News about Semiantichains and Unichain Coverings

Bartłomiej Bosek*

joint work with

Stefan Felsner** Kolja Knauer** Grzegorz Matecki*

*Theoretical Computer Science Department, Faculty of Mathematics and Computer Science, Jagiellonian University

**Diskrete Mathematik, Institut für Mathematik, Technische Universität Berlin

SIAM Conference on Discrete Mathematics Halifax, June 18–21, 2012

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Basic properties - chains and antichains

a chain – a set where each two points are comparable an antichain – a set where each two different points are incomparable

height – the size of the longest chain width – the size of the longest antichain

Classical min-max theorem

Theorem (Dilworth, 1950)

The size of maximum antichain is equal to the size of minimum chain covering.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Generalization of Dilworth's theorem

k-antichain – a set of *k* disjoint antichains $\frac{k}{2}$ -chain – a set of *k* disjoint chains

Theorem (Greene & Kleitman, 1976)

For every k there is a chain partition C such that the size of maximum k-antichain is equal to $\sum_{C \in C} \min(k, |C|)$.

Generalization of Dilworth's theorem

k-antichain – a set of *k* disjoint antichains $\frac{k}{2}$ -chain – a set of *k* disjoint chains

Theorem (Greene & Kleitman, 1976)

For every k there is a chain partition C such that the size of maximum k-antichain is equal to $\sum_{C \in C} \min(k, |C|)$.

Generalization of Dilworth's theorem

k-antichain – a set of *k* disjoint antichains $\frac{k}{2}$ -chain – a set of *k* disjoint chains

Theorem (Greene & Kleitman, 1976)

For every k there is a chain partition C such that the size of maximum k-antichain is equal to $\sum_{C \in C} \min(k, |C|)$.

Cartesian product and the proof of Saks

Theorem (Saks, 1979)

In a product $C \times Q$ where C is a chain the size of maximum antichain equals the size of chain covering with chains of the form $C \times \{q\}$ and $\{c\} \times C'$ (called unichains).

Cartesian product and the proof of Saks

Theorem (Saks, 1979)

In a product $C \times Q$ where C is a chain the size of maximum antichain equals the size of chain covering with chains of the form $C \times \{q\}$ and $\{c\} \times C'$ (called unichains).

Cartesian product and the proof of Saks

Theorem (Saks, 1979)

In a product $C \times Q$ where C is a chain the size of maximum antichain equals the size of chain covering with chains of the form $C \times \{q\}$ and $\{c\} \times C'$ (called unichains).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

semiantichain - a set in which no two points are in a common unichain

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

semiantichain - a set in which no two points are in a common unichain

Conjecture (Saks & West, 1980)

In the product $P \times Q$ the size of maximum semiantichain equals the size of minimum unichain covering.

• Saks, 1979

product $C \times Q$ of a chain C and an arbitrary poset Q

• Liu & West, 2008

product of two posets of width $\leqslant 2$

• Liu & West, 2008

product of two posets of height $\leqslant 2$

• West & Tovey, 1981

other classes with more complicated properties

$$\sum_{i=1}^k \mu_i := a_k = |\mathsf{max}. \ k\text{-ant.}|$$

$$\sum_{i=1}^{j} \lambda_i := c_j = |\mathsf{max}, j\text{-ch.}|$$

・ロト ・西ト ・ヨト ・ヨー うらぐ

$$\sum_{i=1}^k \mu_i := a_k = |\mathsf{max}. \ k\text{-ant.}|$$

$$\sum_{i=1}^{j} \lambda_i := c_j = |\mathsf{max}, j\text{-ch.}|$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

$$\sum_{i=1}^k \mu_i := a_k = |\mathsf{max}. \ k\text{-ant.}|$$

$$\sum_{i=1}^{j} \lambda_i := c_j = |\mathsf{max}, j\text{-ch.}|$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\sum_{i=1}^k \mu_i := a_k = |\mathsf{max}. \ k\text{-ant.}|$$

$$\sum_{i=1}^j \lambda_i := c_j = |\mathsf{max}.\,j\text{-}\mathsf{ch.}|$$

$$\sum_{i=1}^k \mu_i := a_k = |\mathsf{max}. \ k\text{-ant.}|$$

$$\sum_{i=1}^j \lambda_i := c_j = |\mathsf{max}.\ j\text{-ch.}|$$

・ロト ・西ト ・ヨト ・ヨー うらぐ

$$\sum_{i=1}^k \mu_i := a_k = |\mathsf{max}. \ k\text{-ant.}|$$

$$\sum_{i=1}^j \lambda_i := c_j = |\mathsf{max}.\ j\text{-ch.}|$$

$$\sum_{i=1}^k \mu_i := a_k = |\mathsf{max}. \ k\text{-ant.}|$$

$$\sum_{i=1}^j \lambda_i := c_j = |\mathsf{max}.\,j\text{-ch.}|$$

$$\sum_{i=1}^k \mu_i := a_k = |\mathsf{max}. \ k\text{-ant.}|$$

$$\sum_{i=1}^j \lambda_i := c_j = |\mathsf{max}.\,j\text{-ch.}|$$

・ロト・雪ト・雪ト・雪・ 今日・

Poset is antichain-decomposable if it has an antichain partition A_1, \ldots, A_h with $|\bigcup_{i=1}^k A_i| = a_k = \sum_{i=1}^k \mu_i$.

Poset is chain-decomposable if it has a chain partition C_1, \ldots, C_w with $|\bigcup_{i=1}^{j} C_i| = c_j = \sum_{i=1}^{j} \lambda_i$.

 $|A_i| = \mu_i$ for each *i*

 $|C_i| = \lambda_i$ for each *i*

Poset is antichain-decomposable if it has an antichain partition A_1, \ldots, A_h with $|\bigcup_{i=1}^k A_i| = a_k = \sum_{i=1}^k \mu_i$.

Poset is chain-decomposable if it has a chain partition C_1, \ldots, C_w with $|\bigcup_{i=1}^{j} C_i| = c_j = \sum_{i=1}^{j} \lambda_i$.

 $|A_i| = \mu_i$ for each *i*

 $|C_i| = \lambda_i$ for each *i*

Poset is antichain-decomposable if it has an antichain partition A_1, \ldots, A_h with $|\bigcup_{i=1}^k A_i| = a_k = \sum_{i=1}^k \mu_i$.

Poset is chain-decomposable if it has a chain partition C_1, \ldots, C_w with $|\bigcup_{i=1}^{j} C_i| = c_j = \sum_{i=1}^{j} \lambda_i$.

 $2 = \mu_2$ $4 = \mu_1$ $\lambda_1 \lambda_2 \lambda_3 \lambda_4$ $\vdots \vdots \vdots \vdots \vdots \vdots$ 2 = 1

 $|A_i| = \mu_i$ for each *i*

Poset is antichain-decomposable if it has an antichain partition A_1, \ldots, A_h with $|\bigcup_{i=1}^k A_i| = a_k = \sum_{i=1}^k \mu_i$.

Poset is chain-decomposable if it has a chain partition C_1, \ldots, C_w with $|\bigcup_{i=1}^{j} C_i| = c_j = \sum_{i=1}^{j} \lambda_i$.

 $2 = \mu_2$ $4 = \mu_1$ $\lambda_1 \lambda_2 \lambda_3 \lambda_4$ $\vdots \vdots \vdots \vdots \vdots$ 2 = 1

 $|A_i| = \mu_i$ for each *i*

Poset is antichain-decomposable if it has an antichain partition A_1, \ldots, A_h with $|\bigcup_{i=1}^k A_i| = a_k = \sum_{i=1}^k \mu_i$.

Poset is chain-decomposable if it has a chain partition C_1, \ldots, C_w with $|\bigcup_{i=1}^{j} C_i| = c_j = \sum_{i=1}^{j} \lambda_i$.

 $2 = \mu_2$ $4 = \mu_1$ $\lambda_1 \lambda_2 \lambda_3 \lambda_4$ $\vdots \vdots \vdots \vdots \vdots \vdots$ 2 = 1

 $|A_i| = \mu_i$ for each *i*

Poset is antichain-decomposable if it has an antichain partition A_1, \ldots, A_h with $|\bigcup_{i=1}^k A_i| = a_k = \sum_{i=1}^k \mu_i$.

Poset is chain-decomposable if it has a chain partition C_1, \ldots, C_w with $|\bigcup_{i=1}^{j} C_i| = c_j = \sum_{i=1}^{j} \lambda_i$.

 $2 = \mu_2$ $4 = \mu_1$ $\lambda_1 \lambda_2 \lambda_3 \lambda_4$ \vdots $1 = \mu_1$ $\lambda_1 \lambda_2 \lambda_3 \lambda_4$ \vdots 2 = 1 1

 $|A_i| = \mu_i$ for each *i*

Theorem

If P is antichain-decomposable and chain-decomposable and Q is antichain-decomposable, then Semiantichain Conjecture is satisfied for product $P \times Q$.

Remarks:

- Boolean latices are antichain- and chain-decomposable.
- Posets of width \leq 3 are antichain-decomposable.
- Serial-parallel posets are antichain- and chain-decomposable.

• there are more ...

Theorem

If P is antichain-decomposable and chain-decomposable and Q is antichain-decomposable, then Semiantichain Conjecture is satisfied for product $P \times Q$.

Remarks:

- Boolean latices are antichain- and chain-decomposable.
- Posets of width \leq 3 are antichain-decomposable.
- Serial-parallel posets are antichain- and chain-decomposable.

there are more . . .

Counterexample in the general case

size of maximum semiantichain is 15 size of mininum unichain cover is 16

• Semiantichain Conjecture is NOT TRUE (after 30 years).

 The gap between maximum semiantichain and minimum unichain cover may be as large as we want.

Counterexample in the general case

size of maximum semiantichain is 15 size of mininum unichain cover is 16

• Semiantichain Conjecture is NOT TRUE (after 30 years).

• The gap between maximum semiantichain and minimum unichain cover may be as large as we want.

Counterexample in the general case

size of maximum semiantichain is 15 size of mininum unichain cover is 16

- Semiantichain Conjecture is **NOT TRUE** (after 30 years).
- The gap between maximum semiantichain and minimum unichain cover may be as large as we want.

Lemma

If P is a weak order and Q is an arbitrary poset, then the maximal size of a semiantichain in $P \times Q$ can be expressed as $\sum_{i=1}^{k} \mu_i^P \cdot |B_i|$ where B_1, B_2, \ldots, B_k is a family of disjoint antichains in Q.

Lemma

If P is a weak order and Q is an arbitrary poset, then the maximal size of a semiantichain in $P \times Q$ can be expressed as $\sum_{i=1}^{k} \mu_i^P \cdot |B_i|$ where B_1, B_2, \ldots, B_k is a family of disjoint antichains in Q.

Lemma

If P is a weak order and Q is an arbitrary poset, then the maximal size of a semiantichain in $P \times Q$ can be expressed as $\sum_{i=1}^{k} \mu_i^P \cdot |B_i|$ where B_1, B_2, \ldots, B_k is a family of disjoint antichains in Q.

The proof

The proof

The proof

Question

What is the complexity of deciding if product of two given posets satisfies Semiantichain Conjecture? Is it P or NPC?

Authors

• Bartłomiej Bosek (speaker)

Theoretical Computer Science Department, Faculty of Mathematics and Computer Science, Jagiellonian University bosek@tcs.uj.edu.pl

Stefan Felsner

Diskrete Mathematik, Institut für Mathematik, Technische Universität Berlin felsner@math.tu-berlin.de

Kolja Knauer

Diskrete Mathematik, Institut für Mathematik, Technische Universität Berlin knauer@math.tu-berlin.de

Grzegorz Matecki

Theoretical Computer Science Department, Faculty of Mathematics and Computer Science, Jagiellonian University matecki@tcs.uj.edu.pl