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Symmetry Properties for Partially Ordered Sets

We are concerned with finite, ranked partially ordered sets P of
length n: there is a partition P = | |i_; P; such that x is covered
by y in P only if x and y are in adjacent ranks.

Let r; = |P;i| (i =0,1,...,n) be the rank or level numbers of P.

@ P is rank-symmetric if r; = r,_; for all i

@ Pis rank-unimodal if g < rp <--- <> i1 >--- > r, for
some j

@ P is k-Sperner if no union of k antichains is larger than the
union of the k largest ranks, and P is strongly Sperner if it is
k-Sperner for k =1,2,...,n+1

@ P has the LYM property if for all antichains A C P,
Z,’-’ZO |A N P,-|/r,- <1

@ P has a symmetric chain decomposition if P = | |i_, C; with
each C; a symmetric, saturated chain in P



Quotients and Automorphisms of Partially Ordered Sets



Quotients and Automorphisms of Partially Ordered Sets

For a partially ordered set P and G < Aut(P), the quotient of P
by G, P/G, is the set of orbits of P under G, ordered by

x| <[ly] < I X €[x], y €ly] withx' <y"in P.



Quotients and Automorphisms of Partially Ordered Sets

For a partially ordered set P and G < Aut(P), the quotient of P
by G, P/G, is the set of orbits of P under G, ordered by

x| <[ly] < I X €x], y €ly] with x’ <y’ in P.

The Boolean lattice 2" of all subsets of [n] = {1,2,...,n} ordered
by C has
Aut(2") = S,

the symmetric group on [n].



Quotients and Automorphisms of Partially Ordered Sets

For a partially ordered set P and G < Aut(P), the quotient of P
by G, P/G, is the set of orbits of P under G, ordered by

x| <[ly] < I X €x], y €ly] with x’ <y’ in P.

The Boolean lattice 2" of all subsets of [n] = {1,2,...,n} ordered
by C has
Aut(2") = S,

the symmetric group on [n].
More generally, for any finite chain C,

Aut(C") = S,



Quotients and Automorphisms of Partially Ordered Sets

For a partially ordered set P and G < Aut(P), the quotient of P
by G, P/G, is the set of orbits of P under G, ordered by

x| <[ly] < I X €x], y €ly] with x’ <y’ in P.

The Boolean lattice 2" of all subsets of [n] = {1,2,...,n} ordered
by C has
Aut(2") = S,

the symmetric group on [n].
More generally, for any finite chain C,
Aut(C") = S,
and for chains C; of distinct lengths and n; e N (i =1,2,...,m)

Aut(C" x G2 x - X CIm) =2 Sy X Spy X -+ X Sp
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Symmetry and Quotients

Stanley [1980] applied methods from algebraic geometry to
obtain symmetry results for partial orders defined on cellular
decompositions of varieties. As a consequence, some interesting
quotients are

@ rank-symmetric, rank-unimodal, strongly Sperner = Peck

Stanley [1984], Pouzet [1976], Pouzet and Rosenberg [1986], and
Harper [1984] proved results from which the following can be
deduced:

e forany G < S,, 2"/G is rank-symmetric, rank-unimodal and
strongly Sperner;

e for any P that is a product of chains and G < Aut(P), P/G
is rank-symmetric, rank-unimodal and strongly Sperner.
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Symmetric Chains

Let P be a rank-symmetric partially ordered set of length n, say
P=|lLoPiand r,=|Pi| (i=0,1,...,n). Then P is
rank-unimodal and strongly Sperner <— Vi=0,1,...,[n/2]

3 r; pwd saturated chains x; < xj11 < -+ < Xp_j

with x; € Pj (j=i,i+1,...,n—1).
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Questions and Conjecture
Questions:
@ For which SCO’s P and G < Aut(P) is P/G an SCO?

@ For which SCO's Q and G < S, < Aut(Q") is Q"/G an
SCO?

@ For which G < S, is 2"/G an SCO?

Q s the lattice L(m, n) of all partitions of an integer into at
most m parts of size at most n an SCO?

Conjecture [Canfield and Mason — 2006]:
Forall G < S,, 2"/G is an SCO.
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A Particularly Interesting Example

One of the most
well-known
specific questions
concerns L(m, n),
the collection of
all downsets of an
m X n grid,
ordered by C.

n

Let G < S, be the group of all permutations constructed from
n independent permutations within the columns, followed by a
permutation of the columns: G = S,,1S,,. Each orbit under G
has a unique downset representative: thus, L(m,n) = 2™"/G.

Question: [Stanley 1980] Is L(m, n) an SCO?
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What is known?

Take Z, < S, to be generated by the shift or n-cycle (1 2---n).
Then

o
2]

for n prime, 2" /Z, is an SCO [Griggs, Killian, Savage 2004];

for all n, 2"/Zp, is an SCO [Jordan 2010; Hersh and Schilling
2011];

for P a product of chains and K < Aut(P) generated by
powers of disjoint cycles, P/K is an SCO [Duffus, McKibben-
Sanders and Thayer 2011]; and,

for all n and all SCOs P, P"/Z, is an SCO [Dhand 2011].






(C* x -+ x GP) /oy, ..., o) is an SCO

Let 01,...,0+ € S, be disjoint cycles; say X; = supp(o;) and
Xo = [n] — UX;.



(C* x -+ x GP) /oy, ..., o) is an SCO

Let 01,...,0+ € S, be disjoint cycles; say X; = supp(o;) and
Xo = [n] — UX;. Then it is straightforward to show that

27 /(o o) =2 250 5 2K /(g L x 2% J(o ).



CM x - x GP)/{of, ..., of) is an SCO
1 p 1

Let 01,...,0+ € S, be disjoint cycles; say X; = supp(o;) and
Xo = [n] — UX;. Then it is straightforward to show that

27 /(g™ o) 2 2% % 2K /(G L x 2% /(g T,
1 t 1 1

A product of SCOs is an SCO so it is enough to show that each
2% /(c71) is an SCO.



(C* x -+ x GP) /oy, ..., o) is an SCO

Let 01,...,0+ € S, be disjoint cycles; say X; = supp(o;) and
Xo = [n] — UX;. Then it is straightforward to show that

27 /(o o) =2 250 5 2K /(g L x 2% J(o ).

A product of SCOs is an SCO so it is enough to show that each
2% /(c71) is an SCO.

Let Ci,...,Cm, m=(,,],), be the Greene-Kleitman SCD of 2"

Cn
Ci

C.
Cs
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We have: with 0 = (1 2---n), 2"/(¢") is an SCO.
We want: for a chain C and ¢ = (1 2---m), C™/(¢9) is an SCO.
Let C be the k-chain 000...0,100...0,110...0,...,111...1 in 2k-1.

With n = (k — 1)m, C™ is the sublattice of 2" of all 0, 1-sequences of
length n of the form b = bib,...b,, b; € C.

Fact: Each Greene-Kleitman chain C; satisfies
GNC™"=0or CGCC™

With the embedding of C given above, we have ¢9 = O'(kfl)q|cm.

Let r = (k — 1)q, take the SCD C}, C/,..., C] of 2"/(c") obtained by
pruning the GK SCD of 2" and select the subfamily of those C,-j, ccm,

Since C™/{¢9) is a saturated and symmetric suborder of 2"/(c"), these
chains provide an SCD of C™/(¢9).
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A strategy for more general quotients 2"/G
Assume: n=kt, G<S,: G=K!T, K<S,and T <&,
Partition [n] = U!_y Ny, N, = [(r — 1)k + 1, rk].

For each ¢ € G there exist p = (p1,...,pt) € K* and 7 € T such
that

o((r—1Dk+1i) = (7(r) — Dk + pr(i).

Moo e
(-1)k +i (1(1)-1)k + pfi)
o o o — ® ® @ e o o 0
N N N N

1 r 1(r) t
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t
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Assume: 25/K is an SCO; thus, 2"/K’ is an SCO as well.

Given an SCD G, Gy, ..., Cs of 2K/K, take the shifted SCD
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Then: with K the base group of G (those ¢ with 7 = 1)
t
2"/K" = J[2M /K = (2/K)"
r=1

Assume: 25/K is an SCO; thus, 2"/K’ is an SCO as well.

Given an SCD G, Gy, ..., Cs of 2K/K, take the shifted SCD
Cl,Ch,...,Cl for each quotient 2V /K, : then

t s
/Kt =] (Zq) = 2 GxGxoxg
J=(,-Je)ELs]t
Each C(j) is a symmetric, saturated suborder of 2"/K’ and, since

a chain product, C(j) is an SCO. The collection of their SCDs
provides an SCD for 2"/K’.
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The second step: include the action of T

The orbits on 2" under K’ refine the orbits under G = K T.

It suffices to select a representative K’-orbit from within each
G-orbit such that the set of all selected orbits constitute
symmetric, saturated suborders of the cubes C(j). We will then
have a copy of 2"/G along with an SCD.

Fact 1: Each 7 € T has an action on [s]*:

T(./) = T(jluqu o 7jt) = 07_1(1)7j7_1(2)7 s 7j‘l'_1(t))'

This induces a permutation 7 on {C(j) | j € [s]*} such that the
restriction
7:C(j)— C(7(j)) satisfies

7/:([)<1]7 [X2]7 ) [Xt]) - ([XT—l(l),l]’ [XT—1(2),2]7 BRI [XT—l(t),t])

where X, , is the shift of X, C N, to N,.
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Example:

t=5: [n=NUNU---UNs; 7=(145)(23)e T <Ss
s=6: 2/K=CG+GC+ - +GC

i=1(2,5,6,6,1)€[6]°: C()=0C}xC2xxCxCP
7(j) = (1,6,5,2,6):  C(r(j))=C x @ x C3 x G x C®

T([Xal, [Xel, [Xa], [Xal, [X6]) = ([Xs.1], [X3.2], [X2.3], [X1.4], [Xas])

Fact 2: Given X, Y C [n] and X = ([X1],[X2], ..., [X¢]) € C()),

X and Y are in the same G-orbit <—

there is some 7 € T such that Y € C(7(j)) and 7(X) = Y.
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We see from Fact 2 that we should select a representative, say the
lexicographically least, from each orbit of [s]* defined by T. Say J
denotes the set of these representatives.

The family C; = {C(j) | j € J} is a promising source for an SCD
of 2/G.

In fact, for X C [n] with X = |J*_; X, each X, determines a
unique j; € [s] via [X;] € ], in the SCD of 2N /K. Thus, X
belongs to a G-orbit intersecting a unique member of C;.

However, a G-orbit may intersect some C(j) € C; in more than
one element. We must find a symmetric, saturated subset of such
a cube C(j) to insure that we have a unique representative of each
G-orbit. In fact, we want that subset to have an SCD.
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Examples

An example needing another quotient:

Suppose that t =6, s =5, T = (o) where 0 = (1 2---6) and
Jj=13,5,3,5,3,5).

Then for any 7 € T(353535) = {1, 02, 0%}, the stabilizer of j, and

any X € C(j), X and 7(X) are in the same G-orbit.

Assume: With the SCD Cy, G, ..., Cs of 25 /K, for each j € [s]?,
the quotient C(j)/T; is an SCO.

Which groups T are known to satisfy this assumption?

Suppose that T = (p1,...,pm) < St where the p;'s have disjoint
support. Then for any C(j), Tz = (pS, ..., pdr) where d; is
minimum such that the cycles of p?" refine the coloring of [t]
defined by j.
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via the natural action of T on K. If both K and T are generated
by powers of disjoint cycles then 2"/G is an SCO.

Question: Which groups does this include?

Observations: (1) The dihedral group Dg = 73 Zs.

(2) While Dy, 2 7, x Z3 it seems unlikely that for 2n > 8, the
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