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Basic properties – chains and antichains

a chain – a set where each two points are comparable
an antichain – a set where each two different points are incomparable

height – the size of the longest chain
width – the size of the longest antichain



Classical min-max theorem

Theorem (Dilworth, 1950)

The size of maximum antichain is equal to the size of minimum
chain covering.



Generalization of Dilworth’s theorem

k-antichain – a set of k disjoint antichains
k-chain – a set of k disjoint chains

Theorem (Greene & Kleitman, 1976)

For every k there is a chain partition C such that the size of
maximum k-antichain is equal to

∑
C∈C min(k , |C |).
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Cartesian product and the proof of Saks

× =

Theorem (Saks, 1979)

In a product C × Q where C is a chain the size of maximum
antichain equals the size of chain covering with chains of the form
C × {q} and {c} × C ′ (called unichains).



Cartesian product and the proof of Saks

× =

Theorem (Saks, 1979)

In a product C × Q where C is a chain the size of maximum
antichain equals the size of chain covering with chains of the form
C × {q} and {c} × C ′ (called unichains).



Cartesian product and the proof of Saks

× =

Theorem (Saks, 1979)

In a product C × Q where C is a chain the size of maximum
antichain equals the size of chain covering with chains of the form
C × {q} and {c} × C ′ (called unichains).



Semiantichain conjecture

× =

semiantichain – a set in which no two points are in a common unichain
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In the product P × Q the size of maximum semiantichain equals
the size of minimum unichain covering.
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Semiantichain conjecture

× =

semiantichain – a set in which no two points are in a common unichain

Conjecture (Saks & West, 1980)

In the product P × Q the size of maximum semiantichain equals
the size of minimum unichain covering.



Old results

Saks, 1979
product C × Q of a chain C and an arbitrary poset Q

Liu & West, 2008
product of two posets of width 6 2

Liu & West, 2008
product of two posets of height 6 2

West & Tovey, 1981
other classes with more complicated properties
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antichain-decomposablity and chain-decomposablity

Poset is antichain-decomposable if it
has an antichain partition A1, . . . ,Ah

with |
⋃k

i=1 Ai | = ak =
∑k

i=1 µi .

2 = µ1

2 = µ2

1 = µ3

1 = µ4

λ1q
4

λ2q
2

|Ai | = µi for each i

Poset is chain-decomposable if it
has a chain partition C1, . . . ,Cw

with |
⋃j

i=1 Ci | = cj =
∑j

i=1 λi .

|Ci | = λi for each i
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Our results

Theorem

If P is antichain-decomposable and chain-decomposable and Q is
antichain-decomposable, then Semiantichain Conjecture is satisfied
for product P × Q.

Remarks:

Boolean latices are antichain- and chain-decomposable.

Posets of width 6 3 are antichain-decomposable.

Serial-parallel posets are antichain- and chain-decomposable.

there are more . . .
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Counterexample in the general case

size of maximum semiantichain is 15
size of mininum unichain cover is 16

×

Semiantichain Conjecture is NOT TRUE (after 30 years).

The gap between maximum semiantichain and minimum
unichain cover may be as large as we want.
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Lemma

If P is a weak order and Q is an arbitrary poset, then the maximal
size of a semiantichain in P ×Q can be expressed as

∑k
i=1 µ

P
i · |Bi |

where B1,B2, . . . ,Bk is a family of disjoint antichains in Q.



Lemma

If P is a weak order and Q is an arbitrary poset, then the maximal
size of a semiantichain in P ×Q can be expressed as

∑k
i=1 µ

P
i · |Bi |

where B1,B2, . . . ,Bk is a family of disjoint antichains in Q.



Lemma

If P is a weak order and Q is an arbitrary poset, then the maximal
size of a semiantichain in P ×Q can be expressed as

∑k
i=1 µ

P
i · |Bi |

where B1,B2, . . . ,Bk is a family of disjoint antichains in Q.



The proof



The proof



The proof



Open problem

Question

What is the complexity of deciding if product of two given posets
satisfies Semiantichain Conjecture? Is it P or NPC?
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