# Symmetric Chain Decompositions of Quotients of Chain Products by Wreath Products 

## Dwight Duffus and Kyle Thayer

Mathematics \& Computer Science, Emory University, Atlanta GA USA dwight@mathcs.emory.edu kyle.thayer@gmail.com

SIAM Conference on Discrete Mathematics
Dalhousie University - Halifax - 20 June 2012

## Symmetry Properties for Partially Ordered Sets

## Symmetry Properties for Partially Ordered Sets

We are concerned with finite, ranked partially ordered sets $P$ of length $n$ : there is a partition $P=\bigsqcup_{i=0}^{n} P_{i}$ such that $x$ is covered by $y$ in $P$ only if $x$ and $y$ are in adjacent ranks.

## Symmetry Properties for Partially Ordered Sets

We are concerned with finite, ranked partially ordered sets $P$ of length $n$ : there is a partition $P=\bigsqcup_{i=0}^{n} P_{i}$ such that $x$ is covered by $y$ in $P$ only if $x$ and $y$ are in adjacent ranks.

Let $r_{i}=\left|P_{i}\right|(i=0,1, \ldots, n)$ be the rank or level numbers of $P$.

## Symmetry Properties for Partially Ordered Sets

We are concerned with finite, ranked partially ordered sets $P$ of length $n$ : there is a partition $P=\bigsqcup_{i=0}^{n} P_{i}$ such that $x$ is covered by $y$ in $P$ only if $x$ and $y$ are in adjacent ranks.

Let $r_{i}=\left|P_{i}\right|(i=0,1, \ldots, n)$ be the rank or level numbers of $P$.

- $P$ is rank-symmetric if $r_{i}=r_{n-i}$ for all $i$


## Symmetry Properties for Partially Ordered Sets

We are concerned with finite, ranked partially ordered sets $P$ of length $n$ : there is a partition $P=\bigsqcup_{i=0}^{n} P_{i}$ such that $x$ is covered by $y$ in $P$ only if $x$ and $y$ are in adjacent ranks.

Let $r_{i}=\left|P_{i}\right|(i=0,1, \ldots, n)$ be the rank or level numbers of $P$.

- $P$ is rank-symmetric if $r_{i}=r_{n-i}$ for all $i$
- $P$ is rank-unimodal if $r_{0} \leq r_{1} \leq \cdots \leq r_{j} \geq r_{j+1} \geq \cdots \geq r_{n}$ for some $j$


## Symmetry Properties for Partially Ordered Sets

We are concerned with finite, ranked partially ordered sets $P$ of length $n$ : there is a partition $P=\bigsqcup_{i=0}^{n} P_{i}$ such that $x$ is covered by $y$ in $P$ only if $x$ and $y$ are in adjacent ranks.
Let $r_{i}=\left|P_{i}\right|(i=0,1, \ldots, n)$ be the rank or level numbers of $P$.

- $P$ is rank-symmetric if $r_{i}=r_{n-i}$ for all $i$
- $P$ is rank-unimodal if $r_{0} \leq r_{1} \leq \cdots \leq r_{j} \geq r_{j+1} \geq \cdots \geq r_{n}$ for some $j$
- $P$ is $k$-Sperner if no union of $k$ antichains is larger than the union of the $k$ largest ranks, and $P$ is strongly Sperner if it is $k$-Sperner for $k=1,2, \ldots, n+1$


## Symmetry Properties for Partially Ordered Sets

We are concerned with finite, ranked partially ordered sets $P$ of length $n$ : there is a partition $P=\bigsqcup_{i=0}^{n} P_{i}$ such that $x$ is covered by $y$ in $P$ only if $x$ and $y$ are in adjacent ranks.
Let $r_{i}=\left|P_{i}\right|(i=0,1, \ldots, n)$ be the rank or level numbers of $P$.

- $P$ is rank-symmetric if $r_{i}=r_{n-i}$ for all $i$
- $P$ is rank-unimodal if $r_{0} \leq r_{1} \leq \cdots \leq r_{j} \geq r_{j+1} \geq \cdots \geq r_{n}$ for some $j$
- $P$ is $k$-Sperner if no union of $k$ antichains is larger than the union of the $k$ largest ranks, and $P$ is strongly Sperner if it is $k$-Sperner for $k=1,2, \ldots, n+1$
- $P$ has the LYM property if for all antichains $A \subseteq P$, $\sum_{i=0}^{n}\left|A \cap P_{i}\right| / r_{i} \leq 1$


## Symmetry Properties for Partially Ordered Sets

We are concerned with finite, ranked partially ordered sets $P$ of length $n$ : there is a partition $P=\bigsqcup_{i=0}^{n} P_{i}$ such that $x$ is covered by $y$ in $P$ only if $x$ and $y$ are in adjacent ranks.
Let $r_{i}=\left|P_{i}\right|(i=0,1, \ldots, n)$ be the rank or level numbers of $P$.

- $P$ is rank-symmetric if $r_{i}=r_{n-i}$ for all $i$
- $P$ is rank-unimodal if $r_{0} \leq r_{1} \leq \cdots \leq r_{j} \geq r_{j+1} \geq \cdots \geq r_{n}$ for some $j$
- $P$ is $k$-Sperner if no union of $k$ antichains is larger than the union of the $k$ largest ranks, and $P$ is strongly Sperner if it is $k$-Sperner for $k=1,2, \ldots, n+1$
- $P$ has the LYM property if for all antichains $A \subseteq P$, $\sum_{i=0}^{n}\left|A \cap P_{i}\right| / r_{i} \leq 1$
- $P$ has a symmetric chain decomposition if $P=\bigsqcup_{i=0}^{n} C_{i}$ with each $C_{i}$ a symmetric, saturated chain in $P$


## Quotients and Automorphisms of Partially Ordered Sets

## Quotients and Automorphisms of Partially Ordered Sets

For a partially ordered set $P$ and $G \leq \operatorname{Aut}(P)$, the quotient of $P$ by $G, P / G$, is the set of orbits of $P$ under $G$, ordered by

$$
[x] \leq[y] \Longleftrightarrow \exists x^{\prime} \in[x], y^{\prime} \in[y] \text { with } x^{\prime} \leq y^{\prime} \text { in } P .
$$

## Quotients and Automorphisms of Partially Ordered Sets

For a partially ordered set $P$ and $G \leq \operatorname{Aut}(P)$, the quotient of $P$ by $G, P / G$, is the set of orbits of $P$ under $G$, ordered by

$$
[x] \leq[y] \Longleftrightarrow \exists x^{\prime} \in[x], y^{\prime} \in[y] \text { with } x^{\prime} \leq y^{\prime} \text { in } P
$$

The Boolean lattice $\mathbf{2}^{n}$ of all subsets of $[n]=\{1,2, \ldots, n\}$ ordered by $\subseteq$ has

$$
\operatorname{Aut}\left(\mathbf{2}^{n}\right) \cong S_{n}
$$

the symmetric group on [ $n$ ].

## Quotients and Automorphisms of Partially Ordered Sets

For a partially ordered set $P$ and $G \leq \operatorname{Aut}(P)$, the quotient of $P$ by $G, P / G$, is the set of orbits of $P$ under $G$, ordered by

$$
[x] \leq[y] \Longleftrightarrow \exists x^{\prime} \in[x], y^{\prime} \in[y] \text { with } x^{\prime} \leq y^{\prime} \text { in } P
$$

The Boolean lattice $\mathbf{2}^{n}$ of all subsets of $[n]=\{1,2, \ldots, n\}$ ordered by $\subseteq$ has

$$
\operatorname{Aut}\left(\mathbf{2}^{n}\right) \cong S_{n}
$$

the symmetric group on [ $n$ ].
More generally, for any finite chain $C$,

$$
\operatorname{Aut}\left(C^{n}\right) \cong S_{n}
$$

## Quotients and Automorphisms of Partially Ordered Sets

For a partially ordered set $P$ and $G \leq \operatorname{Aut}(P)$, the quotient of $P$ by $G, P / G$, is the set of orbits of $P$ under $G$, ordered by

$$
[x] \leq[y] \Longleftrightarrow \exists x^{\prime} \in[x], y^{\prime} \in[y] \text { with } x^{\prime} \leq y^{\prime} \text { in } P
$$

The Boolean lattice $\mathbf{2}^{n}$ of all subsets of $[n]=\{1,2, \ldots, n\}$ ordered by $\subseteq$ has

$$
\operatorname{Aut}\left(\mathbf{2}^{n}\right) \cong S_{n}
$$

the symmetric group on [ $n$ ].
More generally, for any finite chain $C$,

$$
\operatorname{Aut}\left(C^{n}\right) \cong S_{n}
$$

and for chains $C_{i}$ of distinct lengths and $n_{i} \in \mathbb{N}(i=1,2, \ldots, m)$

$$
\operatorname{Aut}\left(C_{1}^{n_{1}} \times C_{2}^{n_{2}} \times \cdots \times C_{m}^{n_{m}}\right) \cong S_{n_{1}} \times S_{n_{2}} \times \cdots \times S_{n_{m}}
$$

An Example

## An Example

$B_{6} /\langle(123456)\rangle$


## Symmetry and Quotients

## Symmetry and Quotients

Stanley [1980] applied methods from algebraic geometry to obtain symmetry results for partial orders defined on cellular decompositions of varieties.

## Symmetry and Quotients

Stanley [1980] applied methods from algebraic geometry to obtain symmetry results for partial orders defined on cellular decompositions of varieties. As a consequence, some interesting quotients are

## Symmetry and Quotients

Stanley [1980] applied methods from algebraic geometry to obtain symmetry results for partial orders defined on cellular decompositions of varieties. As a consequence, some interesting quotients are

- rank-symmetric, rank-unimodal, strongly Sperner


## Symmetry and Quotients

Stanley [1980] applied methods from algebraic geometry to obtain symmetry results for partial orders defined on cellular decompositions of varieties. As a consequence, some interesting quotients are

- rank-symmetric, rank-unimodal, strongly Sperner $=$ Peck


## Symmetry and Quotients

Stanley [1980] applied methods from algebraic geometry to obtain symmetry results for partial orders defined on cellular decompositions of varieties. As a consequence, some interesting quotients are

- rank-symmetric, rank-unimodal, strongly Sperner $=$ Peck

Stanley [1984], Pouzet [1976], Pouzet and Rosenberg [1986], and Harper [1984] proved results from which the following can be deduced:

## Symmetry and Quotients

Stanley [1980] applied methods from algebraic geometry to obtain symmetry results for partial orders defined on cellular decompositions of varieties. As a consequence, some interesting quotients are

- rank-symmetric, rank-unimodal, strongly Sperner $=$ Peck

Stanley [1984], Pouzet [1976], Pouzet and Rosenberg [1986], and Harper [1984] proved results from which the following can be deduced:

- for any $G \leq S_{n}, \mathbf{2}^{n} / G$ is rank-symmetric, rank-unimodal and strongly Sperner;


## Symmetry and Quotients

Stanley [1980] applied methods from algebraic geometry to obtain symmetry results for partial orders defined on cellular decompositions of varieties. As a consequence, some interesting quotients are

- rank-symmetric, rank-unimodal, strongly Sperner $=$ Peck

Stanley [1984], Pouzet [1976], Pouzet and Rosenberg [1986], and Harper [1984] proved results from which the following can be deduced:

- for any $G \leq S_{n}, \mathbf{2}^{n} / G$ is rank-symmetric, rank-unimodal and strongly Sperner;
- for any $P$ that is a product of chains and $G \leq \operatorname{Aut}(P), P / G$ is rank-symmetric, rank-unimodal and strongly Sperner.


## Symmetric Chains

## Symmetric Chains

Let $P$ be a rank-symmetric partially ordered set of length $n$, say $P=\bigsqcup_{i=0}^{n} P_{i}$ and $r_{i}=\left|P_{i}\right|(i=0,1, \ldots, n)$. Then $P$ is rank-unimodal and strongly Sperner $\Longleftrightarrow \forall i=0,1, \ldots,\lfloor n / 2\rfloor$
$\exists r_{i}$ pwd saturated chains $x_{i}<x_{i+1}<\cdots<x_{n-i}$

$$
\text { with } x_{j} \in P_{j}(j=i, i+1, \ldots, n-i)
$$

## Symmetric Chains

Let $P$ be a rank-symmetric partially ordered set of length $n$, say $P=\bigsqcup_{i=0}^{n} P_{i}$ and $r_{i}=\left|P_{i}\right|(i=0,1, \ldots, n)$. Then $P$ is rank-unimodal and strongly Sperner $\Longleftrightarrow \forall i=0,1, \ldots,\lfloor n / 2\rfloor$
$\exists r_{i}$ pwd saturated chains $x_{i}<x_{i+1}<\cdots<x_{n-i}$

$$
\text { with } x_{j} \in P_{j}(j=i, i+1, \ldots, n-i)
$$



## Questions and Conjecture

## Questions and Conjecture

## Questions:

(1) For which SCO's $P$ and $G \leq \operatorname{Aut}(P)$ is $P / G$ an SCO?

## Questions and Conjecture

## Questions:

(1) For which SCO's $P$ and $G \leq \operatorname{Aut}(P)$ is $P / G$ an SCO?
(2) For which SCO's $Q$ and $G \leq S_{n} \leq \operatorname{Aut}\left(Q^{n}\right)$ is $Q^{n} / G$ an SCO?

## Questions and Conjecture

## Questions:

(1) For which SCO's $P$ and $G \leq \operatorname{Aut}(P)$ is $P / G$ an SCO?
(2) For which SCO's $Q$ and $G \leq S_{n} \leq \operatorname{Aut}\left(Q^{n}\right)$ is $Q^{n} / G$ an SCO?

- For which $G \leq S_{n}$ is $2^{n} / G$ an $S C O$ ?


## Questions and Conjecture

## Questions:

(1) For which SCO's $P$ and $G \leq \operatorname{Aut}(P)$ is $P / G$ an SCO?
(2) For which SCO's $Q$ and $G \leq S_{n} \leq \operatorname{Aut}\left(Q^{n}\right)$ is $Q^{n} / G$ an SCO?
(c) For which $G \leq S_{n}$ is $2^{n} / G$ an $S C O$ ?

- Is the lattice $L(m, n)$ of all partitions of an integer into at most $m$ parts of size at most $n$ an SCO ?


## Questions and Conjecture

## Questions:

(1) For which SCO's $P$ and $G \leq \operatorname{Aut}(P)$ is $P / G$ an SCO?
(2) For which SCO's $Q$ and $G \leq S_{n} \leq \operatorname{Aut}\left(Q^{n}\right)$ is $Q^{n} / G$ an SCO?

- For which $G \leq S_{n}$ is $2^{n} / G$ an $S C O$ ?
- Is the lattice $L(m, n)$ of all partitions of an integer into at most $m$ parts of size at most $n$ an SCO?

Conjecture [Canfield and Mason - 2006]:

## Questions and Conjecture

## Questions:

(1) For which SCO's $P$ and $G \leq \operatorname{Aut}(P)$ is $P / G$ an SCO?
(2) For which SCO's $Q$ and $G \leq S_{n} \leq \operatorname{Aut}\left(Q^{n}\right)$ is $Q^{n} / G$ an SCO?
(3) For which $G \leq S_{n}$ is $2^{n} / G$ an SCO?
(9) Is the lattice $L(m, n)$ of all partitions of an integer into at most $m$ parts of size at most $n$ an SCO?

Conjecture [Canfield and Mason - 2006]:

$$
\text { For all } G \leq S_{n}, \mathbf{2}^{n} / G \text { is an SCO. }
$$

## A Particularly Interesting Example

## A Particularly Interesting Example

One of the most
well-known
specific questions
concerns $L(m, n)$, the collection of
all downsets of an
$m \times n$ grid, ordered by $\subseteq$.

## A Particularly Interesting Example

One of the most well-known specific questions concerns $L(m, n)$, the collection of all downsets of an $m \times n$ grid, ordered by $\subseteq$.

$n$

## A Particularly Interesting Example

One of the most well-known specific questions concerns $L(m, n)$, the collection of all downsets of an $m \times n$ grid, ordered by $\subseteq$.

$n$

Let $G \leq S_{m n}$ be the group of all permutations constructed from $n$ independent permutations within the columns, followed by a permutation of the columns:

## A Particularly Interesting Example

One of the most well-known specific questions concerns $L(m, n)$, the collection of all downsets of an $m \times n$ grid, ordered by $\subseteq$.

$n$

Let $G \leq S_{m n}$ be the group of all permutations constructed from $n$ independent permutations within the columns, followed by a permutation of the columns: $G \cong S_{m} \backslash S_{n}$. Each orbit under $G$ has a unique downset representative: thus, $L(m, n) \cong 2^{m n} / G$.

## A Particularly Interesting Example

One of the most well-known specific questions concerns $L(m, n)$, the collection of all downsets of an $m \times n$ grid, ordered by $\subseteq$.

$n$

Let $G \leq S_{m n}$ be the group of all permutations constructed from $n$ independent permutations within the columns, followed by a permutation of the columns: $G \cong S_{m} \backslash S_{n}$. Each orbit under $G$ has a unique downset representative: thus, $L(m, n) \cong 2^{m n} / G$.

Question: [Stanley 1980] Is $L(m, n)$ an SCO?

What is known?

## What is known?

Take $\mathbb{Z}_{n} \leq S_{n}$ to be generated by the shift or $n$-cycle ( $12 \cdots n$ ). Then

## What is known?

Take $\mathbb{Z}_{n} \leq S_{n}$ to be generated by the shift or $n$-cycle ( $12 \cdots n$ ). Then
(1) for $n$ prime, $2^{n} / \mathbb{Z}_{n}$ is an SCO [Griggs, Killian, Savage 2004];

## What is known?

Take $\mathbb{Z}_{n} \leq S_{n}$ to be generated by the shift or $n$-cycle ( $12 \cdots n$ ). Then
(1) for $n$ prime, $2^{n} / \mathbb{Z}_{n}$ is an SCO [Griggs, Killian, Savage 2004];
(2) for all $n, \mathbf{2}^{n} / \mathbb{Z}_{n}$ is an SCO [Jordan 2010; Hersh and Schilling 2011];

## What is known?

Take $\mathbb{Z}_{n} \leq S_{n}$ to be generated by the shift or $n$-cycle ( $12 \cdots n$ ). Then
(1) for $n$ prime, $\mathbf{2}^{n} / \mathbb{Z}_{n}$ is an SCO [Griggs, Killian, Savage 2004];
(2) for all $n, \mathbf{2}^{n} / \mathbb{Z}_{n}$ is an SCO [Jordan 2010; Hersh and Schilling 2011];
(3) for $P$ a product of chains and $K \leq \operatorname{Aut}(P)$ generated by powers of disjoint cycles, $P / K$ is an SCO [Duffus, McKibbenSanders and Thayer 2011]; and,

## What is known?

Take $\mathbb{Z}_{n} \leq S_{n}$ to be generated by the shift or $n$-cycle ( $12 \cdots n$ ). Then
(1) for $n$ prime, $\mathbf{2}^{n} / \mathbb{Z}_{n}$ is an SCO [Griggs, Killian, Savage 2004];
(2) for all $n, \mathbf{2}^{n} / \mathbb{Z}_{n}$ is an SCO [Jordan 2010; Hersh and Schilling 2011];
(3) for $P$ a product of chains and $K \leq \operatorname{Aut}(P)$ generated by powers of disjoint cycles, $P / K$ is an SCO [Duffus, McKibbenSanders and Thayer 2011]; and,
(9) for all $n$ and all SCOs $P, P^{n} / \mathbb{Z}_{n}$ is an SCO [Dhand 2011].

## $\left(C_{1}^{n_{1}} \times \cdots \times C_{p}^{n_{p}}\right) /\left\langle\sigma_{1}^{r_{1}}, \ldots, \sigma_{t}^{r_{t}}\right\rangle$ is an SCO

$\left(C_{1}^{n_{1}} \times \cdots \times C_{p}^{n_{p}}\right) /\left\langle\sigma_{1}^{r_{1}}, \ldots, \sigma_{t}^{r_{t}}\right\rangle$ is an SCO
Let $\sigma_{1}, \ldots, \sigma_{t} \in S_{n}$ be disjoint cycles; say $X_{i}=\operatorname{supp}\left(\sigma_{i}\right)$ and $X_{0}=[n]-\cup X_{i}$.
$\left(C_{1}^{n_{1}} \times \cdots \times C_{p}^{n_{p}}\right) /\left\langle\sigma_{1}^{r_{1}}, \ldots, \sigma_{t}^{r_{t}}\right\rangle$ is an SCO
Let $\sigma_{1}, \ldots, \sigma_{t} \in S_{n}$ be disjoint cycles; say $X_{i}=\operatorname{supp}\left(\sigma_{i}\right)$ and $X_{0}=[n]-\cup X_{i}$. Then it is straightforward to show that

$$
2^{n} /\left\langle\sigma_{1}^{r_{1}}, \ldots, \sigma_{t}^{r_{t}}\right\rangle \cong \mathbf{2}^{X_{0}} \times \mathbf{2}^{X_{1}} /\left\langle\sigma_{1}^{r_{1}}\right\rangle \times \cdots \times \mathbf{2}^{X_{t}} /\left\langle\sigma_{1}^{r_{t}}\right\rangle .
$$

$\left(C_{1}^{n_{1}} \times \cdots \times C_{p}^{n_{p}}\right) /\left\langle\sigma_{1}^{r_{1}}, \ldots, \sigma_{t}^{r_{t}}\right\rangle$ is an SCO
Let $\sigma_{1}, \ldots, \sigma_{t} \in S_{n}$ be disjoint cycles; say $X_{i}=\operatorname{supp}\left(\sigma_{i}\right)$ and $X_{0}=[n]-\cup X_{i}$. Then it is straightforward to show that

$$
2^{n} /\left\langle\sigma_{1}^{r_{1}}, \ldots, \sigma_{t}^{r_{t}}\right\rangle \cong 2^{X_{0}} \times 2^{X_{1}} /\left\langle\sigma_{1}^{r_{1}}\right\rangle \times \cdots \times 2^{X_{t}} /\left\langle\sigma_{1}^{r_{t}}\right\rangle .
$$

A product of SCOs is an SCO so it is enough to show that each $2^{X_{i}} /\left\langle\sigma_{i}^{r_{i}}\right\rangle$ is an SCO.
$\left(C_{1}^{n_{1}} \times \cdots \times C_{p}^{n_{p}}\right) /\left\langle\sigma_{1}^{r_{1}}, \ldots, \sigma_{t}^{r_{t}}\right\rangle$ is an SCO
Let $\sigma_{1}, \ldots, \sigma_{t} \in S_{n}$ be disjoint cycles; say $X_{i}=\operatorname{supp}\left(\sigma_{i}\right)$ and $X_{0}=[n]-\cup X_{i}$. Then it is straightforward to show that

$$
2^{n} /\left\langle\sigma_{1}^{r_{1}}, \ldots, \sigma_{t}^{r_{t}}\right\rangle \cong 2^{X_{0}} \times 2^{X_{1}} /\left\langle\sigma_{1}^{r_{1}}\right\rangle \times \cdots \times \mathbf{2}^{X_{t}} /\left\langle\sigma_{1}^{r_{t}}\right\rangle
$$

A product of SCOs is an SCO so it is enough to show that each $2^{X_{i}} /\left\langle\sigma_{i}^{r_{i}}\right\rangle$ is an SCO.
Let $C_{1}, \ldots, C_{m}, m=\binom{n}{|n / 2|}$, be the Greene-Kleitman SCD of $\mathbf{2}^{n}$ :


Fact: There is a subsequence $C_{i_{1}}^{\prime}, C_{i_{2}}^{\prime}, \ldots, C_{i_{s}}^{\prime}$ of saturated, symmetric subchains that consist of exactly one representative of each orbit induced by $\sigma_{i}^{r_{i}}$ :

Fact: There is a subsequence $C_{i_{1}}^{\prime}, C_{i_{2}}^{\prime}, \ldots, C_{i_{s}}^{\prime}$ of saturated, symmetric subchains that consist of exactly one representative of each orbit induced by $\sigma_{i}^{r_{i}}$ :
$C_{i 1}^{\prime}$


We have: with $\sigma=(12 \cdots n), \mathbf{2}^{n} /\left\langle\sigma^{r}\right\rangle$ is an SCO.

We have: with $\sigma=(12 \cdots n), \mathbf{2}^{n} /\left\langle\sigma^{r}\right\rangle$ is an SCO.
We want: for a chain $C$ and $\phi=(12 \cdots m), C^{m} /\left\langle\phi^{q}\right\rangle$ is an SCO.

We have: with $\sigma=(12 \cdots n), \mathbf{2}^{n} /\left\langle\sigma^{r}\right\rangle$ is an SCO.
We want: for a chain $C$ and $\phi=(12 \cdots m), C^{m} /\left\langle\phi^{q}\right\rangle$ is an SCO.
Let $C$ be the $k$-chain $000 \ldots 0,100 \ldots 0,110 \ldots 0, \ldots, 111 \ldots 1$ in $2^{k-1}$.

We have: with $\sigma=(12 \cdots n), \mathbf{2}^{n} /\left\langle\sigma^{r}\right\rangle$ is an SCO.
We want: for a chain $C$ and $\phi=(12 \cdots m), C^{m} /\left\langle\phi^{q}\right\rangle$ is an SCO. Let $C$ be the $k$-chain $000 \ldots 0,100 \ldots 0,110 \ldots 0, \ldots, 111 \ldots 1$ in $2^{k-1}$.

With $n=(k-1) m, C^{m}$ is the sublattice of $2^{n}$ of all 0,1 -sequences of length $n$ of the form $\mathbf{b}=\mathbf{b}_{1} \mathbf{b}_{2} \ldots \mathbf{b}_{\mathbf{m}}, \mathbf{b}_{i} \in C$.

We have: with $\sigma=(12 \cdots n), \mathbf{2}^{n} /\left\langle\sigma^{r}\right\rangle$ is an SCO.
We want: for a chain $C$ and $\phi=(12 \cdots m), C^{m} /\left\langle\phi^{q}\right\rangle$ is an SCO.
Let $C$ be the $k$-chain $000 \ldots 0,100 \ldots 0,110 \ldots 0, \ldots, 111 \ldots 1$ in $2^{k-1}$.
With $n=(k-1) m, C^{m}$ is the sublattice of $2^{n}$ of all 0,1 -sequences of length $n$ of the form $\mathbf{b}=\mathbf{b}_{1} \mathbf{b}_{2} \ldots \mathbf{b}_{\mathbf{m}}, \mathbf{b}_{i} \in C$.

Fact: Each Greene-Kleitman chain $C_{i}$ satisfies

$$
C_{i} \cap C^{m}=\emptyset \text { or } C_{i} \subseteq C^{m} .
$$

With the embedding of $C$ given above, we have $\phi^{q}=\sigma^{(k-1) q} \mid C^{m}$.

We have: with $\sigma=(12 \cdots n), \mathbf{2}^{n} /\left\langle\sigma^{r}\right\rangle$ is an SCO.
We want: for a chain $C$ and $\phi=(12 \cdots m), C^{m} /\left\langle\phi^{q}\right\rangle$ is an SCO.
Let $C$ be the $k$-chain $000 \ldots 0,100 \ldots 0,110 \ldots 0, \ldots, 111 \ldots 1$ in $2^{k-1}$.
With $n=(k-1) m, C^{m}$ is the sublattice of $2^{n}$ of all 0,1 -sequences of length $n$ of the form $\mathbf{b}=\mathbf{b}_{1} \mathbf{b}_{\mathbf{2}} \ldots \mathbf{b}_{\mathbf{m}}, \mathbf{b}_{i} \in C$.

Fact: Each Greene-Kleitman chain $C_{i}$ satisfies

$$
C_{i} \cap C^{m}=\emptyset \text { or } C_{i} \subseteq C^{m} .
$$

With the embedding of $C$ given above, we have $\phi^{q}=\sigma^{(k-1) q} \mid C^{m}$.
Let $r=(k-1) q$, take the SCD $C_{i_{1}}^{\prime}, C_{i_{2}}^{\prime}, \ldots, C_{i_{s}}^{\prime}$ of $2^{n} /\left\langle\sigma^{r}\right\rangle$ obtained by pruning the GK SCD of $\mathbf{2}^{n}$ and select the subfamily of those $C_{i_{j}}^{\prime} \subseteq C^{m}$.

We have: with $\sigma=(12 \cdots n), \mathbf{2}^{n} /\left\langle\sigma^{r}\right\rangle$ is an SCO.
We want: for a chain $C$ and $\phi=(12 \cdots m), C^{m} /\left\langle\phi^{q}\right\rangle$ is an SCO. Let $C$ be the $k$-chain $000 \ldots 0,100 \ldots 0,110 \ldots 0, \ldots, 111 \ldots 1$ in $2^{k-1}$.

With $n=(k-1) m, C^{m}$ is the sublattice of $2^{n}$ of all 0,1 -sequences of length $n$ of the form $\mathbf{b}=\mathbf{b}_{\mathbf{1}} \mathbf{b}_{\mathbf{2}} \ldots \mathbf{b}_{\mathbf{m}}, \mathbf{b}_{i} \in C$.

Fact: Each Greene-Kleitman chain $C_{i}$ satisfies

$$
C_{i} \cap C^{m}=\emptyset \text { or } C_{i} \subseteq C^{m} .
$$

With the embedding of $C$ given above, we have $\phi^{q}=\sigma^{(k-1) q} \mid C^{m}$.
Let $r=(k-1) q$, take the SCD $C_{i_{1}}^{\prime}, C_{i_{2}}^{\prime}, \ldots, C_{i_{s}}^{\prime}$ of $\mathbf{2}^{n} /\left\langle\sigma^{r}\right\rangle$ obtained by pruning the GK SCD of $\mathbf{2}^{n}$ and select the subfamily of those $C_{i_{j}}^{\prime} \subseteq C^{m}$.

Since $C^{m} /\left\langle\phi^{q}\right\rangle$ is a saturated and symmetric suborder of $\mathbf{2}^{n} /\left\langle\sigma^{r}\right\rangle$, these chains provide an SCD of $C^{m} /\left\langle\phi^{q}\right\rangle$.

A strategy for more general quotients $2^{n} / G$

A strategy for more general quotients $2^{n} / G$
Assume: $n=k t, G \leq S_{n}: G=K \imath T, K \leq S_{k}$ and $T \leq S_{t}$

## A strategy for more general quotients $2^{n} / G$

Assume: $n=k t, G \leq S_{n}: G=K \imath T, K \leq S_{k}$ and $T \leq S_{t}$ Partition $[n]=\bigcup_{r=1}^{t} N_{r}, \quad N_{r}=[(r-1) k+1, r k]$.

For each $\phi \in G$ there exist $\bar{\rho}=\left(\rho_{1}, \ldots, \rho_{t}\right) \in K^{t}$ and $\tau \in T$ such that

$$
\phi((r-1) k+i)=(\tau(r)-1) k+\rho_{r}(i) .
$$



Then: with $K^{\prime}$ the base group of $G$ (those $\phi$ with $\tau=1_{[t]}$ )

Then: with $K^{\prime}$ the base group of $G$ (those $\phi$ with $\tau=1_{[t]}$ )

$$
2^{n} / K^{\prime} \cong \prod_{r=1}^{t} 2^{N_{r}} / K_{r} \cong\left(2^{k} / K\right)^{t}
$$

Then: with $K^{\prime}$ the base group of $G$ (those $\phi$ with $\tau=1_{[t]}$ )

$$
\mathbf{2}^{n} / K^{\prime} \cong \prod_{r=1}^{t} \mathbf{2}^{N_{r}} / K_{r} \cong\left(\mathbf{2}^{k} / K\right)^{t}
$$

Assume: $2^{k} / K$ is an SCO; thus, $2^{n} / K^{\prime}$ is an SCO as well.

Then: with $K^{\prime}$ the base group of $G$ (those $\phi$ with $\tau=1_{[t]}$ )

$$
2^{n} / K^{\prime} \cong \prod_{r=1}^{t} 2^{N_{r}} / K_{r} \cong\left(2^{k} / K\right)^{t}
$$

Assume: $2^{k} / K$ is an SCO; thus, $2^{n} / K^{\prime}$ is an SCO as well.
Given an SCD $C_{1}, C_{2}, \ldots, C_{s}$ of $2^{k} / K$, take the shifted SCD $C_{1}^{r}, C_{2}^{r}, \ldots, C_{s}^{r}$ for each quotient $\mathbf{2}^{N_{r}} / K_{r}$ :

Then: with $K^{\prime}$ the base group of $G$ (those $\phi$ with $\tau=1_{[t]}$ )

$$
2^{n} / K^{\prime} \cong \prod_{r=1}^{t} 2^{N_{r}} / K_{r} \cong\left(2^{k} / K\right)^{t}
$$

Assume: $2^{k} / K$ is an SCO; thus, $2^{n} / K^{\prime}$ is an SCO as well.
Given an SCD $C_{1}, C_{2}, \ldots, C_{s}$ of $2^{k} / K$, take the shifted SCD $C_{1}^{r}, C_{2}^{r}, \ldots, C_{s}^{r}$ for each quotient $2^{N_{r}} / K_{r}$ : then

$$
2^{n} / K^{\prime} \cong \prod_{r=1}^{t}\left(\sum_{j=1}^{s} C_{j}^{r}\right)=
$$

Then: with $K^{\prime}$ the base group of $G$ (those $\phi$ with $\tau=1_{[t]}$ )

$$
2^{n} / K^{\prime} \cong \prod_{r=1}^{t} 2^{N_{r}} / K_{r} \cong\left(2^{k} / K\right)^{t}
$$

Assume: $2^{k} / K$ is an SCO; thus, $2^{n} / K^{\prime}$ is an SCO as well.
Given an SCD $C_{1}, C_{2}, \ldots, C_{s}$ of $2^{k} / K$, take the shifted SCD $C_{1}^{r}, C_{2}^{r}, \ldots, C_{s}^{r}$ for each quotient $\mathbf{2}^{N_{r}} / K_{r}$ : then

$$
2^{n} / K^{\prime} \cong \prod_{r=1}^{t}\left(\sum_{j=1}^{s} C_{j}^{r}\right)=\sum_{j=\left(j_{1}, \ldots, j_{t}\right) \in[s]^{t}} C_{j_{j 2}}^{1} \times C_{j_{2}}^{2} \times \cdots \times C_{j_{t}}^{t}
$$

Then: with $K^{\prime}$ the base group of $G$ (those $\phi$ with $\tau=1_{[t]}$ )

$$
\mathbf{2}^{n} / K^{\prime} \cong \prod_{r=1}^{t} \mathbf{2}^{N_{r}} / K_{r} \cong\left(\mathbf{2}^{k} / K\right)^{t}
$$

Assume: $2^{k} / K$ is an SCO; thus, $\mathbf{2}^{n} / K^{\prime}$ is an SCO as well.
Given an SCD $C_{1}, C_{2}, \ldots, C_{s}$ of $2^{k} / K$, take the shifted SCD $C_{1}^{r}, C_{2}^{r}, \ldots, C_{s}^{r}$ for each quotient $\mathbf{2}^{N_{r}} / K_{r}$ : then

$$
2^{n} / K^{\prime} \cong \prod_{r=1}^{t}\left(\sum_{j=1}^{s} C_{j}^{r}\right)=\sum_{j=\left(j_{1}, \ldots, j_{t}\right) \in[s]^{t}} C_{j^{t}}^{1} \times C_{j_{2}}^{2} \times \cdots \times C_{j_{t}}^{t}
$$

Each $C(\bar{j})$ is a symmetric, saturated suborder of $\mathbf{2}^{n} / K^{\prime}$ and, since a chain product, $C(\bar{j})$ is an SCO. The collection of their SCDs provides an SCD for $2^{n} / K^{\prime}$.

The second step: include the action of $T$

The second step: include the action of $T$
The orbits on $2^{n}$ under $K^{\prime}$ refine the orbits under $G=K \imath T$.

The second step: include the action of $T$
The orbits on $2^{n}$ under $K^{\prime}$ refine the orbits under $G=K \imath T$.
It suffices to select a representative $K^{\prime}$-orbit from within each $G$-orbit such that the set of all selected orbits constitute symmetric, saturated suborders of the cubes $C(\bar{j})$. We will then have a copy of $2^{n} / G$ along with an SCD.

The second step: include the action of $T$
The orbits on $2^{n}$ under $K^{\prime}$ refine the orbits under $G=K \imath T$.
It suffices to select a representative $K^{\prime}$-orbit from within each $G$-orbit such that the set of all selected orbits constitute symmetric, saturated suborders of the cubes $C(\bar{j})$. We will then have a copy of $2^{n} / G$ along with an SCD.

Fact 1: Each $\tau \in T$ has an action on $[s]^{t}$ :

$$
\tau(\bar{j})=\tau\left(j_{1}, j_{2}, \ldots, j_{t}\right)=\left(j_{\tau^{-1}(1)}, j_{\tau^{-1}(2)}, \ldots, j_{\tau^{-1}(t)}\right)
$$

## The second step: include the action of $T$

The orbits on $2^{n}$ under $K^{\prime}$ refine the orbits under $G=K \imath T$.
It suffices to select a representative $K^{\prime}$-orbit from within each $G$-orbit such that the set of all selected orbits constitute symmetric, saturated suborders of the cubes $C(\bar{j})$. We will then have a copy of $2^{n} / G$ along with an SCD.

Fact 1: Each $\tau \in T$ has an action on $[s]^{t}$ :

$$
\tau(\bar{j})=\tau\left(j_{1}, j_{2}, \ldots, j_{t}\right)=\left(j_{\tau^{-1}(1)}, j_{\tau^{-1}(2)}, \ldots, j_{\tau^{-1}(t)}\right)
$$

This induces a permutation $\widehat{\tau}$ on $\left\{C(\bar{j}) \mid \bar{j} \in[s]^{t}\right\}$ such that the restriction

$$
\begin{gathered}
\widehat{\tau}: C(\bar{j}) \mapsto C(\tau(\bar{j})) \text { satisfies } \\
\widehat{\tau}\left(\left[X_{1}\right],\left[X_{2}\right], \ldots,\left[X_{t}\right]\right)=\left(\left[X_{\tau^{-1}(1), 1}\right],\left[X_{\tau^{-1}(2), 2}\right], \ldots,\left[X_{\tau^{-1}(t), t}\right]\right)
\end{gathered}
$$

where $X_{r, q}$ is the shift of $X_{r} \subseteq N_{r}$ to $N_{q}$.

## Example:

$$
t=5:[n]=N_{1} \cup N_{2} \cup \cdots \cup N_{5} ; \quad \tau=(145)(23) \in T \leq S_{5}
$$

## Example:

$$
\begin{aligned}
& t=5:[n]=N_{1} \cup N_{2} \cup \cdots \cup N_{5} ; \quad \tau=\left(\begin{array}{ll}
1 & 4
\end{array}\right)(23) \in T \leq S_{5} \\
& s=6: \quad 2^{k} / K=C_{1}+C_{2}+\cdots+C_{6}
\end{aligned}
$$

## Example:

$$
\begin{aligned}
& t=5:[n]=N_{1} \cup N_{2} \cup \cdots \cup N_{5} ; \quad \tau=(145)(23) \in T \leq S_{5} \\
& s=6: \quad 2^{k} / K=C_{1}+C_{2}+\cdots+C_{6} \\
& \bar{j}=(2,5,6,6,1) \in[6]^{5}: \quad C(\bar{j})=C_{2}^{1} \times C_{5}^{2} \times C_{6}^{3} \times C_{6}^{4} \times C_{1}^{5} \\
& \tau(\bar{j})=(1,6,5,2,6): \quad C(\tau(\bar{j}))=C_{1}^{1} \times C_{6}^{2} \times C_{5}^{3} \times C_{2}^{4} \times C_{6}^{5} \\
& \widehat{\tau}\left(\left[X_{1}\right],\left[X_{2}\right],\left[X_{3}\right],\left[X_{4}\right],\left[X_{5}\right]\right)=\left(\left[X_{5,1}\right],\left[X_{3,2}\right],\left[X_{2,3}\right],\left[X_{1,4}\right],\left[X_{4,5}\right]\right)
\end{aligned}
$$

## Example:

$t=5:[n]=N_{1} \cup N_{2} \cup \cdots \cup N_{5} ; \quad \tau=(145)(23) \in T \leq S_{5}$
$s=6: \quad 2^{k} / K=C_{1}+C_{2}+\cdots+C_{6}$
$\bar{j}=(2,5,6,6,1) \in[6]^{5}: \quad C(\bar{j})=C_{2}^{1} \times C_{5}^{2} \times C_{6}^{3} \times C_{6}^{4} \times C_{1}^{5}$
$\tau(\bar{j})=(1,6,5,2,6): \quad C(\tau(\bar{j}))=C_{1}^{1} \times C_{6}^{2} \times C_{5}^{3} \times C_{2}^{4} \times C_{6}^{5}$
$\widehat{\tau}\left(\left[X_{1}\right],\left[X_{2}\right],\left[X_{3}\right],\left[X_{4}\right],\left[X_{5}\right]\right)=\left(\left[X_{5,1}\right],\left[X_{3,2}\right],\left[X_{2,3}\right],\left[X_{1,4}\right],\left[X_{4,5}\right]\right)$

Fact 2: Given $X, Y \subseteq[n]$ and $\bar{X}=\left(\left[X_{1}\right],\left[X_{2}\right], \ldots,\left[X_{t}\right]\right) \in C(\bar{j})$, $X$ and $Y$ are in the same $G$-orbit $\Longleftrightarrow$ there is some $\tau \in T$ such that $\bar{Y} \in C(\tau(\bar{j}))$ and $\widehat{\tau}(\bar{X})=\bar{Y}$.

We see from Fact 2 that we should select a representative, say the lexicographically least, from each orbit of $[s]^{t}$ defined by $T$. Say $J$ denotes the set of these representatives.

We see from Fact 2 that we should select a representative, say the lexicographically least, from each orbit of $[s]^{t}$ defined by $T$. Say $J$ denotes the set of these representatives.

The family $\mathcal{C}_{J}=\{C(\bar{j}) \mid \bar{j} \in J\}$ is a promising source for an SCD of $2^{n} / G$.

We see from Fact 2 that we should select a representative, say the lexicographically least, from each orbit of $[s]^{t}$ defined by $T$. Say $J$ denotes the set of these representatives.

The family $\mathcal{C}_{J}=\{C(\bar{j}) \mid \bar{j} \in J\}$ is a promising source for an SCD of $2^{n} / G$.

In fact, for $X \subseteq[n]$ with $X=\bigcup_{r=1}^{t} X_{r}$ each $X_{r}$ determines a unique $j_{r}^{\prime} \in[s]$ via $\left[X_{r}\right] \in C_{j_{r}^{\prime}}^{r}$ in the SCD of $2^{N_{r}} / K_{r}$. Thus, $X$ belongs to a $G$-orbit intersecting a unique member of $\mathcal{C}_{J}$.

We see from Fact 2 that we should select a representative, say the lexicographically least, from each orbit of $[s]^{t}$ defined by $T$. Say $J$ denotes the set of these representatives.

The family $\mathcal{C}_{J}=\{C(\bar{j}) \mid \bar{j} \in J\}$ is a promising source for an SCD of $2^{n} / G$.

In fact, for $X \subseteq[n]$ with $X=\bigcup_{r=1}^{t} X_{r}$ each $X_{r}$ determines a unique $j_{r}^{\prime} \in[s]$ via $\left[X_{r}\right] \in C_{j_{r}^{\prime}}^{r}$ in the SCD of $2^{N_{r}} / K_{r}$. Thus, $X$ belongs to a $G$-orbit intersecting a unique member of $\mathcal{C}_{J}$.

However, a $G$-orbit may intersect some $C(\bar{j}) \in \mathcal{C}_{J}$ in more than one element. We must find a symmetric, saturated subset of such a cube $C(\bar{j})$ to insure that we have a unique representative of each $G$-orbit. In fact, we want that subset to have an SCD.

## Examples

## Examples

An example needing another quotient:

## Examples

An example needing another quotient:
Suppose that $t=6, s=5, T=\langle\sigma\rangle$ where $\sigma=(12 \cdots 6)$ and $\bar{j}=(3,5,3,5,3,5)$.
Then for any $\tau \in T_{(3,5,3,5,3,5)}=\left\{1, \sigma^{2}, \sigma^{4}\right\}$, the stabilizer of $\bar{j}$, and any $\bar{X} \in C(\bar{j}), \bar{X}$ and $\widehat{\tau}(\bar{X})$ are in the same $G$-orbit.

## Examples

An example needing another quotient:
Suppose that $t=6, s=5, T=\langle\sigma\rangle$ where $\sigma=(12 \cdots 6)$ and $\bar{j}=(3,5,3,5,3,5)$.
Then for any $\tau \in T_{(3,5,3,5,3,5)}=\left\{1, \sigma^{2}, \sigma^{4}\right\}$, the stabilizer of $\bar{j}$, and any $\bar{X} \in C(\bar{j}), \bar{X}$ and $\widehat{\tau}(\bar{X})$ are in the same $G$-orbit.

Assume: With the SCD $C_{1}, C_{2}, \ldots, C_{s}$ of $\mathbf{2}^{k} / K$, for each $\bar{j} \in[s]^{t}$, the quotient $C(\bar{j}) / T_{\bar{j}}$ is an SCO.

## Examples

An example needing another quotient:
Suppose that $t=6, s=5, T=\langle\sigma\rangle$ where $\sigma=(12 \cdots 6)$ and $\bar{j}=(3,5,3,5,3,5)$.
Then for any $\tau \in T_{(3,5,3,5,3,5)}=\left\{1, \sigma^{2}, \sigma^{4}\right\}$, the stabilizer of $\bar{j}$, and any $\bar{X} \in C(\bar{j}), \bar{X}$ and $\widehat{\tau}(\bar{X})$ are in the same $G$-orbit.

Assume: With the SCD $C_{1}, C_{2}, \ldots, C_{s}$ of $\mathbf{2}^{k} / K$, for each $\bar{j} \in[s]^{t}$, the quotient $C(\bar{j}) / T_{\bar{j}}$ is an SCO.

Which groups $T$ are known to satisfy this assumption?

## Examples

An example needing another quotient:
Suppose that $t=6, s=5, T=\langle\sigma\rangle$ where $\sigma=(12 \cdots 6)$ and $\bar{j}=(3,5,3,5,3,5)$.
Then for any $\tau \in T_{(3,5,3,5,3,5)}=\left\{1, \sigma^{2}, \sigma^{4}\right\}$, the stabilizer of $\bar{j}$, and any $\bar{X} \in C(\bar{j}), \bar{X}$ and $\widehat{\tau}(\bar{X})$ are in the same $G$-orbit.

Assume: With the SCD $C_{1}, C_{2}, \ldots, C_{s}$ of $\mathbf{2}^{k} / K$, for each $\bar{j} \in[s]^{t}$, the quotient $C(\bar{j}) / T_{\bar{j}}$ is an SCO.

Which groups $T$ are known to satisfy this assumption?
Suppose that $T=\left(\rho_{1}, \ldots, \rho_{m}\right) \leq S_{t}$ where the $\rho_{i}$ 's have disjoint support. Then for any $C(\bar{j}), T_{\bar{j}}=\left(\rho_{1}^{d_{1}}, \ldots, \rho_{m}^{d_{m}}\right)$ where $d_{i}$ is minimum such that the cycles of $\rho_{i}^{d_{i}}$ refine the coloring of $[t]$ defined by $\bar{j}$.

Theorem: Let $n=k t, G \leq S_{n}, K \leq S_{k}, T \leq S_{t}, G=K \imath T$ via the natural action of $T$ on $K^{t}$. If both $K$ and $T$ are generated by powers of disjoint cycles then $2^{n} / G$ is an SCO.

Theorem: Let $n=k t, G \leq S_{n}, K \leq S_{k}, T \leq S_{t}, G=K \imath T$ via the natural action of $T$ on $K^{t}$. If both $K$ and $T$ are generated by powers of disjoint cycles then $2^{n} / G$ is an SCO.

Question: Which groups does this include?

Theorem: Let $n=k t, G \leq S_{n}, K \leq S_{k}, T \leq S_{t}, G=K \imath T$ via the natural action of $T$ on $K^{t}$. If both $K$ and $T$ are generated by powers of disjoint cycles then $2^{n} / G$ is an SCO.

Question: Which groups does this include?
Observations: (1) The dihedral group $D_{8} \cong \mathbb{Z}_{2} \prec \mathbb{Z}_{2}$.

Theorem: Let $n=k t, G \leq S_{n}, K \leq S_{k}, T \leq S_{t}, G=K \imath T$ via the natural action of $T$ on $K^{t}$. If both $K$ and $T$ are generated by powers of disjoint cycles then $2^{n} / G$ is an SCO.

Question: Which groups does this include?
Observations: (1) The dihedral group $D_{8} \cong \mathbb{Z}_{2} \imath \mathbb{Z}_{2}$.
(2) While $D_{2 n} \cong \mathbb{Z}_{n} \rtimes \mathbb{Z}_{2}$ it seems unlikely that for $2 n>8$, the dihedral group $D_{2 n}$ is a wreath product.

Theorem: Let $n=k t, G \leq S_{n}, K \leq S_{k}, T \leq S_{t}, G=K \imath T$ via the natural action of $T$ on $K^{t}$. If both $K$ and $T$ are generated by powers of disjoint cycles then $2^{n} / G$ is an SCO.

Question: Which groups does this include?
Observations: (1) The dihedral group $D_{8} \cong \mathbb{Z}_{2} \imath \mathbb{Z}_{2}$.
(2) While $D_{2 n} \cong \mathbb{Z}_{n} \rtimes \mathbb{Z}_{2}$ it seems unlikely that for $2 n>8$, the dihedral group $D_{2 n}$ is a wreath product.
(3) In some cases for $H \leq G$, SCDs for $P / H$ can be obtained from those of $P / G$ by splitting $G$-orbits into $H$-orbits. For instance:

Theorem: Let $n=k t, G \leq S_{n}, K \leq S_{k}, T \leq S_{t}, G=K \imath T$ via the natural action of $T$ on $K^{t}$. If both $K$ and $T$ are generated by powers of disjoint cycles then $2^{n} / G$ is an SCO.

Question: Which groups does this include?
Observations: (1) The dihedral group $D_{8} \cong \mathbb{Z}_{2}\left\langle\mathbb{Z}_{2}\right.$.
(2) While $D_{2 n} \cong \mathbb{Z}_{n} \rtimes \mathbb{Z}_{2}$ it seems unlikely that for $2 n>8$, the dihedral group $D_{2 n}$ is a wreath product.
(3) In some cases for $H \leq G$, SCDs for $P / H$ can be obtained from those of $P / G$ by splitting $G$-orbits into $H$-orbits. For instance:
$P=\mathbf{2}^{8}, \sigma=(12 \cdots 8), \rho=(14)(23)(58)(67), \rho_{1}=(14)(23)$;
$H=\left\langle\sigma^{4}, \rho\right\rangle \leq\left\langle\sigma^{4}, \rho_{1}\right\rangle=G$ [a wreath product].

Theorem: Let $n=k t, G \leq S_{n}, K \leq S_{k}, T \leq S_{t}, G=K \imath T$ via the natural action of $T$ on $K^{t}$. If both $K$ and $T$ are generated by powers of disjoint cycles then $2^{n} / G$ is an SCO.

Question: Which groups does this include?
Observations: (1) The dihedral group $D_{8} \cong \mathbb{Z}_{2}$ ( $\mathbb{Z}_{2}$.
(2) While $D_{2 n} \cong \mathbb{Z}_{n} \rtimes \mathbb{Z}_{2}$ it seems unlikely that for $2 n>8$, the dihedral group $D_{2 n}$ is a wreath product.
(3) In some cases for $H \leq G$, SCDs for $P / H$ can be obtained from those of $P / G$ by splitting $G$-orbits into $H$-orbits. For instance:
$P=\mathbf{2}^{8}, \sigma=(12 \cdots 8), \rho=(14)(23)(58)(67), \rho_{1}=(14)(23) ;$
$H=\left\langle\sigma^{4}, \rho\right\rangle \leq\left\langle\sigma^{4}, \rho_{1}\right\rangle=G$ [a wreath product].
Valid for $n=4 m$.

Theorem: Let $n=k t, G \leq S_{n}, K \leq S_{k}, T \leq S_{t}, G=K \imath T$ via the natural action of $T$ on $K^{t}$. If both $K$ and $T$ are generated by powers of disjoint cycles then $2^{n} / G$ is an SCO.

Question: Which groups does this include?
Observations: (1) The dihedral group $D_{8} \cong \mathbb{Z}_{2}$ ( $\mathbb{Z}_{2}$.
(2) While $D_{2 n} \cong \mathbb{Z}_{n} \rtimes \mathbb{Z}_{2}$ it seems unlikely that for $2 n>8$, the dihedral group $D_{2 n}$ is a wreath product.
(3) In some cases for $H \leq G$, SCDs for $P / H$ can be obtained from those of $P / G$ by splitting $G$-orbits into $H$-orbits. For instance:
$P=\mathbf{2}^{8}, \sigma=(12 \cdots 8), \rho=(14)(23)(58)(67), \rho_{1}=(14)(23) ;$
$H=\left\langle\sigma^{4}, \rho\right\rangle \leq\left\langle\sigma^{4}, \rho_{1}\right\rangle=G$ [a wreath product].
Valid for $n=4 m$.

Still no general argument for the dihedral group $D_{2 n}$ acting on $2^{n}$

