Symmetric Chain Decompositions of Quotients of Chain Products by Wreath Products

Dwight Duffus and Kyle Thayer

Mathematics & Computer Science, Emory University, Atlanta GA USA dwight@mathcs.emory.edu kyle.thayer@gmail.com

SIAM Conference on Discrete Mathematics Dalhousie University – Halifax – 20 June 2012

We are concerned with finite, ranked partially ordered sets P of length n: there is a partition $P = \bigsqcup_{i=0}^{n} P_i$ such that x is covered by y in P only if x and y are in adjacent ranks.

We are concerned with finite, ranked partially ordered sets P of length n: there is a partition $P = \bigsqcup_{i=0}^{n} P_i$ such that x is covered by y in P only if x and y are in adjacent ranks.

We are concerned with finite, ranked partially ordered sets P of length n: there is a partition $P = \bigsqcup_{i=0}^{n} P_i$ such that x is covered by y in P only if x and y are in adjacent ranks.

Let $r_i = |P_i|$ (i = 0, 1, ..., n) be the rank or level numbers of P.

• *P* is *rank-symmetric* if $r_i = r_{n-i}$ for all *i*

We are concerned with finite, ranked partially ordered sets P of length n: there is a partition $P = \bigsqcup_{i=0}^{n} P_i$ such that x is covered by y in P only if x and y are in adjacent ranks.

- *P* is *rank-symmetric* if $r_i = r_{n-i}$ for all *i*
- *P* is rank-unimodal if r₀ ≤ r₁ ≤ · · · ≤ r_j ≥ r_{j+1} ≥ · · · ≥ r_n for some j

We are concerned with finite, ranked partially ordered sets P of length n: there is a partition $P = \bigsqcup_{i=0}^{n} P_i$ such that x is covered by y in P only if x and y are in adjacent ranks.

- *P* is *rank-symmetric* if $r_i = r_{n-i}$ for all *i*
- *P* is rank-unimodal if r₀ ≤ r₁ ≤ · · · ≤ r_j ≥ r_{j+1} ≥ · · · ≥ r_n for some j
- *P* is *k*-Sperner if no union of *k* antichains is larger than the union of the *k* largest ranks, and *P* is *strongly Sperner* if it is *k*-Sperner for *k* = 1, 2, ..., *n* + 1

We are concerned with finite, ranked partially ordered sets P of length n: there is a partition $P = \bigsqcup_{i=0}^{n} P_i$ such that x is covered by y in P only if x and y are in adjacent ranks.

- *P* is *rank-symmetric* if $r_i = r_{n-i}$ for all *i*
- *P* is rank-unimodal if r₀ ≤ r₁ ≤ · · · ≤ r_j ≥ r_{j+1} ≥ · · · ≥ r_n for some j
- *P* is *k*-Sperner if no union of *k* antichains is larger than the union of the *k* largest ranks, and *P* is *strongly Sperner* if it is *k*-Sperner for *k* = 1, 2, ..., *n* + 1
- *P* has the *LYM property* if for all antichains $A \subseteq P$, $\sum_{i=0}^{n} |A \cap P_i| / r_i \le 1$

We are concerned with finite, ranked partially ordered sets P of length n: there is a partition $P = \bigsqcup_{i=0}^{n} P_i$ such that x is covered by y in P only if x and y are in adjacent ranks.

- *P* is *rank-symmetric* if $r_i = r_{n-i}$ for all *i*
- *P* is rank-unimodal if r₀ ≤ r₁ ≤ · · · ≤ r_j ≥ r_{j+1} ≥ · · · ≥ r_n for some j
- *P* is *k*-Sperner if no union of *k* antichains is larger than the union of the *k* largest ranks, and *P* is *strongly Sperner* if it is *k*-Sperner for *k* = 1, 2, ..., *n* + 1
- *P* has the *LYM property* if for all antichains $A \subseteq P$, $\sum_{i=0}^{n} |A \cap P_i| / r_i \le 1$
- *P* has a symmetric chain decomposition if $P = \bigsqcup_{i=0}^{n} C_i$ with each C_i a symmetric, saturated chain in *P*

For a partially ordered set P and $G \leq Aut(P)$, the quotient of P by G, P/G, is the set of orbits of P under G, ordered by

 $[x] \leq [y] \iff \exists x' \in [x], y' \in [y] \text{ with } x' \leq y' \text{ in } P.$

For a partially ordered set P and $G \leq Aut(P)$, the quotient of P by G, P/G, is the set of orbits of P under G, ordered by

$$[x] \leq [y] \iff \exists x' \in [x], y' \in [y] \text{ with } x' \leq y' \text{ in } P.$$

The Boolean lattice $\mathbf{2}^n$ of all subsets of $[n] = \{1, 2, \dots, n\}$ ordered by \subseteq has

$$\operatorname{Aut}(\mathbf{2}^n) \cong S_n$$

the symmetric group on [n].

For a partially ordered set P and $G \leq Aut(P)$, the quotient of P by G, P/G, is the set of orbits of P under G, ordered by

$$[x] \leq [y] \iff \exists x' \in [x], y' \in [y] \text{ with } x' \leq y' \text{ in } P.$$

The Boolean lattice $\mathbf{2}^n$ of all subsets of $[n] = \{1, 2, ..., n\}$ ordered by \subseteq has

$$\operatorname{Aut}(\mathbf{2}^n) \cong S_n$$

the symmetric group on [n].

More generally, for any finite chain C,

$$\operatorname{Aut}(\mathbb{C}^n)\cong S_n$$

For a partially ordered set P and $G \leq Aut(P)$, the quotient of P by G, P/G, is the set of orbits of P under G, ordered by

$$[x] \leq [y] \iff \exists x' \in [x], y' \in [y] \text{ with } x' \leq y' \text{ in } P.$$

The Boolean lattice $\mathbf{2}^n$ of all subsets of $[n] = \{1, 2, ..., n\}$ ordered by \subseteq has

$$\operatorname{Aut}(\mathbf{2}^n) \cong S_n$$

the symmetric group on [n].

More generally, for any finite chain C,

$$\operatorname{Aut}(\mathbb{C}^n)\cong S_n$$

and for chains C_i of distinct lengths and $n_i \in \mathbb{N}$ (i = 1, 2, ..., m)

$$\operatorname{Aut}(C_1^{n_1} \times C_2^{n_2} \times \cdots \times C_m^{n_m}) \cong S_{n_1} \times S_{n_2} \times \cdots \times S_{n_m}.$$

An Example

An Example

Stanley [1980] applied methods from algebraic geometry to obtain symmetry results for partial orders defined on cellular decompositions of varieties.

Stanley [1980] applied methods from algebraic geometry to obtain symmetry results for partial orders defined on cellular decompositions of varieties. As a consequence, some interesting quotients are

Stanley [1980] applied methods from algebraic geometry to obtain symmetry results for partial orders defined on cellular decompositions of varieties. As a consequence, some interesting quotients are

• rank-symmetric, rank-unimodal, strongly Sperner

Stanley [1980] applied methods from algebraic geometry to obtain symmetry results for partial orders defined on cellular decompositions of varieties. As a consequence, some interesting quotients are

• rank-symmetric, rank-unimodal, strongly Sperner = Peck

Stanley [1980] applied methods from algebraic geometry to obtain symmetry results for partial orders defined on cellular decompositions of varieties. As a consequence, some interesting quotients are

• rank-symmetric, rank-unimodal, strongly Sperner = **Peck**

Stanley [1984], Pouzet [1976], Pouzet and Rosenberg [1986], and Harper [1984] proved results from which the following can be deduced:

Stanley [1980] applied methods from algebraic geometry to obtain symmetry results for partial orders defined on cellular decompositions of varieties. As a consequence, some interesting quotients are

• rank-symmetric, rank-unimodal, strongly Sperner = Peck

Stanley [1984], Pouzet [1976], Pouzet and Rosenberg [1986], and Harper [1984] proved results from which the following can be deduced:

 for any G ≤ S_n, 2ⁿ/G is rank-symmetric, rank-unimodal and strongly Sperner;

Stanley [1980] applied methods from algebraic geometry to obtain symmetry results for partial orders defined on cellular decompositions of varieties. As a consequence, some interesting quotients are

• rank-symmetric, rank-unimodal, strongly Sperner = **Peck**

Stanley [1984], Pouzet [1976], Pouzet and Rosenberg [1986], and Harper [1984] proved results from which the following can be deduced:

- for any G ≤ S_n, 2ⁿ/G is rank-symmetric, rank-unimodal and strongly Sperner;
- for any P that is a product of chains and G ≤ Aut(P), P/G is rank-symmetric, rank-unimodal and strongly Sperner.

Symmetric Chains

Symmetric Chains

Let *P* be a rank-symmetric partially ordered set of length *n*, say $P = \bigsqcup_{i=0}^{n} P_i$ and $r_i = |P_i|$ (i = 0, 1, ..., n). Then *P* is rank-unimodal and strongly Sperner $\iff \forall i = 0, 1, ..., |n/2|$

 \exists r_i pwd saturated chains $x_i < x_{i+1} < \cdots < x_{n-i}$

with
$$x_j \in P_j$$
 $(j = i, i + 1, ..., n - i)$.

Symmetric Chains

Let *P* be a rank-symmetric partially ordered set of length *n*, say $P = \bigsqcup_{i=0}^{n} P_i$ and $r_i = |P_i|$ (i = 0, 1, ..., n). Then *P* is rank-unimodal and strongly Sperner $\iff \forall i = 0, 1, ..., \lfloor n/2 \rfloor$

 \exists r_i pwd saturated chains $x_i < x_{i+1} < \cdots < x_{n-i}$

with
$$x_j \in P_j$$
 $(j = i, i + 1, ..., n - i)$.

Questions:

• For which SCO's P and $G \leq Aut(P)$ is P/G an SCO?

Questions:

- For which SCO's P and $G \leq \operatorname{Aut}(P)$ is P/G an SCO?
- Solution SCO's Q and $G \leq S_n \leq \operatorname{Aut}(Q^n)$ is Q^n/G an SCO?

Questions:

- For which SCO's P and $G \leq \operatorname{Aut}(P)$ is P/G an SCO?
- Solution SCO's Q and $G \leq S_n \leq \operatorname{Aut}(Q^n)$ is Q^n/G an SCO?
- **③** For which $G \leq S_n$ is $2^n/G$ an SCO?

Questions:

- For which SCO's P and $G \leq \operatorname{Aut}(P)$ is P/G an SCO?
- Solution SCO's Q and $G \leq S_n \leq \operatorname{Aut}(Q^n)$ is Q^n/G an SCO?
- So For which $G \leq S_n$ is $2^n/G$ an SCO?
- Is the lattice L(m, n) of all partitions of an integer into at most m parts of size at most n an SCO?

Questions:

- For which SCO's P and $G \leq \operatorname{Aut}(P)$ is P/G an SCO?
- Solution SCO's Q and $G \leq S_n \leq \operatorname{Aut}(Q^n)$ is Q^n/G an SCO?
- **③** For which $G \leq S_n$ is $2^n/G$ an SCO?
- Is the lattice L(m, n) of all partitions of an integer into at most m parts of size at most n an SCO?

Conjecture [Canfield and Mason – 2006]:

Questions:

- For which SCO's P and $G \leq \operatorname{Aut}(P)$ is P/G an SCO?
- Solution SCO's Q and $G \leq S_n \leq \operatorname{Aut}(Q^n)$ is Q^n/G an SCO?
- **③** For which $G \leq S_n$ is $2^n/G$ an SCO?
- Is the lattice L(m, n) of all partitions of an integer into at most m parts of size at most n an SCO?

Conjecture [Canfield and Mason – 2006]:

For all $G \leq S_n$, $2^n/G$ is an SCO.

A Particularly Interesting Example

A Particularly Interesting Example

One of the most well-known specific questions concerns L(m, n), the collection of all downsets of an $m \times n$ grid, ordered by \subseteq .
One of the most well-known specific questions concerns L(m, n), the collection of all downsets of an $m \times n$ grid, ordered by \subseteq .

n

One of the most well-known specific questions concerns L(m, n), the collection of all downsets of an $m \times n$ grid, ordered by \subseteq .

n

Let $G \leq S_{mn}$ be the group of all permutations constructed from n independent permutations within the columns, followed by a permutation of the columns:

One of the most well-known specific questions concerns L(m, n), the collection of all downsets of an $m \times n$ grid, ordered by \subseteq .

n

Let $G \leq S_{mn}$ be the group of all permutations constructed from n independent permutations within the columns, followed by a permutation of the columns: $G \cong S_m \wr S_n$. Each orbit under G has a unique downset representative: thus, $L(m, n) \cong 2^{mn}/G$.

One of the most well-known specific questions concerns L(m, n), the collection of all downsets of an $m \times n$ grid, ordered by \subseteq .

n

Let $G \leq S_{mn}$ be the group of all permutations constructed from n independent permutations within the columns, followed by a permutation of the columns: $G \cong S_m \wr S_n$. Each orbit under G has a unique downset representative: thus, $L(m, n) \cong 2^{mn}/G$.

Question: [Stanley 1980] Is L(m, n) an SCO?

Take $\mathbb{Z}_n \leq S_n$ to be generated by the shift or *n*-cycle $(1 \ 2 \cdots n)$. Then

Take $\mathbb{Z}_n \leq S_n$ to be generated by the shift or *n*-cycle $(1 \ 2 \cdots n)$. Then

• for *n* prime, $2^n/\mathbb{Z}_n$ is an SCO [Griggs, Killian, Savage 2004];

Take $\mathbb{Z}_n \leq S_n$ to be generated by the shift or *n*-cycle $(1 \ 2 \cdots n)$. Then

- for *n* prime, $2^n/\mathbb{Z}_n$ is an SCO [Griggs, Killian, Savage 2004];
- for all n, 2ⁿ/Z_n is an SCO [Jordan 2010; Hersh and Schilling 2011];

Take $\mathbb{Z}_n \leq S_n$ to be generated by the shift or *n*-cycle $(1 \ 2 \cdots n)$. Then

- for *n* prime, $2^n/\mathbb{Z}_n$ is an SCO [Griggs, Killian, Savage 2004];
- for all n, 2ⁿ/Z_n is an SCO [Jordan 2010; Hersh and Schilling 2011];
- o for P a product of chains and K ≤ Aut(P) generated by powers of disjoint cycles, P/K is an SCO [Duffus, McKibben-Sanders and Thayer 2011]; and,

Take $\mathbb{Z}_n \leq S_n$ to be generated by the shift or *n*-cycle $(1 \ 2 \cdots n)$. Then

- for *n* prime, $2^n/\mathbb{Z}_n$ is an SCO [Griggs, Killian, Savage 2004];
- for all n, 2ⁿ/Z_n is an SCO [Jordan 2010; Hersh and Schilling 2011];
- o for P a product of chains and K ≤ Aut(P) generated by powers of disjoint cycles, P/K is an SCO [Duffus, McKibben-Sanders and Thayer 2011]; and,
- for all *n* and all SCOs *P*, P^n/\mathbb{Z}_n is an SCO [Dhand 2011].

Let $\sigma_1, \ldots, \sigma_t \in S_n$ be disjoint cycles; say $X_i = \text{supp}(\sigma_i)$ and $X_0 = [n] - \bigcup X_i$.

Let $\sigma_1, \ldots, \sigma_t \in S_n$ be disjoint cycles; say $X_i = \text{supp}(\sigma_i)$ and $X_0 = [n] - \bigcup X_i$. Then it is straightforward to show that

 $\mathbf{2}^n/\langle \sigma_1^{r_1},\ldots,\sigma_t^{r_t}\rangle \cong \mathbf{2}^{X_0}\times\mathbf{2}^{X_1}/\langle \sigma_1^{r_1}\rangle\times\cdots\times\mathbf{2}^{X_t}/\langle \sigma_1^{r_t}\rangle.$

Let $\sigma_1, \ldots, \sigma_t \in S_n$ be disjoint cycles; say $X_i = \text{supp}(\sigma_i)$ and $X_0 = [n] - \bigcup X_i$. Then it is straightforward to show that

$$\mathbf{2}^n/\langle \sigma_1^{r_1},\ldots,\sigma_t^{r_t}\rangle \;\cong\; \mathbf{2}^{X_0}\times\mathbf{2}^{X_1}/\langle \sigma_1^{r_1}\rangle\times\cdots\times\mathbf{2}^{X_t}/\langle \sigma_1^{r_t}\rangle.$$

A product of SCOs is an SCO so it is enough to show that each $2^{X_i}/\langle \sigma_i^{r_i} \rangle$ is an SCO.

Let $\sigma_1, \ldots, \sigma_t \in S_n$ be disjoint cycles; say $X_i = \text{supp}(\sigma_i)$ and $X_0 = [n] - \bigcup X_i$. Then it is straightforward to show that

$$\mathbf{2}^n/\langle \sigma_1^{r_1},\ldots,\sigma_t^{r_t}\rangle \;\cong\; \mathbf{2}^{X_0}\times\mathbf{2}^{X_1}/\langle \sigma_1^{r_1}\rangle\times\cdots\times\mathbf{2}^{X_t}/\langle \sigma_1^{r_t}\rangle.$$

A product of SCOs is an SCO so it is enough to show that each $2^{X_i}/\langle \sigma_i^{r_i} \rangle$ is an SCO.

Let C_1, \ldots, C_m , $m = \binom{n}{\lfloor n/2 \rfloor}$, be the Greene-Kleitman SCD of 2^n :

Fact: There is a subsequence $C'_{i_1}, C'_{i_2}, \ldots, C'_{i_s}$ of saturated, symmetric subchains that consist of exactly one representative of each orbit induced by $\sigma_i^{r_i}$:

Fact: There is a subsequence $C'_{i_1}, C'_{i_2}, \ldots, C'_{i_s}$ of saturated, symmetric subchains that consist of exactly one representative of each orbit induced by $\sigma_i^{r_i}$:

We want: for a chain C and $\phi = (1 \ 2 \cdots m)$, $C^m / \langle \phi^q \rangle$ is an SCO.

We want: for a chain C and $\phi = (1 \ 2 \cdots m)$, $C^m / \langle \phi^q \rangle$ is an SCO.

Let C be the k-chain 000...0, 100...0, 110...0, ..., 111...1 in 2^{k-1} .

We want: for a chain C and $\phi = (1 \ 2 \cdots m)$, $C^m / \langle \phi^q \rangle$ is an SCO.

Let C be the k-chain 000...0, 100...0, 110...0, ..., 111...1 in 2^{k-1} .

With n = (k - 1)m, C^m is the sublattice of 2^n of all 0, 1-sequences of length *n* of the form $\mathbf{b} = \mathbf{b}_1 \mathbf{b}_2 \dots \mathbf{b}_m$, $\mathbf{b}_i \in C$.

We want: for a chain C and $\phi = (1 \ 2 \cdots m)$, $C^m / \langle \phi^q \rangle$ is an SCO.

Let C be the k-chain 000...0, 100...0, 110...0, ..., 111...1 in 2^{k-1} .

With n = (k - 1)m, C^m is the sublattice of 2^n of all 0, 1-sequences of length *n* of the form $\mathbf{b} = \mathbf{b_1}\mathbf{b_2}\dots\mathbf{b_m}$, $\mathbf{b}_i \in C$.

Fact: Each Greene-Kleitman chain C_i satisfies

 $C_i \cap C^m = \emptyset$ or $C_i \subseteq C^m$.

With the embedding of C given above, we have $\phi^q = \sigma^{(k-1)q}_{|C^m|}$.

We want: for a chain C and $\phi = (1 \ 2 \cdots m)$, $C^m / \langle \phi^q \rangle$ is an SCO.

Let C be the k-chain 000...0, 100...0, 110...0, ..., 111...1 in 2^{k-1} .

With n = (k - 1)m, C^m is the sublattice of 2^n of all 0, 1-sequences of length *n* of the form $\mathbf{b} = \mathbf{b_1}\mathbf{b_2}\dots\mathbf{b_m}$, $\mathbf{b}_i \in C$.

Fact: Each Greene-Kleitman chain C_i satisfies

 $C_i \cap C^m = \emptyset$ or $C_i \subseteq C^m$.

With the embedding of C given above, we have $\phi^q = \sigma^{(k-1)q}_{|C^m|}$.

Let r = (k-1)q, take the SCD $C'_{i_1}, C'_{i_2}, \ldots, C'_{i_s}$ of $2^n / \langle \sigma^r \rangle$ obtained by pruning the GK SCD of 2^n and select the subfamily of those $C'_{i_i} \subseteq C^m$.

We want: for a chain C and $\phi = (1 \ 2 \cdots m)$, $C^m / \langle \phi^q \rangle$ is an SCO.

Let C be the k-chain 000...0, 100...0, 110...0, ..., 111...1 in 2^{k-1} .

With n = (k - 1)m, C^m is the sublattice of 2^n of all 0, 1-sequences of length *n* of the form $\mathbf{b} = \mathbf{b_1}\mathbf{b_2}\dots\mathbf{b_m}$, $\mathbf{b}_i \in C$.

Fact: Each Greene-Kleitman chain C_i satisfies

 $C_i \cap C^m = \emptyset$ or $C_i \subseteq C^m$.

With the embedding of C given above, we have $\phi^q = \sigma^{(k-1)q}_{|C^m|}$.

Let r = (k-1)q, take the SCD $C'_{i_1}, C'_{i_2}, \ldots, C'_{i_s}$ of $2^n / \langle \sigma^r \rangle$ obtained by pruning the GK SCD of 2^n and select the subfamily of those $C'_{i_i} \subseteq C^m$.

Since $C^m/\langle \phi^q \rangle$ is a saturated and symmetric suborder of $2^n/\langle \sigma^r \rangle$, these chains provide an SCD of $C^m/\langle \phi^q \rangle$.

A strategy for more general quotients $2^n/G$

A strategy for more general quotients $2^n/G$

Assume: n = kt, $G \leq S_n$: $G = K \wr T$, $K \leq S_k$ and $T \leq S_t$

A strategy for more general quotients $2^n/G$

Assume: n = kt, $G \le S_n$: $G = K \wr T$, $K \le S_k$ and $T \le S_t$ Partition $[n] = \bigcup_{r=1}^t N_r$, $N_r = [(r-1)k + 1, rk]$.

For each $\phi \in G$ there exist $\overline{\rho} = (\rho_1, \dots, \rho_t) \in K^t$ and $\tau \in T$ such that

$$\phi((r-1)k+i) = (\tau(r)-1)k + \rho_r(i).$$

$$\mathbf{2}^n/\mathcal{K}' \cong \prod_{r=1}^t \mathbf{2}^{N_r}/\mathcal{K}_r \cong (\mathbf{2}^k/\mathcal{K})^t$$

$$\mathbf{2}^n/\mathcal{K}' \cong \prod_{r=1}^t \mathbf{2}^{N_r}/\mathcal{K}_r \cong (\mathbf{2}^k/\mathcal{K})^t$$

Assume: $2^k/K$ is an SCO; thus, $2^n/K'$ is an SCO as well.

$$\mathbf{2}^n/\mathcal{K}' \cong \prod_{r=1}^t \mathbf{2}^{N_r}/\mathcal{K}_r \cong (\mathbf{2}^k/\mathcal{K})^t$$

Assume: $2^k/K$ is an SCO; thus, $2^n/K'$ is an SCO as well.

Given an SCD C_1, C_2, \ldots, C_s of $2^k/K$, take the shifted SCD $C_1^r, C_2^r, \ldots, C_s^r$ for each quotient $2^{N_r}/K_r$:

$$\mathbf{2}^n/\mathcal{K}' \cong \prod_{r=1}^t \mathbf{2}^{N_r}/\mathcal{K}_r \cong (\mathbf{2}^k/\mathcal{K})^t$$

Assume: $2^k/K$ is an SCO; thus, $2^n/K'$ is an SCO as well.

Given an SCD C_1, C_2, \ldots, C_s of $2^k/K$, take the shifted SCD $C_1^r, C_2^r, \ldots, C_s^r$ for each quotient $2^{N_r}/K_r$: then

$$\mathbf{2}^n/\mathcal{K}' \cong \prod_{r=1}^t \left(\sum_{j=1}^s C_j^r\right) =$$

$$\mathbf{2}^n/\mathcal{K}' \cong \prod_{r=1}^t \mathbf{2}^{N_r}/\mathcal{K}_r \cong (\mathbf{2}^k/\mathcal{K})^t$$

Assume: $2^k/K$ is an SCO; thus, $2^n/K'$ is an SCO as well.

Given an SCD C_1, C_2, \ldots, C_s of $2^k/K$, take the shifted SCD $C_1^r, C_2^r, \ldots, C_s^r$ for each quotient $2^{N_r}/K_r$: then

$$\mathbf{2}^n/\mathcal{K}' \cong \prod_{r=1}^t \left(\sum_{j=1}^s C_j^r\right) = \sum_{\overline{j}=(j_1,\dots,j_t)\in[s]^t} C_{j_1}^1 \times C_{j_2}^2 \times \dots \times C_{j_t}^t$$

$$\mathbf{2}^n/\mathcal{K}' \cong \prod_{r=1}^t \mathbf{2}^{N_r}/\mathcal{K}_r \cong (\mathbf{2}^k/\mathcal{K})^t$$

Assume: $2^k/K$ is an SCO; thus, $2^n/K'$ is an SCO as well.

Given an SCD C_1, C_2, \ldots, C_s of $2^k/K$, take the shifted SCD $C_1^r, C_2^r, \ldots, C_s^r$ for each quotient $2^{N_r}/K_r$: then

$$\mathbf{2}^n/\mathcal{K}' \cong \prod_{r=1}^t \left(\sum_{j=1}^s C_j^r\right) = \sum_{\overline{j}=(j_1,\ldots,j_t)\in[s]^t} C_{j_1}^1 \times C_{j_2}^2 \times \cdots \times C_{j_t}^t$$

Each $C(\bar{j})$ is a symmetric, saturated suborder of $2^n/K'$ and, since a chain product, $C(\bar{j})$ is an SCO. The collection of their SCDs provides an SCD for $2^n/K'$. The second step: include the action of T

The second step: include the action of T

The orbits on $\mathbf{2}^n$ under K' refine the orbits under $G = K \wr T$.
The second step: include the action of T

The orbits on $\mathbf{2}^n$ under K' refine the orbits under $G = K \wr T$.

It suffices to select a representative K'-orbit from within each G-orbit such that the set of all selected orbits constitute symmetric, saturated suborders of the cubes $C(\bar{j})$. We will then have a copy of $2^n/G$ along with an SCD.

The second step: include the action of T

The orbits on 2^n under K' refine the orbits under $G = K \wr T$.

It suffices to select a representative K'-orbit from within each G-orbit such that the set of all selected orbits constitute symmetric, saturated suborders of the cubes $C(\bar{j})$. We will then have a copy of $2^n/G$ along with an SCD.

Fact 1: Each $\tau \in T$ has an action on $[s]^t$:

$$\tau(\bar{j}) = \tau(j_1, j_2, \dots, j_t) = (j_{\tau^{-1}(1)}, j_{\tau^{-1}(2)}, \dots, j_{\tau^{-1}(t)}).$$

The second step: include the action of T

The orbits on $\mathbf{2}^n$ under K' refine the orbits under $G = K \wr T$.

It suffices to select a representative K'-orbit from within each G-orbit such that the set of all selected orbits constitute symmetric, saturated suborders of the cubes $C(\bar{j})$. We will then have a copy of $2^n/G$ along with an SCD.

Fact 1: Each $\tau \in T$ has an action on $[s]^t$:

$$\tau(\bar{j}) = \tau(j_1, j_2, \dots, j_t) = (j_{\tau^{-1}(1)}, j_{\tau^{-1}(2)}, \dots, j_{\tau^{-1}(t)}).$$

This induces a permutation $\hat{\tau}$ on $\{C(\overline{j}) \mid \overline{j} \in [s]^t\}$ such that the restriction

$$\widehat{ au}: {\it C}(ar{j})\mapsto {\it C}(au(ar{j}))$$
 satisfies

 $\widehat{\tau}([X_1], [X_2], \dots, [X_t]) = ([X_{\tau^{-1}(1),1}], [X_{\tau^{-1}(2),2}], \dots, [X_{\tau^{-1}(t),t}])$

where $X_{r,q}$ is the shift of $X_r \subseteq N_r$ to N_q .

t = 5: $[n] = N_1 \cup N_2 \cup \cdots \cup N_5; \ \tau = (1 \ 4 \ 5)(2 \ 3) \in T \le S_5$

$$t = 5$$
: $[n] = N_1 \cup N_2 \cup \cdots \cup N_5; \ \tau = (1 \ 4 \ 5)(2 \ 3) \in T \le S_5$

$$s = 6: \quad \mathbf{2}^k / \mathbf{K} = C_1 + C_2 + \dots + C_6$$

$$\begin{split} t &= 5: \ [n] = N_1 \cup N_2 \cup \dots \cup N_5; \ \tau = (1 \ 4 \ 5)(2 \ 3) \in \mathcal{T} \le S_5 \\ s &= 6: \ \mathbf{2}^k / \mathcal{K} = C_1 + C_2 + \dots + C_6 \\ \overline{j} &= (2, 5, 6, 6, 1) \in [6]^5: \ C(\overline{j}) = C_2^1 \times C_5^2 \times C_6^3 \times C_6^4 \times C_1^5 \\ \tau(\overline{j}) &= (1, 6, 5, 2, 6): \ C(\tau(\overline{j})) = C_1^1 \times C_6^2 \times C_5^3 \times C_2^4 \times C_6^5 \\ \widehat{\tau}([X_1], [X_2], [X_3], [X_4], [X_5]) = ([X_{5,1}], [X_{3,2}], [X_{2,3}], [X_{1,4}], [X_{4,5}]) \end{split}$$

t = 5: $[n] = N_1 \cup N_2 \cup \cdots \cup N_5; \quad \tau = (1 \ 4 \ 5)(2 \ 3) \in T < S_5$ s = 6: $2^k/K = C_1 + C_2 + \cdots + C_6$ $\bar{i} = (2, 5, 6, 6, 1) \in [6]^5$: $C(\bar{i}) = C_2^1 \times C_5^2 \times C_6^3 \times C_6^4 \times C_1^5$ $\tau(\bar{j}) = (1, 6, 5, 2, 6): \quad C(\tau(\bar{j})) = C_1^1 \times C_6^2 \times C_5^3 \times C_2^4 \times C_6^5$ $\hat{\tau}([X_1], [X_2], [X_3], [X_4], [X_5]) = ([X_{5,1}], [X_{3,2}], [X_{2,3}], [X_{1,4}], [X_{4,5}])$ **Fact 2:** Given $X, Y \subseteq [n]$ and $\overline{X} = ([X_1], [X_2], \dots, [X_t]) \in C(\overline{i})$. X and Y are in the same G-orbit \iff

there is some $\tau \in T$ such that $\overline{Y} \in C(\tau(\overline{j}))$ and $\widehat{\tau}(\overline{X}) = \overline{Y}$.

The family $C_J = \{C(\overline{j}) \mid \overline{j} \in J\}$ is a promising source for an SCD of $2^n/G$.

The family $C_J = \{C(\overline{j}) \mid \overline{j} \in J\}$ is a promising source for an SCD of $2^n/G$.

In fact, for $X \subseteq [n]$ with $X = \bigcup_{r=1}^{t} X_r$ each X_r determines a unique $j'_r \in [s]$ via $[X_r] \in C^r_{j'_r}$ in the SCD of $2^{N_r}/K_r$. Thus, X belongs to a G-orbit intersecting a unique member of C_J .

The family $C_J = \{C(\overline{j}) \mid \overline{j} \in J\}$ is a promising source for an SCD of $2^n/G$.

In fact, for $X \subseteq [n]$ with $X = \bigcup_{r=1}^{t} X_r$ each X_r determines a unique $j'_r \in [s]$ via $[X_r] \in C^r_{j'_r}$ in the SCD of $2^{N_r}/K_r$. Thus, X belongs to a G-orbit intersecting a unique member of C_J .

However, a *G*-orbit may intersect some $C(\overline{j}) \in C_J$ in more than one element. We must find a symmetric, saturated subset of such a cube $C(\overline{j})$ to insure that we have a unique representative of each *G*-orbit. In fact, we want that subset to have an SCD.

An example needing another quotient:

An example needing another quotient:

Suppose that t = 6, s = 5, $T = \langle \sigma \rangle$ where $\sigma = (1 \ 2 \cdots 6)$ and $\overline{j} = (3, 5, 3, 5, 3, 5)$.

Then for any $\tau \in T_{(3,5,3,5,3,5)} = \{1, \sigma^2, \sigma^4\}$, the stabilizer of \overline{j} , and any $\overline{X} \in C(\overline{j})$, \overline{X} and $\widehat{\tau}(\overline{X})$ are in the same *G*-orbit.

An example needing another quotient:

Suppose that t = 6, s = 5, $T = \langle \sigma \rangle$ where $\sigma = (1 \ 2 \cdots 6)$ and $\overline{j} = (3, 5, 3, 5, 3, 5)$.

Then for any $\tau \in T_{(3,5,3,5,3,5)} = \{1, \sigma^2, \sigma^4\}$, the stabilizer of \overline{j} , and any $\overline{X} \in C(\overline{j})$, \overline{X} and $\widehat{\tau}(\overline{X})$ are in the same *G*-orbit.

Assume: With the SCD C_1, C_2, \ldots, C_s of $\mathbf{2}^k / K$, for each $\overline{j} \in [s]^t$, the quotient $C(\overline{j}) / T_{\overline{j}}$ is an SCO.

An example needing another quotient:

Suppose that t = 6, s = 5, $T = \langle \sigma \rangle$ where $\sigma = (1 \ 2 \cdots 6)$ and $\overline{j} = (3, 5, 3, 5, 3, 5)$.

Then for any $\tau \in T_{(3,5,3,5,3,5)} = \{1, \sigma^2, \sigma^4\}$, the stabilizer of \overline{j} , and any $\overline{X} \in C(\overline{j})$, \overline{X} and $\widehat{\tau}(\overline{X})$ are in the same *G*-orbit.

Assume: With the SCD C_1, C_2, \ldots, C_s of $\mathbf{2}^k / K$, for each $\overline{j} \in [s]^t$, the quotient $C(\overline{j}) / T_{\overline{j}}$ is an SCO.

Which groups T are known to satisfy this assumption?

An example needing another quotient:

Suppose that t = 6, s = 5, $T = \langle \sigma \rangle$ where $\sigma = (1 \ 2 \cdots 6)$ and $\overline{j} = (3, 5, 3, 5, 3, 5)$.

Then for any $\tau \in T_{(3,5,3,5,3,5)} = \{1, \sigma^2, \sigma^4\}$, the stabilizer of \overline{j} , and any $\overline{X} \in C(\overline{j})$, \overline{X} and $\widehat{\tau}(\overline{X})$ are in the same *G*-orbit.

Assume: With the SCD C_1, C_2, \ldots, C_s of $\mathbf{2}^k / K$, for each $\overline{j} \in [s]^t$, the quotient $C(\overline{j}) / T_{\overline{j}}$ is an SCO.

Which groups T are known to satisfy this assumption?

Suppose that $T = (\rho_1, \ldots, \rho_m) \leq S_t$ where the ρ_i 's have disjoint support. Then for any $C(\bar{j})$, $T_{\bar{j}} = (\rho_1^{d_1}, \ldots, \rho_m^{d_m})$ where d_i is minimum such that the cycles of $\rho_i^{d_i}$ refine the coloring of [t] defined by \bar{j} .

Question: Which groups does this include?

Question: Which groups does this include?

Observations: (1) The dihedral group $D_8 \cong \mathbb{Z}_2 \wr \mathbb{Z}_2$.

Question: Which groups does this include?

Observations: (1) The dihedral group $D_8 \cong \mathbb{Z}_2 \wr \mathbb{Z}_2$.

(2) While $D_{2n} \cong \mathbb{Z}_n \rtimes \mathbb{Z}_2$ it seems unlikely that for 2n > 8, the dihedral group D_{2n} is a wreath product.

Question: Which groups does this include?

Observations: (1) The dihedral group $D_8 \cong \mathbb{Z}_2 \wr \mathbb{Z}_2$.

(2) While $D_{2n} \cong \mathbb{Z}_n \rtimes \mathbb{Z}_2$ it seems unlikely that for 2n > 8, the dihedral group D_{2n} is a wreath product.

(3) In some cases for $H \le G$, SCDs for P/H can be obtained from those of P/G by splitting G-orbits into H-orbits. For instance:

Question: Which groups does this include?

Observations: (1) The dihedral group $D_8 \cong \mathbb{Z}_2 \wr \mathbb{Z}_2$.

(2) While $D_{2n} \cong \mathbb{Z}_n \rtimes \mathbb{Z}_2$ it seems unlikely that for 2n > 8, the dihedral group D_{2n} is a wreath product.

(3) In some cases for $H \le G$, SCDs for P/H can be obtained from those of P/G by splitting G-orbits into H-orbits. For instance:

 $P = \mathbf{2}^{8}, \ \sigma = (1 \ 2 \ \cdots \ 8), \rho = (1 \ 4)(2 \ 3)(5 \ 8)(6 \ 7), \rho_{1} = (1 \ 4)(2 \ 3);$ $H = \langle \sigma^{4}, \rho \rangle \leq \langle \sigma^{4}, \rho_{1} \rangle = G \text{ [a wreath product] }.$

Question: Which groups does this include?

Observations: (1) The dihedral group $D_8 \cong \mathbb{Z}_2 \wr \mathbb{Z}_2$.

(2) While $D_{2n} \cong \mathbb{Z}_n \rtimes \mathbb{Z}_2$ it seems unlikely that for 2n > 8, the dihedral group D_{2n} is a wreath product.

(3) In some cases for $H \le G$, SCDs for P/H can be obtained from those of P/G by splitting G-orbits into H-orbits. For instance:

$$\begin{split} P &= \mathbf{2}^{8}, \ \sigma &= (1 \ 2 \ \cdots \ 8), \rho = (1 \ 4)(2 \ 3)(5 \ 8)(6 \ 7), \rho_{1} = (1 \ 4)(2 \ 3); \\ H &= \langle \sigma^{4}, \rho \rangle \leq \langle \sigma^{4}, \rho_{1} \rangle = G \ [\text{a wreath product}] \ . \end{split}$$

Valid for n = 4m.

Question: Which groups does this include?

Observations: (1) The dihedral group $D_8 \cong \mathbb{Z}_2 \wr \mathbb{Z}_2$.

(2) While $D_{2n} \cong \mathbb{Z}_n \rtimes \mathbb{Z}_2$ it seems unlikely that for 2n > 8, the dihedral group D_{2n} is a wreath product.

(3) In some cases for $H \le G$, SCDs for P/H can be obtained from those of P/G by splitting G-orbits into H-orbits. For instance:

 $P = \mathbf{2}^{8}, \ \sigma = (1 \ 2 \ \cdots \ 8), \rho = (1 \ 4)(2 \ 3)(5 \ 8)(6 \ 7), \rho_{1} = (1 \ 4)(2 \ 3);$ $H = \langle \sigma^{4}, \rho \rangle \leq \langle \sigma^{4}, \rho_{1} \rangle = G \ [\text{a wreath product}] \ .$ Valid for n = 4m.

Still no general argument for the dihedral group D_{2n} acting on 2^n