Yet another talk on the on-line chain partitioning of posets

Csaba Biró¹ Linyuan Lu²

¹Department of Mathematics University of Louisville

²Department of Mathematics University of South Carolina

SIAM Conference on Discrete Mathematics 2012

Outline

History Introduction Sketch of Kierstead's Proof

Generalized Kierstead-order

Introductory remarks The five equivalent definitions Classes?

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Chain partitioning game

- Two person game.
- The number of chains *c* is a parameter of the game.

- Spoiler reveals one point at a time of a poset.
- Algorithm puts it into a chain 1,..., c.
- If Algorithm can't make a move, he loses.
- ► If they play forever, Spoiler loses.

Chain partitioning game

- Two person game.
- The number of chains *c* is a parameter of the game.
- Spoiler reveals one point at a time of a poset.
- Algorithm puts it into a chain 1,..., c.
- If Algorithm can't make a move, he loses.
- ► If they play forever, Spoiler loses.

If Spoiler is not allowed to build an anitchain of size more than w, how many chains does Algorithm need to play the game forever?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Known bounds

Theorem (Kierstead, 1981)

For every $w \ge 1$ there exists an algorithm which constructs an on-line partition of a poset of width w into $\frac{5^w-1}{4}$ chains.

Known bounds

Theorem (Kierstead, 1981)

For every $w \ge 1$ there exists an algorithm which constructs an on-line partition of a poset of width w into $\frac{5^w-1}{4}$ chains.

Theorem (Bosek, Krawczyk, 2009)

There is an algorithm and a c constant such that the algorithm constructs $w^{c \log w}$ chains.

Known bounds

Theorem (Kierstead, 1981)

For every $w \ge 1$ there exists an algorithm which constructs an on-line partition of a poset of width w into $\frac{5^w-1}{4}$ chains.

Theorem (Bosek, Krawczyk, 2009)

There is an algorithm and a c constant such that the algorithm constructs $w^{c \log w}$ chains.

Theorem (Szemerédi)

For every $w \ge 1$ and every on-line algorithm \mathcal{A} there exists an algorithm that builds a poset of width at most w, but \mathcal{A} uses at least $\frac{w(w+1)}{2}$ chains.

Sketch of Kierstead's proof

Base case: w = 2.

$$\frac{5^2-1}{4}=6$$

- ► We start building a "greedy chain" C₁. If a new point is comparable to every element of C₁, it goes into C₁.
- ► The rest will go into one of C₂, C₃, C₄, C₅, C₆ according to the following strategy.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Proposition If x can't go into C_1 , then $I(x) = \{z \in C_1 : z ||x\}$ is an interval of C_1 .

Proposition

If y < x for $x, y \notin C_1$, then

- The lowest point of I(y) is below (or same point as) the lowest point of I(x).
- The highest point of I(y) is below (or same point as) the highest point of I(x).

・ロト ・聞ト ・ヨト ・ヨト

They may or may not intersect.

Proposition If y || x for $x, y \notin C_1$, then $I(x) \cap I(y) = \emptyset$.

・ロト ・聞ト ・ヨト ・ヨト

æ

The *-order

Definition For $P - C_1$ we define x * y if 1) x < y in P or 2) I(x) < I(y).

Proposition $(P - C_1, *)$ is a total order.

We will define classes of $P - C_1$ in an on-line manner.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < @</p>

We will define classes of $P - C_1$ in an on-line manner. The following properties will be maintained:

We will define classes of $P - C_1$ in an on-line manner. The following properties will be maintained:

• Every class is a set of consecutive elements in the *-order.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

We will define classes of $P - C_1$ in an on-line manner. The following properties will be maintained:

- Every class is a set of consecutive elements in the *-order.
- ▶ If x and y are consecutive elements of the same class, then $I(x) \cap I(y) \neq \emptyset$.

We will define classes of $P - C_1$ in an on-line manner. The following properties will be maintained:

- Every class is a set of consecutive elements in the *-order.
- If x and y are consecutive elements of the same class, then $I(x) \cap I(y) \neq \emptyset$.

Remark: the second property implies that consecutive elements are comparable in P, so every class is a chain in P.

- Every class is a set of consecutive elements in the *-order.
- ▶ If x and y are consecutive elements of the same class, then $I(x) \cap I(y) \neq \emptyset$.

Definition (of the classes)

- When the new element x comes in into the middle of class A, we put it into class A.
- ▶ When x comes in between classes, and x <: y in *, and $I(x) \cap I(y) \neq \emptyset$, then we put x into the class of y.
- If no such y exists, but z <: x in *, and I(z) ∩ I(x) ≠ Ø, then we put x into the class of z.

If no such z exist, then we start a new class for x.

- Every class is a set of consecutive elements in the *-order.
- ▶ If x and y are consecutive elements of the same class, then $I(x) \cap I(y) \neq \emptyset$.

Definition (of the classes)

- When the new element x comes in into the middle of class A, we put it into class A.
- ▶ When x comes in between classes, and x <: y in *, and $I(x) \cap I(y) \neq \emptyset$, then we put x into the class of y.
- If no such y exists, but z <: x in *, and I(z) ∩ I(x) ≠ Ø, then we put x into the class of z.
- ▶ If no such *z* exist, then we start a new class for *x*.

A proof is necessary to show that the two properties are maintained.

Far classes are comparable

Proposition

If S_1 and S_2 are classes with at least two other classes between them, then $S_1 \cup S_2$ is a chain.

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Strategy for w = 2

- New element x comes in.
- If we can put x into C_1 , we will.
- If not, we compute *, and we find the class of x.
- If x is joining an existing class A, we put it into the chain of A. (So the property, that every class uses only one chain is maintained.)
- If x starts its own class X, and there are at most 4 other classes, we put x into a new chain.
- If there are at least 5 other classes, then we identify the chain indices of the "close" classes (at most 4), and use a different one.

The new *-order

Start building a greedy chain C_1 , and define the *-order on $P - C_1$:

Definition

We say x * y if

- 1) x < y in P or
- 2) I(x) < I(y) or
- 3) $\exists u \in P C_1 : x < u \text{ in } P \text{ and } u * y \text{ or }$
- 4) $\exists v \in P C_1 : x * v \text{ and } v < y \text{ in } P.$

Remark

- It may happen that x || y, but $I(x) \cap I(y) \neq \emptyset$.
- Therefore *-order is not a chain, furthermore 1) and 2) is not enough for transitivity.

• Nevertheless, $(P - C_1, *)$ is a poset.

Width of the *-order

ヘロト ヘヨト ヘヨト ヘヨト

臣

Final steps

Hence it is possible to partition $P - C_1$ into $\frac{5^{w-1}-1}{4}$ chains in the *-order.

Proposition

Far classes on each *-chain are comparable.

Repeat the construction to partition each *-chain into 5 chains in P.

$$5 \cdot \frac{5^{w-1} - 1}{4} + 1 = \frac{5^w - 1}{4}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Q.E.D.

- Pick a reference poset A with w(A) = w 1 greedily.
- Suppose we can partition the rest into p(w) chains.

•
$$f(w) = f(w - 1) + p(w)$$
.

Conclusion: if we believe that there is a polynomial algorithm, then we still get a polynomial algorithm after the greedy step.

Let
$$R_x = \{z \in A : z || x\}.$$

Lemma

Let $x, y \in P \setminus A$.

$$1. \ w(R_x) = w - 1.$$

- 2. If x || y then $w(R_x \cap R_y) \le w 2$.
- 3. Let C be a chain in A. Then $R_x \cap C$ is an interval of C.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

4. If x < y and C is a chain such that $x, y \notin C$, then $\max\{R_x \cap C\} \le \max\{R_y \cap C\}$ and $\min\{R_x \cap C\} \le \min\{R_y \cap C\}.$

Lemma

Let $x, y \in P \setminus A$, x || y, let $\{x_1, x_2, \dots, x_{w-1}\}$ be an antichain in R_x and $\{y_1, y_2, \dots, y_{w-1}\}$ be an antichain in R_y . The following statements are equivalent.

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

- i) There exists an index $i_0 \in [w 1]$ satisfying $x_{i_0} < y$.
- ii) For any $i \in [w 1]$, either $x_i < y$ or $x_i || y$.
- iii) There exists an index $j_0 \in [w 1]$ satisfying $y_{i_0} > x$.
- iv) For any $j \in [w 1]$, either $y_j > x$ or $y_j ||x$.

Definition

Let $x, y \in P \setminus A$, x || y. Define $x \sigma y$ if there is an antichain $\{x'_1, x'_2, \ldots, x'_{w-1}\} \in R_x$ and an antichain $\{y'_1, y'_2, \ldots, y'_{w-1}\} \in R_y$ satisfying $x'_i \leq y'_i$ for all $1 \leq i \leq w - 1$.

Theorem

 $x\sigma y \Leftrightarrow \exists$ antichains like in lemma

Classes?

These are more like just ideas:

- Create classes by "representative antichains".
- It may be OK for a point to belong to several classes (it won't belong to more than two anyway).

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• It is easy to prove this way that $f(2) \leq 6$.

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?