10. PLANAR GRAPHS CONTINUED

10A. SEPARATORS

A1. Exercise. Prove that for every tree T on n vertices there exists a separation $\left(T_{1}, T_{2}\right)$ of T of order at most one such that $\left|V\left(T_{1}\right)\right|,\left|V\left(T_{2}\right)\right|>\frac{1}{3} n$.

A2. Exercise. Prove that for every series-parallel graph G on n vertices there exists a separation $\left(G_{1}, G_{2}\right)$ of G of order at most two such that $\left|V\left(G_{1}\right)\right|,\left|V\left(G_{2}\right)\right|>\frac{1}{3} n$.

A3. Definition. A planar drawing Γ is a triangulation if every face of Γ is bounded by a circuit of length three. A near-triangulation is a planar drawing such that every face, except possibly the unbounded one, is bounded by a circuit of length three.

A4. Lemma. Let Γ be a simple near-triangulation with the unbounded face bounded by a circuit C. Let u and v be two distinct vertices of C, let P_{1} and P_{2} be the two subpaths of C with ends u and v and union C, and let S be a set of vertices of Γ with $u, v \in S$. Then either there exists a path P in Γ with ends u and v satisfying $V(P) \subseteq S$, or there exists a path Q in Γ between $V\left(P_{1}\right)$ and $V\left(P_{2}\right)$ with $V(Q) \cap S=\emptyset$.
Proof. We proceed by induction on $V(\Gamma)$. We may assume that P_{1} does not satisfy the conclusion of the lemma, and hence there exists a vertex $w \in V\left(P_{1}\right)-S$. First let us assume that some vertex $w^{\prime} \in V(C)$ is adjacent to w in Γ, but not in C. Then Γ has a 2-separation $\left(\Gamma_{1}, \Gamma_{2}\right)$ such that $V\left(\Gamma_{1}\right) \cap V\left(\Gamma_{2}\right)=\left\{w, w^{\prime}\right\}, V\left(\Gamma_{1}\right)-V\left(\Gamma_{2}\right) \neq \emptyset$ and $V\left(\Gamma_{2}\right)-V\left(\Gamma_{1}\right) \neq \emptyset$. If $w^{\prime} \in V\left(P_{1}\right)$, then one of Γ_{1}, Γ_{2} contains P_{2}, say Γ_{2}. The lemma then follows from the induction hypothesis applied to Γ_{2}. Thus we may assume that $w^{\prime} \notin V\left(P_{1}\right)$. We may also assume that $w^{\prime} \in S$, for otherwise the path with vertex-set $\left\{w, w^{\prime}\right\}$ satisfies the conclusion of the lemma. Finally, we may assume that the notation is chosen so that $u \in V\left(\Gamma_{1}\right)$ and $v \in V\left(\Gamma_{2}\right)$. We apply the induction hypothesis to the triples $\Gamma_{1}, u, w^{\prime}$ and $\Gamma_{2}, v, w^{\prime}$. The lemma follows by suitably combining the resulting paths.

We have thus shown that if C has a vertex w^{\prime} as above, then the lemma holds. We may therefore assume that no such vertex exists. Since Γ is a simple near-triangulation, the neighbors of w induce a path R in Γ. By the nonexistence of a vertex w^{\prime} as above we deduce that R is disjoint from C, except for its ends. Let $\Gamma^{\prime}=\Gamma \backslash w$; then Γ^{\prime} is a near-triangulation with the unbounded region bounded by the circuit $R \cup C \backslash w$. The lemma now follows easily from the induction hypothesis applied to Γ^{\prime}.

10A. SEPARATORS

A5. Lemma. Let Γ be a near-triangulation with the infinite face bounded by a circuit C. Let the vertices of C be $v_{0}, v_{1}, \ldots, v_{t}=v_{0}$ (in order), let i be an integer with $0<i<t$, and let k be a positive integer. Then either Γ has k pairwise disjoint paths between $\left\{v_{0}, v_{1}, \ldots, v_{i}\right\}$ and $\left\{v_{i}, v_{i+1}, \ldots, v_{t}\right\}$, or there exists a path P in Γ between v_{0} and v_{i} with $|V(P)|<k$.
Proof. By Menger's theorem there either exist the k disjoint paths as in the statement of the lemma, or there exists a set $S \subseteq V(\Gamma)$ such that $|S|<k$ and there is no path between $\left\{v_{0}, v_{1}, \ldots, v_{i}\right\}$ and $\left\{v_{i}, v_{i+1}, \ldots, v_{t}\right\}$ in $\Gamma \backslash S$. By 10A4 there exists a path P between v_{0} and v_{i} with $V(P) \subseteq S$. Thus $|V(P)|<k$, as desired.

A6. Theorem. (Lipton, Tarjan [5]) For every planar graph on n vertices there exists a separation $\left(G_{1}, G_{2}\right)$ of G of order at most $2 \sqrt{2} \sqrt{n}$ such that $\left|V\left(G_{1}\right)\right|,\left|V\left(G_{2}\right)\right|>\frac{1}{3} n$.
Proof. We follow [2]. We may assume that G is a planar drawing, that it has no loops or multiple edges, that $n \geq 3$ and (by adding new edges to G) that G is a triangulation. Let $k=\lfloor\sqrt{2 n}\rfloor$. For any circuit C of G we denote by $A(C)$ and $B(C)$ the sets of vertices drawn inside C and outside C, respectively; thus $(A(C), B(C), V(C))$ is a partition of $V(G)$, and no vertex in $A(C)$ is adjacent to any in $B(C)$. Choose a circuit C of G such that
(i) $|V(C)| \leq 2 k$
(ii) $|B(C)|<\frac{2}{3} n$
(iii) subject to (i) and (ii), $|A(C)|-|B(C)|$ is minimum.

This is possible, because the circuit bounding the infinite region satisfies (i) and (ii). Let G_{1} be the subgraph of G induced by $A(C) \cup C$, and let G_{2} be the subgraph of G induced by $B(C) \cup C$. We claim that $\left(G_{1}, G_{2}\right)$ satisfies the conclusion of the theorem. We suppose, for a contradiction, that that is not the case; then $|A(C)| \geq \frac{2}{3} n$. Let D be the subgraph of G drawn in the closed disc bounded by C. For $u, v \in V(C)$, let $c(u, v)$ (respectively, $d(u, v)$) be the number of edges in the shortest path of C (respectively, D) between u and v.
(1) $c(u, v)=d(u, v)$ for all $u, v \in V(C)$.

For certainly $d(u, v) \leq c(u, v)$ since C is a subgraph of D. If possible, choose a pair $u, v \in V(C)$ with $d(u, v)$ minimum such that $d(u, v)<c(u, v)$. Let P be a path of D between u and v, with $d(u, v)$ edges. Suppose that some internal vertex w of P belongs to $V(C)$. Then

$$
d(u, w)+d(w, v)=d(u, v)<c(u, v) \leq c(u, w)+c(w, v)
$$

and so either $d(u, w)<c(u, w)$ or $d(w, v)<c(w, v)$, in either case contrary to the choice of u, v. Thus there is no such w. Let C, C_{1}, C_{2} be the three circuits of $C \cup P$ where $\left|A\left(C_{1}\right)\right| \geq\left|A\left(C_{2}\right)\right|$. Now $\left|B\left(C_{1}\right)\right|<\frac{2}{3} n$, since

$$
n-\left|B\left(C_{1}\right)\right|=\left|A\left(C_{1}\right)\right|+\left|V\left(C_{1}\right)\right|>\frac{1}{2}\left(\left|A\left(C_{1}\right)\right|+\left|A\left(C_{2}\right)\right|+|V(P)|-2\right)=\frac{1}{2}|A(C)| \geq \frac{1}{3} n
$$

But $\left|V\left(C_{1}\right)\right| \leq|V(C)|$ since $|E(P)| \leq c(u, v)$, and so C_{1} satisfies (i) and (ii). By (iii), $B\left(C_{1}\right)=$ $B(C)$, and in particular $c(u, v) \leq 1$, which is impossible since $d(u, v)<c(u, v)$. This proves (1).
(2) $|V(C)|=2 k$.

For suppose that $|V(C)|<2 k$. Choose $e \in E(C)$, and let P be the two-edge path of D such that the union of P and e forms a circuit bounding a region inside of C. Let v be the middle vertex of P, and let P^{\prime} be the path $C \backslash e$. Now $P \neq P^{\prime}$ since $A(C) \neq \emptyset$, and so $v \notin V(C)$ by (1). Hence $P \cup P^{\prime}$ is a circuit satisfying (i) and (ii), contrary to (iii). This proves (2).

Let the vertices of C be $v_{0}, v_{1}, \ldots, v_{2 k-1}, v_{2 k}=v_{0}$, in order.
(3) There are $k+1$ vertex-disjoint paths of D between $\left\{v_{0}, v_{1}, \ldots, v_{k}\right\}$ and $\left\{v_{k}, v_{k+1}, \ldots, v_{2 k}\right\}$.

Indeed, otherwise, by the previous lemma, there is a path of D between v_{0} and v_{k} with less than k vertices, contrary to (1). This proves (3).

Let the paths of (3) be $P_{0}, P_{1}, \ldots, P_{k}$, where P_{i} has ends $v_{i}, v_{2 k-i}(0 \leq i \leq k)$. By (1),

$$
\left|V\left(P_{i}\right)\right| \geq \min (2 i+1,2(k-i)+1)
$$

and so

$$
n=|V(G)| \geq \sum_{0 \leq i \leq k} \min (2 i+1,2(k-i)+1) \geq \frac{1}{2}(k+1)^{2} .
$$

Yet $k+1>\sqrt{2 n}$ by the definition of k, a contradiction. Thus our assumption that $|A(C)| \geq \frac{2}{3} n$ was false, and so $|A(C)|<\frac{2}{3} n$ and $\left(G_{1}, G_{2}\right)$ satisfies the theorem.

A7. Remark. Lipton and Tarjan [5] gave a linear time algorithm to find a separation as in 10A6. The proof we presented gives a quadratic algorithm.

A8. Remark. It is not known what is the best constant c that can replace $2 \sqrt{2}$ in 10A6. It is known [2, 4] that $1.555 \doteq \frac{1}{3} \sqrt{4 \pi \sqrt{3}} \leq c \leq \frac{3}{2} \sqrt{2}$.

A9. Remark. There are several applications of 10A6 [6, 7]. Here is one. Notice that planarity is only used to find a separation as in 10A6.

A10. Proposition. There exists an algorithm that finds the size of a maximum independent set of a planar graph on n vertices in time $2^{O(\sqrt{n})}$.
Proof. Let G be a planar graph, and let $F \subseteq Z \subseteq V(G)$. We denote by $\alpha(G, Z, F)$ the size of the maximum independent set I in G such that $I \cap Z=F$. For a separation (A, B) of G let $C=V(A) \cap V(B)$; then

$$
\alpha(G, Z, F)=\max \{\alpha(A, Z \cup C, F \cup X)+\alpha(B, Z \cup C, F \cup X)-|X|-|F \cap C|\}
$$

where the maximum is taken over all sets $X \subseteq V(A) \cap V(B)-Z$. Using this formula and 10A6 recursively gives an algorithm to compute $\alpha(G, Z, F)$, whose worst case running time $f(n)$ satisfies the recursion

$$
f(n) \leq O\left(n^{2}\right)+2^{O(\sqrt{n})} \max \left(f\left(n_{1}\right)+f\left(n_{2}\right)\right),
$$

where the maximum is taken over all integers n_{1}, n_{2} with $n_{1}, n_{2}>\frac{1}{3} n$ and $n_{1}+n_{2} \leq n+2 \sqrt{2} \sqrt{n}$. It follows that $f(n)=2^{O(\sqrt{n})}$.

A11. Remark. Our next objective is to prove a separator theorem for graphs with an excluded minor. Recall that X-flaps and havens are defined in the tree-width chapter.

A12. Lemma. [1] Let G be a graph with n vertices, let $A_{1}, \ldots, A_{k} \subseteq V(G)$, and let r be a real number with $r \geq 1$. Then either
(i) there is a tree T in G with $|V(T)| \leq r$ such that $V(T) \cap A_{i} \neq \emptyset$ for $i=1, \ldots, k$, or
(ii) there exists $Z \subseteq V(G)$ with $|Z| \leq(k-1) n / r$, such that no Z-flap intersects all of A_{1}, \ldots, A_{k}. Proof. We may assume that $k \geq 2$. Let G^{1}, \ldots, G^{k-1} be isomorphic copies of G, mutually disjoint. For each $v \in V(G)$ and $1 \leq i \leq k-1$, let v^{i} be the corresponding vertex of G^{i}. Let J be the graph obtained from $G^{1} \cup \cdots \cup G^{k-1}$ by adding, for $2 \leq i \leq k-1$ and all $v \in A_{i}$, an edge joining v^{i-1} and v^{i}. Let $X=\left\{v^{1}: v \in A_{1}\right\}$ and $Y=\left\{v^{k-1}: v \in A_{k}\right\}$. For each $u \in V(J)$, let $d(u)$ be the number of vertices in the shortest path of J between X and u (or ∞ if there is no such path). There are two cases:
Case 1. $d(u) \leq r$ for some $u \in Y$.
Let P be a path of J between X and Y with $\leq r$ vertices. Let

$$
S=\left\{v \in V(G): v^{i} \in V(P) \text { for some } i \text { with } 1 \leq i \leq k-1\right\} .
$$

Then $|S| \leq|V(P)| \leq r$, the subgraph of G induced on S is connected, and $\left|S \cap A_{i}\right| \neq \emptyset$ for $1 \leq i \leq k$. Thus (i) holds.
Case 2. $d(u)>r$ for all $u \in Y$.
Let t be the least integer with $t \geq r$. For $1 \leq j \leq t$, let $Z_{j}=\{u \in V(J): d(u)=j\}$. Since $|V(J)|=(k-1) n$ and Z_{1}, \ldots, Z_{t} are mutually disjoint, one of them, say Z_{j}, has cardinality at most $(k-1) n / t \leq(k-1) n / r$. Now every path of J between X and Y has a vertex in Z_{j}, because $d(u) \geq j$ for all $u \in Y$. Let

$$
Z=\left\{v \in V(G): v^{i} \in Z_{j} \text { for some } i \text { with } 1 \leq i \leq k-1\right\} .
$$

Then $|Z| \leq\left|Z_{j}\right| \leq(k-1) n / r$, and we claim that Z satisfies (ii). Suppose that F is a Z-flap of G which intersects all of A_{1}, \ldots, A_{k}. Let $a_{i} \in F \cap A_{i}(1 \leq i \leq k)$, and for $1 \leq i \leq k-1$ let P_{i} be a path of G with $V\left(P_{i}\right) \subseteq F$ and with ends a_{i}, a_{i+1}. Let P^{i} be the path of G^{i} corresponding to P_{i}. Then $V\left(P^{1}\right) \cup \cdots \cup V\left(P^{k-1}\right)$ includes the vertex set of a path of J between X and Y, and yet is disjoint from Z_{j}, a contradiction. Thus, there is no such F, and so (ii) holds.

A13. Open problem. Can the bound $(k-1) n / r$ in the lemma be improved to $o(k) n / r$? That would imply a corresponding improvement in 10A16 below.

10A. SEPARATORS

A14. Definition. A cluster in a graph G is a set \mathcal{C} of vertex-disjoint trees in G such that for every two distinct members $T, T^{\prime} \in \mathcal{C}$ there exists an edge of G with one end in $V(T)$ and the other end in $V\left(T^{\prime}\right)$. Thus if G has a cluster of cardinality h, then G has a K_{h}-minor.

A15. Theorem. [1] Let $h \geq 1$ be an integer and let G be a graph with n vertices and with a haven of order $h^{3 / 2} n^{1 / 2}+1$. Then G has a K_{h}-minor.
Proof. Let β be a haven in G of order $h^{3 / 2} n^{1 / 2}+1$. Choose $X \subseteq V(G)$ and a cluster \mathcal{C} with $|\mathcal{C}| \leq h$ such that
(i) $X \subseteq \bigcup(V(C): C \in \mathcal{C})$,
(ii) $|X \cap V(C)| \leq h^{1 / 2} n^{1 / 2}$ for each $C \in \mathcal{C}$,
(iii) $V(C) \cap \beta(X)=\emptyset$ for each $C \in \mathcal{C}$, and
(iv) subject to (i), (ii), and (iii), $|\mathcal{C}|+|X|+3|\beta(X)|$ is minimum.

This is possible, because setting $\mathcal{C}=X=\emptyset$ satisfies (i), (ii), and (iii). Let $\mathcal{C}=\left\{C_{1}, \ldots, C_{k}\right\}$. We suppose for a contradiction that $k<h$. For $1 \leq i \leq k$, let A_{i} be the set of all $v \in \beta(X)$ adjacent in G to a vertex of C_{i}. Let G^{\prime} be the restriction of G to $\beta(X)$. By 10A12 applied to G^{\prime} with $r=h^{1 / 2} n^{1 / 2}$, one of the following cases holds:
Case 1. There is a tree T of G^{\prime} with $|V(T)| \leq h^{1 / 2} n^{1 / 2}$, such that $V(T) \cap A_{i} \neq \emptyset$ for $1 \leq i \leq k$. Let $\mathcal{C}^{\prime}=\mathcal{C} \cup\{T\}$ and $X^{\prime}=X \cup V(T)$; then \mathcal{C}^{\prime} is a cluster and for each $C \in \mathcal{C}^{\prime}$,

$$
V(C) \cap \beta\left(X^{\prime}\right) \subseteq V(C) \cap(\beta(X)-V(T))=\emptyset
$$

This contradicts (iv).
Case 2. There exists $Z \subseteq \beta(X)$ with $|Z| \leq(k-1)|\beta(X)| / h^{1 / 2} n^{1 / 2} \leq h^{1 / 2} n^{1 / 2}$ such that no Z-flap of G^{\prime} intersects all of A_{1}, \ldots, A_{k}. Let $Y=X \cup Z$. Since $k \leq h-1$, it follows that $|Y| \leq h^{3 / 2} n^{1 / 2}$, and so $\beta(Y)$ exists and $\beta(Y) \subseteq \beta(X)$. Since $\beta(Y)$ is a Z-flap of G^{\prime} there exists i with $1 \leq i \leq k$ such that $\beta(Y) \cap A_{i}=\emptyset$. Extend C_{i} to a maximal tree C_{i}^{\prime} of G disjoint from $\beta(Y)$ and from each $C_{j}(j \neq i)$. Let $Z^{\prime}=V\left(C_{i}^{\prime}\right) \cap Z$, let $X^{\prime}=Z^{\prime} \cup\left(X-V\left(C_{i}\right)\right)$, and let $W=V\left(C_{i}^{\prime}\right) \cup(V(G)-\beta(X))$.

We claim that $\beta\left(X^{\prime}\right) \cap W=\emptyset$. For suppose not. Since $\beta(Y) \subseteq \beta\left(X^{\prime}\right)$, there is a path of G between W and $\beta(Y)$ contained within $\beta\left(X^{\prime}\right)$ and hence disjoint from X^{\prime}. Since $W \cap \beta(Y)=\emptyset$, there are two consecutive vertices u, v of this path with $u \in W$ and $v \in V(G)-W \subseteq \beta(X)$. Since u, v are adjacent it follows that $u \in X \cup \beta(X)$, and so

$$
u \in(X \cup \beta(X)) \cap\left(W-X^{\prime}\right) \subseteq V\left(C_{i}^{\prime}\right)
$$

Since $v \notin W$ it follows from the maximality of C_{i}^{\prime} that $v \in \beta(Y)$. Since $u \notin \beta(Y)$ we deduce that $u \in Y$, and so

$$
u \in Y \cap\left(V\left(C_{i}^{\prime}\right)-X^{\prime}\right) \subseteq V\left(C_{i}\right)
$$

But then $v \in A_{i}$, which is impossible since $A_{i} \cap \beta(Y)=\emptyset$. This proves our claim that $\beta\left(X^{\prime}\right) \cap W=\emptyset$. Hence, $\beta\left(X^{\prime}\right) \subseteq \beta(X)$. Let $\mathcal{C}^{\prime}=\left(\mathcal{C}-\left\{C_{i}\right\}\right) \cup\left\{C_{i}^{\prime}\right\}$; then \mathcal{C}^{\prime} is a cluster. We observe that
(i) $X^{\prime} \subseteq \bigcup\left(V(C): C \in \mathcal{C}^{\prime}\right)$; for $Z^{\prime} \subseteq V\left(C_{i}^{\prime}\right)$,
(ii) $\left|X^{\prime} \cap V(C)\right| \leq h^{1 / 2} n^{1 / 2}$ for each $C \in \mathcal{C}^{\prime}$; for if $C \neq C_{i}^{\prime}$ then $X^{\prime} \cap V(C)=X \cap V(C)$, and $X^{\prime} \cap V\left(C_{i}^{\prime}\right)=Z^{\prime}$, and
(iii) $V(C) \cap \beta\left(X^{\prime}\right)=\emptyset$ for each $C=\mathcal{C}^{\prime}$; for $\beta\left(X^{\prime}\right) \cap W=\emptyset$, as we have seen.

By (iv),

$$
\left|\mathcal{C}^{\prime}\right|+\left|X^{\prime}\right|+3\left|\beta\left(X^{\prime}\right)\right| \geq|\mathcal{C}|+|X|+3|\beta(X)| .
$$

But $\left|\mathcal{C}^{\prime}\right|=|\mathcal{C}|$ and $X^{\prime} \cup \beta\left(X^{\prime}\right) \subseteq(X \cup \beta(X))-\left(X \cap V\left(C_{i}\right)\right)$, and so $X \cap V\left(C_{i}\right)=\emptyset$. Then $\mathcal{C}-\left\{C_{i}\right\}$, X satisfy (i), (ii), and (iii), contrary to (iv).

In both cases, therefore, we have obtained a contradiction. Thus our assumption that $k<h$ was incorrect, and so $k=h$ and G has a K_{h}-minor, as required.

A16. Theorem. [1] Let h be an integer, and let G be a graph on n vertices with no K_{h}-minor. Then G has a separation $\left(G_{1}, G_{2}\right)$ of order at most $h^{3 / 2} n^{1 / 2}$ such that $\left|V\left(G_{1}\right)\right|,\left|V\left(G_{2}\right)\right| \geq n / 3$.
Proof. Suppose that G does not have a separation as stated in the theorem. Then for every set $X \subseteq V(G)$ with $|X| \leq h^{3 / 2} n^{1 / 2}$ some component of $G \backslash X$ has more than $n / 2$ vertices (exercise). Define $\beta(X)$ to be that component. Then β is a haven of order $h^{3 / 2} n^{1 / 2}+1$, and hence the theorem follows from 10A15.

A17. Open problem. Can the bound $h^{3 / 2} n^{1 / 2}$ be improved to $O\left(h n^{1 / 2}\right)$? That would be best possible up to a constant factor. See also 10A13.

A18. Remark. Bui, Fukuyama and Jones [3] have shown that that it is NP-hard to determine, given a planar graph G, the smallest integer k such that G has a separation $\left(G_{1}, G_{2}\right)$ of order k satisfying $\left|V\left(G_{1}\right)\right|,\left|V\left(G_{2}\right)\right| \geq|V(G)| / 3$.

10B. CHARACTERIZATIONS OF PLANARITY

B1. Exercise. If G is a planar graph, then the following are equivalent:
(i) G is a block not isomorphic to K_{0}, K_{1}, or K_{2},
(ii) there exists a planar drawing of G such that every face is bounded by a circuit,
(iii) in every planar drawing of G, every face is bounded by a circuit.

B2. Definition. A graph G^{\prime} is called an abstract dual of a graph G if $\mathcal{M}\left(G^{\prime}\right)$ is isomorphic to $\mathcal{M}^{*}(G)$.

B3. Exercise. Find a graph G such that some graph is an abstract dual of G, but not a geometric dual.

