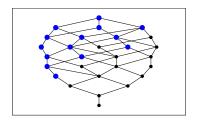
Majorization

Acknowledgements

Variations on the Majorization Order

Curtis Greene, Haverford College Halifax, June 18, 2012



Acknowledgements

Springer Series in Statistics

Albert W. Marshall · Ingram Olkin · Barry C. Arnold

Inequalities: Theory of Majorization and Its Applications

Second Edition

A. W. Marshall, I. Olkin, B. C. Arnold Inequalities: Theory of Majorization and its Applications, 2nd Edition Springer 2010 (909 p).

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

3

Majorization

Normalized Majorization

Double Majorization

Majorization on posets

Acknowledgements

HARDY LITTLEWOOD PÓLYA Inequalities

CAMBRIDGE UNIVERSITY PRESS

G. H. Hardy, J. E. Littlewood, G. Polya *Inequalities* Cambridge U. Press 1934, 1951, 1967 (324 p).

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

・ロット (雪) (日) (日) (日)

Muirhead's Inequalities (1902)

Example:

$$\frac{1}{6}(A^2B^2 + A^2C^2 + \dots + C^2D^2) \ge \frac{1}{12}(A^2BC + A^2BD + \dots + B^2CD)$$

Denote this by:

 $M_{22} \gg M_{211}.$

Similarly:

$$\frac{1}{24}(A^5B^4C + \dots + B^5C^4D) \ge \frac{1}{12}(A^4B^4C^2 + \dots + B^4C^2D^2)$$

Denote this by:

 $M_{541} \gg M_{442}.$

Theorem (Muirhead): $M_{\lambda} \gg M_{\mu} \Leftrightarrow \lambda \succeq \mu$ ("Majorization")

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Majorization: Definition

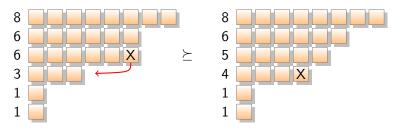
Assume λ and μ are monotone decreasing sequences. Then $\lambda \succeq \mu$ iff

$$\begin{array}{rcl} \lambda_{1} & \geq & \mu_{1} \\ \lambda_{1} + \lambda_{2} & \geq & \mu_{1} + \mu_{2} \\ \lambda_{1} + \lambda_{2} + \lambda_{3} & \geq & \mu_{1} + \mu_{2} + \lambda_{3} \\ \lambda_{1} + \lambda_{2} + \lambda_{3} + \lambda_{4} & \geq & \mu_{1} + \mu_{2} + \lambda_{3} + \lambda_{4} \\ & \vdots & \text{etc.} \end{array}$$
Example:
$$\lambda = \{8, 6, 6, 3, 1, 1\} \succeq \{8, 6, 5, 4, 1, 1\} = \mu$$
Compare partial sums:
$$\begin{array}{c} 8 & 14 & 20 & 23 & 24 & 25 & (\lambda) \\ 8 & 14 & 19 & 23 & 24 & 25 & (\mu) \end{array}$$

Majorization

Acknowledgements

Moving Boxes



Example:

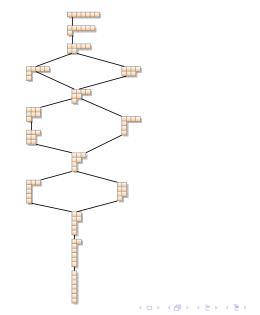
 $(4,0,0,0) \succeq (3,1,0,0) \succeq (2,2,0,0) \succeq (2,1,1,0) \succeq (1,1,1,1)$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ─ □ ─ つへで

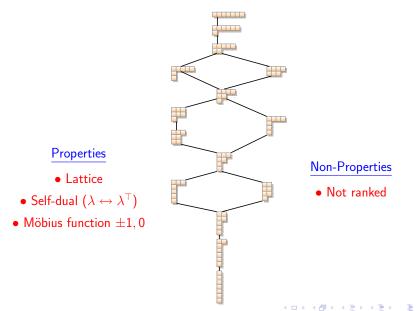
Acknowledgements

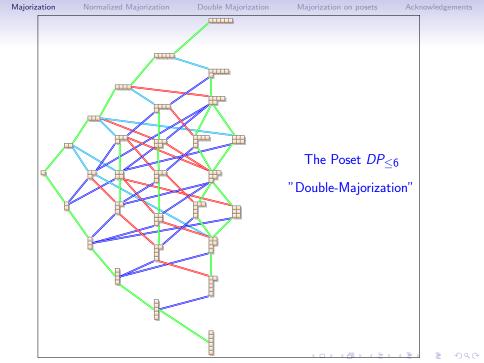
æ

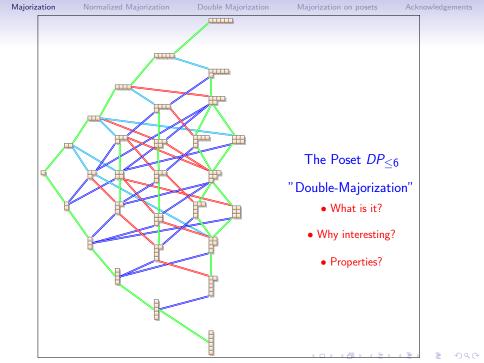
The Poset (P_6, \preceq) : Partitions of 6



The Poset (P_6, \preceq) : Partitions of 6







Why Interesting?

Non-homogeneous Muirhead-type inequalities

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ → 圖 - 釣�??

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Why Interesting? Non-homogeneous Muirhead-type inequalities

Examples:

$$\frac{1}{6}(AB+AC+AD+BC+BD+CD) < ? > \frac{1}{4}(ABC+ABD+ACD+BCD)$$

There can't be an inequality, in either direction.

Why Interesting? Non-homogeneous Muirhead-type inequalities

Examples:

$$\frac{1}{6}(AB+AC+AD+BC+BD+CD) < ? > \frac{1}{4}(ABC+ABD+ACD+BCD)$$

There can't be an inequality, in either direction. Instead we have

$$\left(\frac{1}{6}(AB+AC+\dots+BD+CD)\right)^{1/2} \ge \left(\frac{1}{4}(ABC+ABD+ACD+BCD)\right)^{1/3}$$

or

$$\left(\frac{1}{6}(AB+AC+\dots+BD+CD)\right)^3 \ge \left(\frac{1}{4}(ABC+ABD+ACD+BCD)\right)^2$$

- ◆ ロ ▶ ◆ 昼 ▶ ◆ 臣 ▶ → 臣 → の � �

Why Interesting? Non-homogeneous Muirhead-type inequalities

Examples:

$$\frac{1}{6}(AB+AC+AD+BC+BD+CD) < ? > \frac{1}{4}(ABC+ABD+ACD+BCD)$$

There can't be an inequality, in either direction. Instead we have

$$\left(\frac{1}{6}(AB+AC+\dots+BD+CD)\right)^{1/2} \ge \left(\frac{1}{4}(ABC+ABD+ACD+BCD)\right)^{1/3}$$

or

$$\left(\frac{1}{6}(AB+AC+\dots+BD+CD)\right)^3 \ge \left(\frac{1}{4}(ABC+ABD+ACD+BCD)\right)^2$$

These last inequalities are TRUE (MacLaurin (1729)).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

"Symmetric Monomial Means"

$$\left(\frac{1}{6}(AB + AC + \dots + BD + CD)\right)^{1/2} = \mathfrak{M}_{11}$$
$$\left(\frac{1}{4}(ABC + ABD + ACD + BCD)\right)^{1/3} = \mathfrak{M}_{111}$$
$$\left(\frac{1}{6}(A^3B^3 + A^3C^3 + B^3C^3 + A^3D^3 + B^3D^3 + C^3D^3)\right)^{1/6} = \mathfrak{M}_{33}$$
$$\left(\frac{1}{12}(A^2BC + A^2BD + A^2CD + \dots + D^2AC + D^2BC)\right)^{1/4} = \mathfrak{M}_{211}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

"Symmetric Monomial Means"

$$\left(\frac{1}{6}(AB + AC + \dots + BD + CD)\right)^{1/2} = \mathfrak{M}_{11}$$
$$\left(\frac{1}{4}(ABC + ABD + ACD + BCD)\right)^{1/3} = \mathfrak{M}_{111}$$
$$\left(\frac{1}{6}(A^3B^3 + A^3C^3 + B^3C^3 + A^3D^3 + B^3D^3 + C^3D^3)\right)^{1/6} = \mathfrak{M}_{33}$$
$$\left(\frac{1}{12}(A^2BC + A^2BD + A^2CD + \dots + D^2AC + D^2BC)\right)^{1/4} = \mathfrak{M}_{211}$$

Theorems: $\mathfrak{M}_{11} \gg \mathfrak{M}_{111}$ (1729), $\mathfrak{M}_{33} \gg \mathfrak{M}_{211}$ (2009).

Acknowledgements

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

What is it? "Normalized majorization"

NORMALIZE:
$$\lambda \longmapsto \overline{\lambda} = rac{\lambda}{|\lambda|}$$

Embeds each \mathcal{P}_n naturally into the lattice (\mathcal{Q}_1, \preceq) of nonnegative monotone rational sequences summing to 1, under majorization.

What is it? "Normalized majorization"

NORMALIZE:
$$\lambda \longmapsto \overline{\lambda} = rac{\lambda}{|\lambda|}$$

Embeds each \mathcal{P}_n naturally into the lattice (\mathcal{Q}_1, \preceq) of nonnegative monotone rational sequences summing to 1, under majorization.

Definition:

$$\lambda \sqsubseteq \mu \text{ if } \bar{\lambda} \preceq \bar{\mu}, \text{ i.e., } \frac{\lambda}{|\lambda|} \preceq \frac{\mu}{|\mu|}.$$

Example:

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

What is it? "Normalized majorization"

NORMALIZE:
$$\lambda \longmapsto \overline{\lambda} = rac{\lambda}{|\lambda|}$$

Embeds each \mathcal{P}_n naturally into the lattice (\mathcal{Q}_1, \preceq) of nonnegative monotone rational sequences summing to 1, under majorization.

Definition:

$$\lambda \sqsubseteq \mu \text{ if } \overline{\lambda} \preceq \overline{\mu}, \text{ i.e., } \frac{\lambda}{|\lambda|} \preceq \frac{\mu}{|\mu|}.$$

Example: $(4, 3, 1, 1, 1) \sqsubseteq (3, 3, 0, 0, 0)$ $(.5, .7, .8, .9, 1) \preceq (.5, 1, 1, 1, 1)$

But note that $(1,1,1) \sqsubseteq (2,2,2) \sqsubseteq (1,1,1)$. (It's a preorder.)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

"Double Majorization"

"Double Majorization"

Definition: $\lambda \trianglelefteq \mu$ iff $\lambda \sqsubseteq \mu$ and $\lambda^{\top} \sqsupseteq \mu^{\top}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

"Double Majorization"

Acknowledgements

"Double Majorization"

Example: 222 ≤ 31

(Percentages)

Acknowledgements

"Double Majorization"

Example: 222 ≤ 31

(Partial sums)

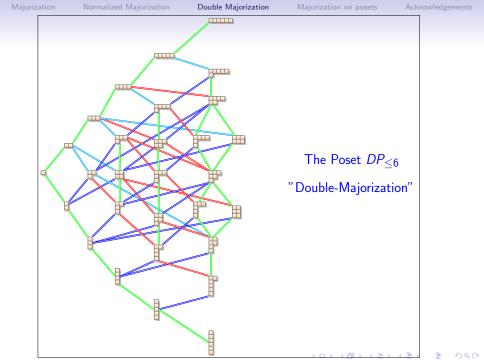
イロト 不得 トイヨト イヨト

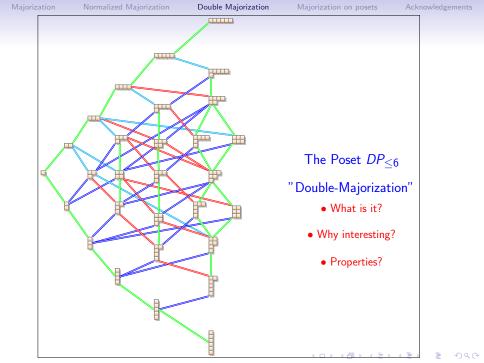
-

Acknowledgements

"Double Majorization"

Observe that the conditions $\lambda \sqsubseteq \mu$ and $\lambda^T \sqsupseteq \mu^T$ are not equivalent.





▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Application: Muirhead for Symmetric Monomial Means

Theorem (Cuttler-Greene-Skandera 2011) If λ and μ are partitions with $|\lambda| \leq |\mu|$, then $\mathfrak{M}_{\lambda} \leq \mathfrak{M}_{\mu}$ if and only if $\lambda \leq \mu$.

Application: Muirhead for Symmetric Monomial Means

Theorem (Cuttler-Greene-Skandera 2011) If λ and μ are partitions with $|\lambda| \leq |\mu|$, then $\mathfrak{M}_{\lambda} \leq \mathfrak{M}_{\mu}$ if and only if $\lambda \leq \mu$.

Conjecture Also true when $|\lambda| > |\mu|$.

Application: Muirhead for Symmetric Monomial Means

Theorem (Cuttler-Greene-Skandera 2011) If λ and μ are partitions with $|\lambda| \leq |\mu|$, then $\mathfrak{M}_{\lambda} \leq \mathfrak{M}_{\mu}$ if and only if $\lambda \leq \mu$.

Conjecture Also true when $|\lambda| > |\mu|$.

- True for all cases shown in the diagram.
- Includes several families of classical inequalities (e.g. Maclaurin 1729).
- Actually, a very strong form of the inequality holds ("y-positivity").
- "Only if" part true for all λ, μ .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Properties of $\mathcal{D}P_{\infty}$

• If $\lambda \trianglelefteq \mu$ and $\mu \trianglelefteq \lambda$, then $\lambda = \mu$; hence \mathcal{DP}_{∞} is a partial order.

- If λ ≤ μ and μ ≤ λ, then λ = μ; hence DP_∞ is a partial order.
- For all n, (P_n, ≤) embeds isomorphically in DP_∞ as a subposet.

- If λ ≤ μ and μ ≤ λ, then λ = μ; hence DP_∞ is a partial order.
- For all n, (P_n, ≤) embeds isomorphically in DP_∞ as a subposet.
- $\lambda \trianglelefteq \mu$ if and only if $\lambda^{\!\top} \trianglerighteq \mu^{\!\top}$; hence $\mathcal{D}P_{\infty}$ is self-dual.

- If λ ≤ μ and μ ≤ λ, then λ = μ; hence DP_∞ is a partial order.
- For all n, (P_n, ≤) embeds isomorphically in DP_∞ as a subposet.
- $\lambda \trianglelefteq \mu$ if and only if $\lambda^{\mathsf{T}} \trianglerighteq \mu^{\mathsf{T}}$; hence $\mathcal{D}P_{\infty}$ is self-dual.
- $\mathcal{D}P_{\infty}$ is not a lattice.

- If λ ≤ μ and μ ≤ λ, then λ = μ; hence DP_∞ is a partial order.
- For all n, (P_n, ≤) embeds isomorphically in DP_∞ as a subposet.
- $\lambda \trianglelefteq \mu$ if and only if $\lambda^{\!\top} \trianglerighteq \mu^{\!\top}$; hence $\mathcal{D}P_{\infty}$ is self-dual.
- $\mathcal{D}P_{\infty}$ is not a lattice.
- $\mathcal{D}P_{\infty}$ is an infinite poset without universal bounds; it is locally finite, but is not locally ranked.

- If λ ≤ μ and μ ≤ λ, then λ = μ; hence DP_∞ is a partial order.
- For all n, (P_n, ≤) embeds isomorphically in DP_∞ as a subposet.
- $\lambda \trianglelefteq \mu$ if and only if $\lambda^{\mathsf{T}} \trianglerighteq \mu^{\mathsf{T}}$; hence $\mathcal{D}P_{\infty}$ is self-dual.
- $\mathcal{D}P_{\infty}$ is not a lattice.
- $\mathcal{D}P_{\infty}$ is an infinite poset without universal bounds; it is locally finite, but is not locally ranked.
- All coverings are obtained by adding or moving boxes up, but not always a single box.

Coverings in $\mathcal{D}P_{\infty}$

 If |λ| = |μ|, then λ is covered by μ if and only if μ is obtained from λ by moving a single box up.

- If |λ| = |μ|, then λ is covered by μ if and only if μ is obtained from λ by moving a single box up.
- If λ is covered by μ with $|\lambda| < |\mu|$, then $|\mu| \le 2|\lambda|$.

- If $|\lambda| = |\mu|$, then λ is covered by μ if and only if μ is obtained from λ by moving a single box up.
- If λ is covered by μ with $|\lambda| < |\mu|$, then $|\mu| \le 2|\lambda|$.
- All such coverings are obtained as follows: if $|\lambda| = a$, $|\mu| = b$ with a < b, then:
 - Let $S(\lambda)$ denote the sequence of partial sums of λ , and let $S^b(\lambda) = \lceil (b/a)S(\lambda) \rceil$. Let μ_0 be the unique composition whose partial sum sequence is $S^b(\lambda)$.

- If |λ| = |μ|, then λ is covered by μ if and only if μ is obtained from λ by moving a single box up.
- If λ is covered by μ with $|\lambda| < |\mu|$, then $|\mu| \le 2|\lambda|$.
- All such coverings are obtained as follows: if $|\lambda| = a$, $|\mu| = b$ with a < b, then:
 - Let S(λ) denote the sequence of partial sums of λ, and let S^b(λ) = ⌈(b/a)S(λ)⌉. Let μ₀ be the unique composition whose partial sum sequence is S^b(λ).
 - Then μ is the unique partition obtained from μ₀ obtained by repeatedly applying (... μ_iμ_{i+1}...) ↦ (... μ_{i+1}μ_i...) if μ_i < μ_{i+1}.

- If |λ| = |μ|, then λ is covered by μ if and only if μ is obtained from λ by moving a single box up.
- If λ is covered by μ with $|\lambda| < |\mu|$, then $|\mu| \le 2|\lambda|$.
- All such coverings are obtained as follows: if $|\lambda| = a$, $|\mu| = b$ with a < b, then:
 - Let S(λ) denote the sequence of partial sums of λ, and let S^b(λ) = ⌈(b/a)S(λ)⌉. Let μ₀ be the unique composition whose partial sum sequence is S^b(λ).
 - Then μ is the unique partition obtained from μ₀ obtained by repeatedly applying (... μ_iμ_{i+1}...) ↦ (... μ_{i+1}μ_i...) if μ_i < μ_{i+1}. ("Smort".)

- If |λ| = |μ|, then λ is covered by μ if and only if μ is obtained from λ by moving a single box up.
- If λ is covered by μ with $|\lambda| < |\mu|$, then $|\mu| \le 2|\lambda|$.
- All such coverings are obtained as follows: if $|\lambda| = a$, $|\mu| = b$ with a < b, then:
 - Let $S(\lambda)$ denote the sequence of partial sums of λ , and let $S^b(\lambda) = \lceil (b/a)S(\lambda) \rceil$. Let μ_0 be the unique composition whose partial sum sequence is $S^b(\lambda)$.
 - Then μ is the unique partition obtained from μ₀ obtained by repeatedly applying (... μ_iμ_{i+1}...) ↦ (... μ_{i+1}μ_i...) if μ_i < μ_{i+1}. ("Smort".)
- If |λ| = a, |μ| = b, a < b and λ covers μ, then μ is (uniquely) obtained by applying the above algorithm to λ^T.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Coverings in $\mathcal{D}P_{\infty}$

Example: $\lambda = (1, 1, 1, 1), a = 4, b = 6.$

$$S(\lambda) = (1, 2, 3, 4)$$

$$(6/4)S(\lambda) = (3/2, 3, 9/2, 6)$$

$$S^{6}(\lambda) = (2, 3, 5, 6)$$

$$\mu_{0} = (2, 1, 2, 1)$$

$$\mu = (2, 2, 1, 1)$$

Conclusion: λ is covered by μ .

Variation: Majorization on Posets

Setup: P = finite poset, $\mathbb{Z}[P] = \text{set maps from } P$ to \mathbb{Z} . Identify $f \in \mathbb{Z}[P]$ with the formal sum $\sum_{x \in P} f(x)x$.

Problem: Given $f \in \mathbb{Z}[P]$, find conditions under which f can be written as a positive linear combination

$$\sum_{x < y} c_{xy}(y - x), \quad ext{with } c_{xy} \geq 0 \ \ orall x < y.$$

Denote the set of such f's by $\mathcal{M}(P)$, and call $\mathcal{M}(P)$ the Muirhead cone of P,

Solution: $f \in \mathcal{M}(P)$ iff $f[K] \ge 0$ for all dual order ideals $K \subseteq P$ and f[P] = 0.

Definition (Majorization): $f \leq g$ iff $g - f \in \mathcal{M}(P)$.

Some Properties (and Non-Properties)

Definition:
$$\mathbb{Z}_n[P] = \{f \in \mathbb{Z}[P] \mid |f| = n\}$$

 $\pi_n[P] = \{f \in \mathbb{Z}_n[P] \mid f \text{ is order-preserving}\}$

Both $(\mathbb{Z}_n[P], \preceq)$ and $(\pi_n[P], \preceq)$ form posets under majorization. The latter are "reverse *P*-partitions".

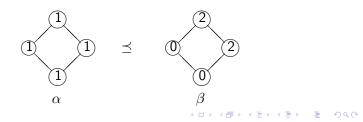
Some Properties (and Non-Properties)

Definition:
$$\mathbb{Z}_n[P] = \{f \in \mathbb{Z}[P] \mid |f| = n\}$$

 $\pi_n[P] = \{f \in \mathbb{Z}_n[P] \mid f \text{ is order-preserving}\}$

Theorem:

- $\mathbb{Z}_n[P]$ is ranked and self-dual, but in general it is not a lattice.
- In general, $\pi_n(P)$ is neither ranked nor self-dual, and it is not a lattice.
- Coverings in both Z_n[P] and π_n[P] always consist of "moving boxes up". In Z[P] it is always a single box, but in π_n[P] more than one box may be required.

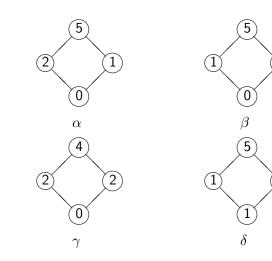


Majorization

2

Acknowledgements

$\pi_n(P)$ is not a Lattice



Another Variation: Principal Majorization

If we replace dual order ideals by principal dual order ideals, we get a larger cone

 $\mathcal{M}^+(P) = \{f \mid f[J] \ge 0 \text{ for all principal dual order ideals } J\},\$

and a new type of majorization:

Definition: $f \leq_p g$ iff $(g - f)[J] \ge 0$ for all principal dual order ideals J.

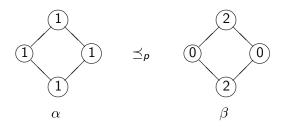
Another Variation: Principal Majorization

If we replace dual order ideals by principal dual order ideals, we get a larger cone

 $\mathcal{M}^+(P) = \{f \mid f[J] \ge 0 \text{ for all principal dual order ideals } J\},\$

and a new type of majorization:

Definition: $f \leq_p g$ iff $(g - f)[J] \ge 0$ for all principal dual order ideals J.



▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Extreme ray description of the cone $\mathcal{M}^+(P)$

Theorem: $f \in \mathcal{M}^+(P)$ iff f can be expressed as a positive linear combination _____

$$\sum_{z\in P} c_z \; \Delta_z, \quad ext{with } c_z \geq 0 \; orall z,$$

where for all z,

$$\Delta_z = \sum_{y \leq z} \mu(y, z) y.$$

Extreme ray description of the cone $\mathcal{M}^+(P)$

Theorem: $f \in \mathcal{M}^+(P)$ iff f can be expressed as a positive linear combination _____

$$\sum_{z\in P} c_z \ \Delta_z, \quad \text{with} \ c_z \ge 0 \ \forall z,$$

where for all z,

$$\Delta_z = \sum_{y \leq z} \mu(y, z) y.$$

Note: The cone $\mathcal{M}^+(P)$ contains the cone $\mathcal{M}(P)$. It's extreme generators y - x are nonnegative linear combinations of the Δ_z 's. (Standard Möbius function argument.)

References/Acknowledgements

Papers:

- "Inequalities for Symmetric Means", with Allison Cuttler '07, Mark Skandera (European Jour. Combinatorics, 2011).
- "Inequalities for Symmetric Functions of Degree 3", with Jeffrey Kroll '09, Jonathan Lima '10, Mark Skandera, and Rengyi Xu '12 (in preparation).
- "The Lattice of Two-Rowed Standard Young Tableaux", with Jonathan Lima '10 (in preparation)

Mathematica Packages:

- symfun.m: Julien Colvin '05, Ben Fineman '05, Renggyi
 (Emily) Xu '12, Ian Burnette '12
- posets.m: Eugenie Hunsicker '91, John Dollhopf '94, Sam Hsiao '95, Erica Greene '10, Ian Burnette '12