaths of C with ends u

and v and union C, and let S be a set of vertices of Γ with u, v ∈ S. Then either there exists a

path P in Γ with ends u and v satisfying V (P ) ⊆ S, or there exists a path Q in Γ between V (P1)

and V (P2) with V (Q) ∩ S = ∅.
Proof. We proceed by induction on V (Γ). We may assume that P1 does not satisfy the conclusion

of the lemma, and hence there exists a vertex w ∈ V (P1)−S. First let us assume that some vertex

w′ ∈ V (C) is adjacent to w in Γ, but not in C. Then Γ has a 2-separation (Γ1,Γ2) such that

V (Γ1) ∩ V (Γ2) = {w,w′}, V (Γ1) − V (Γ2) 6= ∅ and V (Γ2) − V (Γ1) 6= ∅. If w′ ∈ V (P1), then one

of Γ1, Γ2 contains P2, say Γ2. The lemma then follows from the induction hypothesis applied to

Γ2. Thus we may assume that w′ 6∈ V (P1). We may also assume that w′ ∈ S, for otherwise the

path with vertex-set {w,w′} satisfies the conclusion of the lemma. Finally, we may assume that

the notation is chosen so that u ∈ V (Γ1) and v ∈ V (Γ2). We apply the induction hypothesis to

the triples Γ1, u, w′ and Γ2, v, w′. The lemma follows by suitably combining the resulting paths.

We have thus shown that if C has a vertex w′ as above, then the lemma holds. We may

therefore assume that no such vertex exists. Since Γ is a simple near-triangulation, the neighbors

of w induce a path R in Γ. By the nonexistence of a vertex w′ as above we deduce that R is disjoint

from C, except for its ends. Let Γ′ = Γ\w; then Γ′ is a near-triangulation with the unbounded

region bounded by the circuit R∪C\w. The lemma now follows easily from the induction hypothesis

applied to Γ′.
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10A. SEPARATORS

A5. Lemma. Let Γ be a near-triangulation with the infinite face bounded by a circuit C. Let

the vertices of C be v0, v1, . . . , vt = v0 (in order), let i be an integer with 0 < i < t, and let k

be a positive integer. Then either Γ has k pairwise disjoint paths between {v0, v1, . . . , vi} and

{vi, vi+1, . . . , vt}, or there exists a path P in Γ between v0 and vi with |V (P )| < k.

Proof. By Menger’s theorem there either exist the k disjoint paths as in the statement of the lemma,

or there exists a set S ⊆ V (Γ) such that |S| < k and there is no path between {v0, v1, . . . , vi} and

{vi, vi+1, . . . , vt} in Γ\S. By 10A4 there exists a path P between v0 and vi with V (P ) ⊆ S. Thus

|V (P )| < k, as desired.

A6. Theorem. (Lipton, Tarjan [5]) For every planar graph on n vertices there exists a separation

(G1, G2) of G of order at most 2
√

2
√

n such that |V (G1)|, |V (G2)| > 1
3

n.

Proof. We follow [2]. We may assume that G is a planar drawing, that it has no loops or multiple

edges, that n ≥ 3 and (by adding new edges to G) that G is a triangulation. Let k = ⌊
√

2n⌋. For

any circuit C of G we denote by A(C) and B(C) the sets of vertices drawn inside C and outside

C, respectively; thus (A(C), B(C), V (C)) is a partition of V (G), and no vertex in A(C) is adjacent

to any in B(C). Choose a circuit C of G such that

(i) |V (C)| ≤ 2k

(ii) |B(C)| < 2
3 n

(iii) subject to (i) and (ii), |A(C)| − |B(C)| is minimum.

This is possible, because the circuit bounding the infinite region satisfies (i) and (ii). Let G1 be

the subgraph of G induced by A(C) ∪ C, and let G2 be the subgraph of G induced by B(C) ∪ C.

We claim that (G1, G2) satisfies the conclusion of the theorem. We suppose, for a contradiction,

that that is not the case; then |A(C)| ≥ 2
3 n. Let D be the subgraph of G drawn in the closed disc

bounded by C. For u, v ∈ V (C), let c(u, v) (respectively, d(u, v)) be the number of edges in the

shortest path of C (respectively, D) between u and v.

(1) c(u, v) = d(u, v) for all u, v ∈ V (C).

For certainly d(u, v) ≤ c(u, v) since C is a subgraph of D. If possible, choose a pair u, v ∈ V (C)

with d(u, v) minimum such that d(u, v) < c(u, v). Let P be a path of D between u and v, with

d(u, v) edges. Suppose that some internal vertex w of P belongs to V (C). Then

d(u,w) + d(w, v) = d(u, v) < c(u, v) ≤ c(u,w) + c(w, v)

and so either d(u,w) < c(u,w) or d(w, v) < c(w, v), in either case contrary to the choice of u, v.

Thus there is no such w. Let C,C1, C2 be the three circuits of C ∪ P where |A(C1)| ≥ |A(C2)|.
Now |B(C1)| < 2

3 n, since

n − |B(C1)| = |A(C1)| + |V (C1)| >
1

2
(|A(C1)| + |A(C2)| + |V (P )| − 2) =

1

2
|A(C)| ≥ 1

3
n.

But |V (C1)| ≤ |V (C)| since |E(P )| ≤ c(u, v), and so C1 satisfies (i) and (ii). By (iii), B(C1) =

B(C), and in particular c(u, v) ≤ 1, which is impossible since d(u, v) < c(u, v). This proves (1).
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10A. SEPARATORS

(2) |V (C)| = 2k.

For suppose that |V (C)| < 2k. Choose e ∈ E(C), and let P be the two-edge path of D such

that the union of P and e forms a circuit bounding a region inside of C. Let v be the middle vertex

of P , and let P ′ be the path C\e. Now P 6= P ′ since A(C) 6= ∅, and so v 6∈ V (C) by (1). Hence

P ∪ P ′ is a circuit satisfying (i) and (ii), contrary to (iii). This proves (2).

Let the vertices of C be v0, v1, . . . , v2k−1, v2k = v0, in order.

(3) There are k + 1 vertex-disjoint paths of D between {v0, v1, . . . , vk} and {vk, vk+1, . . . , v2k}.

Indeed, otherwise, by the previous lemma, there is a path of D between v0 and vk with less

than k vertices, contrary to (1). This proves (3).

Let the paths of (3) be P0, P1, . . . , Pk, where Pi has ends vi, v2k−i (0 ≤ i ≤ k). By (1),

|V (Pi)| ≥ min(2i + 1, 2(k − i) + 1)

and so

n = |V (G)| ≥
∑

0≤i≤k

min(2i + 1, 2(k − i) + 1) ≥ 1

2
(k + 1)2.

Yet k + 1 >
√

2n by the definition of k, a contradiction. Thus our assumption that |A(C)| ≥ 2
3 n

was false, and so |A(C)| < 2
3 n and (G1, G2) satisfies the theorem.

A7. Remark. Lipton and Tarjan [5] gave a linear time algorithm to find a separation as in 10A6.

The proof we presented gives a quadratic algorithm.

A8. Remark. It is not known what is the best constant c that can replace 2
√

2 in 10A6. It is

known [2, 4] that 1.555
.
= 1

3

√

4π
√

3 ≤ c ≤ 3
2

√
2.

A9. Remark. There are several applications of 10A6 [6, 7]. Here is one. Notice that planarity is

only used to find a separation as in 10A6.

A10. Proposition. There exists an algorithm that finds the size of a maximum independent set

of a planar graph on n vertices in time 2O(
√

n).

Proof. Let G be a planar graph, and let F ⊆ Z ⊆ V (G). We denote by α(G,Z,F ) the size of

the maximum independent set I in G such that I ∩ Z = F . For a separation (A,B) of G let

C = V (A) ∩ V (B); then

α(G,Z,F ) = max {α(A,Z ∪ C,F ∪ X) + α(B,Z ∪ C,F ∪ X) − |X| − |F ∩ C|} ,

where the maximum is taken over all sets X ⊆ V (A) ∩ V (B) − Z. Using this formula and 10A6

recursively gives an algorithm to compute α(G,Z,F ), whose worst case running time f(n) satisfies

the recursion

f(n) ≤ O(n2) + 2O(
√

n) max(f(n1) + f(n2)),
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10A. SEPARATORS

where the maximum is taken over all integers n1, n2 with n1, n2 > 1
3

n and n1 + n2 ≤ n + 2
√

2
√

n.

It follows that f(n) = 2O(
√

n).

A11. Remark. Our next objective is to prove a separator theorem for graphs with an excluded

minor. Recall that X-flaps and havens are defined in the tree-width chapter.

A12. Lemma. [1] Let G be a graph with n vertices, let A1, . . . , Ak ⊆ V (G), and let r be a real

number with r ≥ 1. Then either

(i) there is a tree T in G with |V (T )| ≤ r such that V (T ) ∩ Ai 6= ∅ for i = 1, . . . , k, or

(ii) there exists Z ⊆ V (G) with |Z| ≤ (k − 1)n/r, such that no Z-flap intersects all of A1, . . . , Ak.

Proof. We may assume that k ≥ 2. Let G1, . . . , Gk−1 be isomorphic copies of G, mutually disjoint.

For each v ∈ V (G) and 1 ≤ i ≤ k− 1, let vi be the corresponding vertex of Gi. Let J be the graph

obtained from G1∪· · · ∪Gk−1 by adding, for 2 ≤ i ≤ k−1 and all v ∈ Ai, an edge joining vi−1 and

vi. Let X = {v1 : v ∈ A1} and Y = {vk−1 : v ∈ Ak}. For each u ∈ V (J), let d(u) be the number

of vertices in the shortest path of J between X and u (or ∞ if there is no such path). There are

two cases:

Case 1. d(u) ≤ r for some u ∈ Y .

Let P be a path of J between X and Y with ≤ r vertices. Let

S = {v ∈ V (G) : vi ∈ V (P ) for some i with 1 ≤ i ≤ k − 1}.

Then |S| ≤ |V (P )| ≤ r, the subgraph of G induced on S is connected, and |S ∩ Ai| 6= ∅ for

1 ≤ i ≤ k. Thus (i) holds.

Case 2. d(u) > r for all u ∈ Y .

Let t be the least integer with t ≥ r. For 1 ≤ j ≤ t, let Zj = {u ∈ V (J) : d(u) = j}. Since

|V (J)| = (k − 1)n and Z1, . . . , Zt are mutually disjoint, one of them, say Zj , has cardinality at

most (k − 1)n/t ≤ (k − 1)n/r. Now every path of J between X and Y has a vertex in Zj , because

d(u) ≥ j for all u ∈ Y . Let

Z = {v ∈ V (G) : vi ∈ Zj for some i with 1 ≤ i ≤ k − 1}.

Then |Z| ≤ |Zj | ≤ (k − 1)n/r, and we claim that Z satisfies (ii). Suppose that F is a Z-flap of G

which intersects all of A1, . . . , Ak. Let ai ∈ F ∩ Ai (1 ≤ i ≤ k), and for 1 ≤ i ≤ k − 1 let Pi be a

path of G with V (Pi) ⊆ F and with ends ai, ai+1. Let P i be the path of Gi corresponding to Pi.

Then V (P 1) ∪ · · · ∪ V (P k−1) includes the vertex set of a path of J between X and Y , and yet is

disjoint from Zj , a contradiction. Thus, there is no such F , and so (ii) holds.

A13. Open problem. Can the bound (k − 1)n/r in the lemma be improved to o(k)n/r? That

would imply a corresponding improvement in 10A16 below.
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A14. Definition. A cluster in a graph G is a set C of vertex-disjoint trees in G such that for

every two distinct members T, T ′ ∈ C there exists an edge of G with one end in V (T ) and the other

end in V (T ′). Thus if G has a cluster of cardinality h, then G has a Kh-minor.

A15. Theorem. [1] Let h ≥ 1 be an integer and let G be a graph with n vertices and with a

haven of order h3/2n1/2 + 1. Then G has a Kh-minor.

Proof. Let β be a haven in G of order h3/2n1/2 +1. Choose X ⊆ V (G) and a cluster C with |C| ≤ h

such that

(i) X ⊆ ⋃

(V (C) : C ∈ C),

(ii) |X ∩ V (C)| ≤ h1/2n1/2 for each C ∈ C,

(iii) V (C) ∩ β(X) = ∅ for each C ∈ C, and

(iv) subject to (i), (ii), and (iii), |C| + |X| + 3|β(X)| is minimum.

This is possible, because setting C = X = ∅ satisfies (i), (ii), and (iii). Let C = {C1, . . . , Ck}. We

suppose for a contradiction that k < h. For 1 ≤ i ≤ k, let Ai be the set of all v ∈ β(X) adjacent

in G to a vertex of Ci. Let G′ be the restriction of G to β(X). By 10A12 applied to G′ with

r = h1/2n1/2, one of the following cases holds:

Case 1. There is a tree T of G′ with |V (T )| ≤ h1/2n1/2, such that V (T ) ∩ Ai 6= ∅ for 1 ≤ i ≤ k.

Let C′ = C ∪ {T} and X ′ = X ∪ V (T ); then C′ is a cluster and for each C ∈ C′,

V (C) ∩ β(X ′) ⊆ V (C) ∩ (β(X)− V (T )) = ∅.

This contradicts (iv).

Case 2. There exists Z ⊆ β(X) with |Z| ≤ (k − 1)|β(X)|/h1/2n1/2 ≤ h1/2n1/2 such that no Z-flap

of G′ intersects all of A1, . . . , Ak. Let Y = X ∪ Z. Since k ≤ h − 1, it follows that |Y | ≤ h3/2n1/2,

and so β(Y ) exists and β(Y ) ⊆ β(X). Since β(Y ) is a Z-flap of G′ there exists i with 1 ≤ i ≤ k

such that β(Y ) ∩ Ai = ∅. Extend Ci to a maximal tree C ′
i of G disjoint from β(Y ) and from each

Cj (j 6= i). Let Z ′ = V (C ′
i)∩Z, let X ′ = Z ′ ∪ (X − V (Ci)), and let W = V (C ′

i)∪ (V (G)− β(X)).

We claim that β(X ′) ∩ W = ∅. For suppose not. Since β(Y ) ⊆ β(X ′), there is a path of G

between W and β(Y ) contained within β(X ′) and hence disjoint from X ′. Since W ∩ β(Y ) = ∅,
there are two consecutive vertices u, v of this path with u ∈ W and v ∈ V (G)−W ⊆ β(X). Since

u, v are adjacent it follows that u ∈ X ∪ β(X), and so

u ∈ (X ∪ β(X)) ∩ (W − X ′) ⊆ V (C ′
i).

Since v 6∈ W it follows from the maximality of C ′
i that v ∈ β(Y ). Since u 6∈ β(Y ) we deduce that

u ∈ Y , and so

u ∈ Y ∩ (V (C ′
i) − X ′) ⊆ V (Ci).

But then v ∈ Ai, which is impossible since Ai∩β(Y ) = ∅. This proves our claim that β(X ′)∩W = ∅.
Hence, β(X ′) ⊆ β(X). Let C′ = (C − {Ci}) ∪ {C ′

i}; then C′ is a cluster. We observe that
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10B. CHARACTERIZATIONS OF PLANARITY

(i) X ′ ⊆ ⋃

(V (C) : C ∈ C′); for Z ′ ⊆ V (C ′
i),

(ii) |X ′ ∩ V (C)| ≤ h1/2n1/2 for each C ∈ C′; for if C 6= C ′
i then X ′ ∩ V (C) = X ∩ V (C), and

X ′ ∩ V (C ′
i) = Z ′, and

(iii) V (C) ∩ β(X ′) = ∅ for each C = C′; for β(X ′) ∩ W = ∅, as we have seen.

By (iv),

|C′| + |X ′| + 3|β(X ′)| ≥ |C| + |X| + 3|β(X)|.

But |C′| = |C| and X ′∪β(X ′) ⊆ (X ∪β(X))− (X∩V (Ci)), and so X ∩V (Ci) = ∅. Then C −{Ci},
X satisfy (i), (ii), and (iii), contrary to (iv).

In both cases, therefore, we have obtained a contradiction. Thus our assumption that k < h

was incorrect, and so k = h and G has a Kh-minor, as required.

A16. Theorem. [1] Let h be an integer, and let G be a graph on n vertices with no Kh-minor.

Then G has a separation (G1, G2) of order at most h3/2n1/2 such that |V (G1)|, |V (G2)| ≥ n/3.

Proof. Suppose that G does not have a separation as stated in the theorem. Then for every set

X ⊆ V (G) with |X| ≤ h3/2n1/2 some component of G\X has more than n/2 vertices (exercise).

Define β(X) to be that component. Then β is a haven of order h3/2n1/2+1, and hence the theorem

follows from 10A15.

A17. Open problem. Can the bound h3/2n1/2 be improved to O(hn1/2)? That would be best

possible up to a constant factor. See also 10A13.

A18. Remark. Bui, Fukuyama and Jones [3] have shown that that it is NP-hard to determine,

given a planar graph G, the smallest integer k such that G has a separation (G1, G2) of order k

satisfying |V (G1)|, |V (G2)| ≥ |V (G)|/3.

10B. CHARACTERIZATIONS OF PLANARITY

B1. Exercise. If G is a planar graph, then the following are equivalent:

(i) G is a block not isomorphic to K0, K1, or K2,

(ii) there exists a planar drawing of G such that every face is bounded by a circuit,

(iii) in every planar drawing of G, every face is bounded by a circuit.

B2. Definition. A graph G′ is called an abstract dual of a graph G if M(G′) is isomorphic to

M∗(G).

B3. Exercise. Find a graph G such that some graph is an abstract dual of G, but not a geometric

dual.
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