Variations on the Majorization Order

Curtis Greene, Haverford College

Halifax, June 18, 2012

AlbertW. Marshall • Ingram Olkin - Barry C. Arnold

Inequalities:
 Theory of Majorization and Its Applications

Second Edition

 Inequalities: Theory of Majorization and its Applications, 2nd Edition Springer 2010 (909 p).
HARDY LITTLEWOOD PÓLYA

Inequalities

G. H. Hardy, J. E. Littlewood, G. Polya Inequalities
Cambridge U. Press 1934, 1951, 1967 (324 p).

Muirhead's Inequalities (1902)

Example:
$\frac{1}{6}\left(A^{2} B^{2}+A^{2} C^{2}+\cdots+C^{2} D^{2}\right) \geq \frac{1}{12}\left(A^{2} B C+A^{2} B D+\cdots+B^{2} C D\right)$
Denote this by:

$$
M_{22} \gg M_{211}
$$

Similarly:

$$
\frac{1}{24}\left(A^{5} B^{4} C+\cdots+B^{5} C^{4} D\right) \geq \frac{1}{12}\left(A^{4} B^{4} C^{2}+\cdots+B^{4} C^{2} D^{2}\right)
$$

Denote this by:

$$
M_{541} \gg M_{442} .
$$

Theorem (Muirhead): $M_{\lambda} \gg M_{\mu} \Leftrightarrow \lambda \succeq \mu \quad$ ("Majorization")

Majorization: Definition

Assume λ and μ are monotone decreasing sequences. Then $\lambda \succeq \mu$ iff

$$
\begin{aligned}
\lambda_{1} & \geq \mu_{1} \\
\lambda_{1}+\lambda_{2} & \geq \mu_{1}+\mu_{2} \\
\lambda_{1}+\lambda_{2}+\lambda_{3} & \geq \mu_{1}+\mu_{2}+\lambda_{3} \\
\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4} & \geq \mu_{1}+\mu_{2}+\lambda_{3}+\lambda_{4} \\
& \vdots \text { etc. }
\end{aligned}
$$

Example:

$$
\lambda=\{8,6,6,3,1,1\} \succeq\{8,6,5,4,1,1\}=\mu
$$

Compare partial sums:

8	14	20	23	24	25	(λ)
8	14	19	23	24	25	(μ)

Moving Boxes

Example:

$$
(4,0,0,0) \succeq(3,1,0,0) \succeq(2,2,0,0) \succeq(2,1,1,0) \succeq(1,1,1,1)
$$

The Poset $\left(P_{6}, \preceq\right)$: Partitions of 6

The Poset $\left(P_{6}, \preceq\right)$: Partitions of 6

Properties
 - Lattice

- Self-dual $\left(\lambda \leftrightarrow \lambda^{\top}\right)$
- Möbius function $\pm 1,0$

Non-Properties

- Not ranked

The Poset $D P_{\leq 6}$
"Double-Majorization"

The Poset $D P_{\leq 6}$
"Double-Majorization"

- What is it?
- Why interesting?
- Properties?

Why Interesting?
Non-homogeneous Muirhead-type inequalities

Why Interesting?
 Non-homogeneous Muirhead-type inequalities

Examples:

$\frac{1}{6}(A B+A C+A D+B C+B D+C D)<?>\frac{1}{4}(A B C+A B D+A C D+B C D)$
There can't be an inequality, in either direction.

Why Interesting?

Non-homogeneous Muirhead-type inequalities

Examples:

$\frac{1}{6}(A B+A C+A D+B C+B D+C D)<?>\frac{1}{4}(A B C+A B D+A C D+B C D)$
There can't be an inequality, in either direction. Instead we have
$\left(\frac{1}{6}(A B+A C+\cdots+B D+C D)\right)^{1 / 2} \geq\left(\frac{1}{4}(A B C+A B D+A C D+B C D)\right)^{1 / 3}$
or
$\left(\frac{1}{6}(A B+A C+\cdots+B D+C D)\right)^{3} \geq\left(\frac{1}{4}(A B C+A B D+A C D+B C D)\right)^{2}$

Why Interesting?

Non-homogeneous Muirhead-type inequalities

Examples:

$\frac{1}{6}(A B+A C+A D+B C+B D+C D)<?>\frac{1}{4}(A B C+A B D+A C D+B C D)$
There can't be an inequality, in either direction. Instead we have
$\left(\frac{1}{6}(A B+A C+\cdots+B D+C D)\right)^{1 / 2} \geq\left(\frac{1}{4}(A B C+A B D+A C D+B C D)\right)^{1 / 3}$
or
$\left(\frac{1}{6}(A B+A C+\cdots+B D+C D)\right)^{3} \geq\left(\frac{1}{4}(A B C+A B D+A C D+B C D)\right)^{2}$
These last inequalities are TRUE (MacLaurin (1729)).

"Symmetric Monomial Means"

$$
\begin{gathered}
\left(\frac{1}{6}(A B+A C+\cdots+B D+C D)\right)^{1 / 2}=\mathfrak{M}_{11} \\
\left(\frac{1}{4}(A B C+A B D+A C D+B C D)\right)^{1 / 3}=\mathfrak{M}_{111} \\
\left(\frac{1}{6}\left(A^{3} B^{3}+A^{3} C^{3}+B^{3} C^{3}+A^{3} D^{3}+B^{3} D^{3}+C^{3} D^{3}\right)\right)^{1 / 6}=\mathfrak{M}_{33} \\
\left(\frac{1}{12}\left(A^{2} B C+A^{2} B D+A^{2} C D+\cdots+D^{2} A C+D^{2} B C\right)\right)^{1 / 4}=\mathfrak{M}_{211}
\end{gathered}
$$

"Symmetric Monomial Means"

$$
\begin{gathered}
\left(\frac{1}{6}(A B+A C+\cdots+B D+C D)\right)^{1 / 2}=\mathfrak{M}_{11} \\
\left(\frac{1}{4}(A B C+A B D+A C D+B C D)\right)^{1 / 3}=\mathfrak{M}_{111} \\
\left(\frac{1}{6}\left(A^{3} B^{3}+A^{3} C^{3}+B^{3} C^{3}+A^{3} D^{3}+B^{3} D^{3}+C^{3} D^{3}\right)\right)^{1 / 6}=\mathfrak{M}_{33} \\
\left(\frac{1}{12}\left(A^{2} B C+A^{2} B D+A^{2} C D+\cdots+D^{2} A C+D^{2} B C\right)\right)^{1 / 4}=\mathfrak{M}_{211}
\end{gathered}
$$

Theorems: $\mathfrak{M}_{11} \gg \mathfrak{M}_{111}$ (1729), $\quad \mathfrak{M}_{33} \gg \mathfrak{M}_{211}$ (2009).

What is it?
 "Normalized majorization"

NORMALIZE: $\quad \lambda \longmapsto \bar{\lambda}=\frac{\lambda}{|\lambda|}$
Embeds each \mathcal{P}_{n} naturally into the lattice $\left(\mathcal{Q}_{1}, \preceq\right)$ of nonnegative monotone rational sequences summing to 1 , under majorization.

What is it?
 "Normalized majorization"

NORMALIZE: $\quad \lambda \longmapsto \bar{\lambda}=\frac{\lambda}{\lambda \mid}$
Embeds each \mathcal{P}_{n} naturally into the lattice ($\mathcal{Q}_{1}, \underline{\text {) of nonnegative }}$ monotone rational sequences summing to 1 , under majorization.

Definition:

$$
\lambda \sqsubseteq \mu \text { if } \bar{\lambda} \preceq \bar{\mu} \text {, i.e., } \frac{\lambda}{|\lambda|} \preceq \frac{\mu}{|\mu|} .
$$

Example:

$$
\begin{aligned}
(4,3,1,1,1) & \sqsubseteq(3,3,0,0,0) \\
(.5, .7, .8, .9,1) & \preceq(.5,1,1,1,1)
\end{aligned}
$$

What is it?
 "Normalized majorization"

NORMALIZE: $\quad \lambda \longmapsto \bar{\lambda}=\frac{\lambda}{\lambda \mid}$
Embeds each \mathcal{P}_{n} naturally into the lattice ($\mathcal{Q}_{1}, \underline{\varrho}$) of nonnegative monotone rational sequences summing to 1 , under majorization.

Definition:

$$
\lambda \sqsubseteq \mu \text { if } \bar{\lambda} \preceq \bar{\mu} \text {, i.e., } \frac{\lambda}{|\lambda|} \preceq \frac{\mu}{|\mu|} .
$$

Example:

$$
\begin{aligned}
(4,3,1,1,1) & \sqsubseteq(3,3,0,0,0) \\
(.5, .7, .8, .9,1) & \preceq(.5,1,1,1,1)
\end{aligned}
$$

But note that $(1,1,1) \sqsubseteq(2,2,2) \sqsubseteq(1,1,1)$. (It's a preorder.)

"Double Majorization"

"Double Majorization"

Definition: $\quad \lambda \unlhd \mu$ iff $\lambda \sqsubseteq \mu$ and $\lambda^{\top} \sqsupseteq \mu^{\top}$

"Double Majorization"

Definition: $\quad \lambda \unlhd \mu$ iff $\lambda \sqsubseteq \mu$ and $\lambda^{\top} \sqsupseteq \mu^{\top}$
Equivalently: $\quad \lambda \unlhd \mu$ iff $\frac{\lambda}{|\lambda|} \preceq \frac{\mu}{|\mu|}$ and $\frac{\lambda^{\top}}{|\lambda|} \succeq \frac{\mu^{\top}}{|\mu|}$

"Double Majorization"

Definition: $\quad \lambda \unlhd \mu$ iff $\lambda \sqsubseteq \mu$ and $\lambda^{\top} \sqsupseteq \mu^{\top}$
Equivalently: $\quad \lambda \unlhd \mu$ iff $\frac{\lambda}{|\lambda|} \preceq \frac{\mu}{|\mu|}$ and $\frac{\lambda^{\top}}{|\lambda|} \succeq \frac{\mu^{\top}}{|\mu|}$
Example: $222 \unlhd 31$
(Percentages)

"Double Majorization"

Definition: $\quad \lambda \unlhd \mu$ iff $\lambda \sqsubseteq \mu$ and $\lambda^{\top} \sqsupseteq \mu^{\top}$
Equivalently: $\quad \lambda \unlhd \mu$ iff $\frac{\lambda}{|\lambda|} \preceq \frac{\mu}{|\mu|}$ and $\frac{\lambda^{\top}}{|\lambda|} \succeq \frac{\mu^{\top}}{|\mu|}$

Example: $222 \unlhd 31$
(Partial sums)

"Double Majorization"

Definition: $\quad \lambda \unlhd \mu$ iff $\lambda \sqsubseteq \mu$ and $\lambda^{\top} \sqsupseteq \mu^{\top}$
Equivalently: $\quad \lambda \unlhd \mu$ iff $\frac{\lambda}{|\lambda|} \preceq \frac{\mu}{|\mu|}$ and $\frac{\lambda^{\top}}{|\lambda|} \succeq \frac{\mu^{\top}}{|\mu|}$
(Partial sums)
Example: $222 \nexists 311$

\nexists

Observe that the conditions $\lambda \sqsubseteq \mu$ and $\lambda^{\top} \sqsupseteq \mu^{\top}$ are not equivalent.

The Poset $D P_{\leq 6}$
"Double-Majorization"

The Poset $D P_{\leq 6}$
"Double-Majorization"

- What is it?
- Why interesting?
- Properties?

Application: Muirhead for Symmetric Monomial Means

Theorem (Cuttler-Greene-Skandera 2011) If λ and μ are partitions with $|\lambda| \leq|\mu|$, then $\mathfrak{M}_{\lambda} \leq \mathfrak{M}_{\mu}$ if and only if $\lambda \unlhd \mu$.

Application: Muirhead for Symmetric Monomial Means

Theorem (Cuttler-Greene-Skandera 2011) If λ and μ are partitions with $|\lambda| \leq|\mu|$, then $\mathfrak{M}_{\lambda} \leq \mathfrak{M}_{\mu}$ if and only if $\lambda \unlhd \mu$.
Conjecture Also true when $|\lambda|>|\mu|$.

Application: Muirhead for Symmetric Monomial Means

Theorem (Cuttler-Greene-Skandera 2011) If λ and μ are partitions with $|\lambda| \leq|\mu|$, then $\mathfrak{M}_{\lambda} \leq \mathfrak{M}_{\mu}$ if and only if $\lambda \unlhd \mu$.
Conjecture Also true when $|\lambda|>|\mu|$.

- True for all cases shown in the diagram.
- Includes several families of classical inequalities (e.g. Maclaurin 1729).
- Actually, a very strong form of the inequality holds ("y-positivity").
- "Only if" part true for all λ, μ.

Properties of $\mathcal{D} P_{\infty}$

- If $\lambda \unlhd \mu$ and $\mu \unlhd \lambda$, then $\lambda=\mu$; hence $\mathcal{D} P_{\infty}$ is a partial order.

Properties of $\mathcal{D} P_{\infty}$

- If $\lambda \unlhd \mu$ and $\mu \unlhd \lambda$, then $\lambda=\mu$; hence $\mathcal{D} P_{\infty}$ is a partial order.
- For all $n,\left(\mathcal{P}_{n}, \preceq\right)$ embeds isomorphically in $\mathcal{D} P_{\infty}$ as a subposet.

Properties of $\mathcal{D} P_{\infty}$

- If $\lambda \unlhd \mu$ and $\mu \unlhd \lambda$, then $\lambda=\mu$; hence $\mathcal{D} P_{\infty}$ is a partial order.
- For all $n,\left(\mathcal{P}_{n}, \preceq\right)$ embeds isomorphically in $\mathcal{D} P_{\infty}$ as a subposet.
- $\lambda \unlhd \mu$ if and only if $\lambda^{\top} \unrhd \mu^{\top}$; hence $\mathcal{D} P_{\infty}$ is self-dual.

Properties of $\mathcal{D} P_{\infty}$

- If $\lambda \unlhd \mu$ and $\mu \unlhd \lambda$, then $\lambda=\mu$; hence $\mathcal{D} P_{\infty}$ is a partial order.
- For all $n,\left(\mathcal{P}_{n}, \preceq\right)$ embeds isomorphically in $\mathcal{D} P_{\infty}$ as a subposet.
- $\lambda \unlhd \mu$ if and only if $\lambda^{\top} \unrhd \mu^{\top}$; hence $\mathcal{D} P_{\infty}$ is self-dual.
- $\mathcal{D} P_{\infty}$ is not a lattice.

Properties of $\mathcal{D} P_{\infty}$

- If $\lambda \unlhd \mu$ and $\mu \unlhd \lambda$, then $\lambda=\mu$; hence $\mathcal{D} P_{\infty}$ is a partial order.
- For all $n,\left(\mathcal{P}_{n}, \preceq\right)$ embeds isomorphically in $\mathcal{D} P_{\infty}$ as a subposet.
- $\lambda \unlhd \mu$ if and only if $\lambda^{\top} \unrhd \mu^{\top}$; hence $\mathcal{D} P_{\infty}$ is self-dual.
- $\mathcal{D} P_{\infty}$ is not a lattice.
- $\mathcal{D} P_{\infty}$ is an infinite poset without universal bounds; it is locally finite, but is not locally ranked.

Properties of $\mathcal{D} P_{\infty}$

- If $\lambda \unlhd \mu$ and $\mu \unlhd \lambda$, then $\lambda=\mu$; hence $\mathcal{D} P_{\infty}$ is a partial order.
- For all $n,\left(\mathcal{P}_{n}, \preceq\right)$ embeds isomorphically in $\mathcal{D} P_{\infty}$ as a subposet.
- $\lambda \unlhd \mu$ if and only if $\lambda^{\top} \unrhd \mu^{\top}$; hence $\mathcal{D} P_{\infty}$ is self-dual.
- $\mathcal{D} P_{\infty}$ is not a lattice.
- $\mathcal{D} P_{\infty}$ is an infinite poset without universal bounds; it is locally finite, but is not locally ranked.
- All coverings are obtained by adding or moving boxes up, but not always a single box.

Coverings in $\mathcal{D} P_{\infty}$

- If $|\lambda|=|\mu|$, then λ is covered by μ if and only if μ is obtained from λ by moving a single box up.

Coverings in $\mathcal{D} P_{\infty}$

- If $|\lambda|=|\mu|$, then λ is covered by μ if and only if μ is obtained from λ by moving a single box up.
- If λ is covered by μ with $|\lambda|<|\mu|$, then $|\mu| \leq 2|\lambda|$.

Coverings in $\mathcal{D} P_{\infty}$

- If $|\lambda|=|\mu|$, then λ is covered by μ if and only if μ is obtained from λ by moving a single box up.
- If λ is covered by μ with $|\lambda|<|\mu|$, then $|\mu| \leq 2|\lambda|$.
- All such coverings are obtained as follows: if $|\lambda|=a,|\mu|=b$ with $a<b$, then:
- Let $S(\lambda)$ denote the sequence of partial sums of λ, and let $S^{b}(\lambda)=\lceil(b / a) S(\lambda)\rceil$. Let μ_{0} be the unique composition whose partial sum sequence is $S^{b}(\lambda)$.

Coverings in $\mathcal{D} P_{\infty}$

- If $|\lambda|=|\mu|$, then λ is covered by μ if and only if μ is obtained from λ by moving a single box up.
- If λ is covered by μ with $|\lambda|<|\mu|$, then $|\mu| \leq 2|\lambda|$.
- All such coverings are obtained as follows: if $|\lambda|=a,|\mu|=b$ with $a<b$, then:
- Let $S(\lambda)$ denote the sequence of partial sums of λ, and let $S^{b}(\lambda)=\lceil(b / a) S(\lambda)\rceil$. Let μ_{0} be the unique composition whose partial sum sequence is $S^{b}(\lambda)$.
- Then μ is the unique partition obtained from μ_{0} obtained by repeatedly applying $\left(\ldots \mu_{i} \mu_{i+1} \ldots\right) \mapsto\left(\ldots \mu_{i+1} \mu_{i} \ldots\right)$ if $\mu_{i}<\mu_{i+1}$.

Coverings in $\mathcal{D} P_{\infty}$

- If $|\lambda|=|\mu|$, then λ is covered by μ if and only if μ is obtained from λ by moving a single box up.
- If λ is covered by μ with $|\lambda|<|\mu|$, then $|\mu| \leq 2|\lambda|$.
- All such coverings are obtained as follows: if $|\lambda|=a,|\mu|=b$ with $a<b$, then:
- Let $S(\lambda)$ denote the sequence of partial sums of λ, and let $S^{b}(\lambda)=\lceil(b / a) S(\lambda)\rceil$. Let μ_{0} be the unique composition whose partial sum sequence is $S^{b}(\lambda)$.
- Then μ is the unique partition obtained from μ_{0} obtained by repeatedly applying $\left(\ldots \mu_{i} \mu_{i+1} \ldots\right) \mapsto\left(\ldots \mu_{i+1} \mu_{i} \ldots\right)$ if $\mu_{i}<\mu_{i+1}$. ("Smort".)

Coverings in $\mathcal{D} P_{\infty}$

- If $|\lambda|=|\mu|$, then λ is covered by μ if and only if μ is obtained from λ by moving a single box up.
- If λ is covered by μ with $|\lambda|<|\mu|$, then $|\mu| \leq 2|\lambda|$.
- All such coverings are obtained as follows: if $|\lambda|=a,|\mu|=b$ with $a<b$, then:
- Let $S(\lambda)$ denote the sequence of partial sums of λ, and let $S^{b}(\lambda)=\lceil(b / a) S(\lambda)\rceil$. Let μ_{0} be the unique composition whose partial sum sequence is $S^{b}(\lambda)$.
- Then μ is the unique partition obtained from μ_{0} obtained by repeatedly applying $\left(\ldots \mu_{i} \mu_{i+1} \ldots\right) \mapsto\left(\ldots \mu_{i+1} \mu_{i} \ldots\right)$ if $\mu_{i}<\mu_{i+1}$. ("Smort".)
- If $|\lambda|=a,|\mu|=b, a<b$ and λ covers μ, then μ is (uniquely) obtained by applying the above algorithm to λ^{\top}.

Coverings in $\mathcal{D} P_{\infty}$

Example: $\lambda=(1,1,1,1), a=4, b=6$.

$$
\begin{aligned}
S(\lambda) & =(1,2,3,4) \\
(6 / 4) S(\lambda) & =(3 / 2,3,9 / 2,6) \\
S^{6}(\lambda) & =(2,3,5,6) \\
\mu_{0} & =(2,1,2,1) \\
\mu & =(2,2,1,1)
\end{aligned}
$$

Conclusion: λ is covered by μ.

Variation: Majorization on Posets

Setup: $P=$ finite poset, $\mathbb{Z}[P]=$ set maps from P to \mathbb{Z}. Identify $f \in \mathbb{Z}[P]$ with the formal sum $\sum_{x \in P} f(x) x$.
Problem: Given $f \in \mathbb{Z}[P]$, find conditions under which f can be written as a positive linear combination

$$
\sum_{x<y} c_{x y}(y-x), \quad \text { with } c_{x y} \geq 0 \quad \forall x<y .
$$

Denote the set of such f^{\prime} 's by $\mathcal{M}(P)$, and call $\mathcal{M}(P)$ the Muirhead cone of P,

Solution: $f \in \mathcal{M}(P)$ iff $f[K] \geq 0$ for all dual order ideals $K \subseteq P$ and $f[P]=0$.
Definition (Majorization): $f \preceq g$ iff $g-f \in \mathcal{M}(P)$.

Some Properties (and Non-Properties)

Definition: $\mathbb{Z}_{n}[P]=\{f \in \mathbb{Z}[P]| | f \mid=n\}$

$$
\pi_{n}[P]=\left\{f \in \mathbb{Z}_{n}[P] \mid f \text { is order-preserving }\right\}
$$

Both $\left(\mathbb{Z}_{n}[P], \preceq\right)$ and $\left(\pi_{n}[P], \preceq\right)$ form posets under majorization. The latter are "reverse P-partitions".

Some Properties (and Non-Properties)

Definition: $\mathbb{Z}_{n}[P]=\{f \in \mathbb{Z}[P]| | f \mid=n\}$

$$
\pi_{n}[P]=\left\{f \in \mathbb{Z}_{n}[P] \mid f \text { is order-preserving }\right\}
$$

Theorem:

- $\mathbb{Z}_{n}[P]$ is ranked and self-dual, but in general it is not a lattice.
- In general, $\pi_{n}(P)$ is neither ranked nor self-dual, and it is not a lattice.
- Coverings in both $\mathbb{Z}_{n}[P]$ and $\pi_{n}[P]$ always consist of "moving boxes up". In $\mathbb{Z}[P]$ it is always a single box, but in $\pi_{n}[P]$ more than one box may be required.

$\pi_{n}(P)$ is not a Lattice

Another Variation: Principal Majorization

If we replace dual order ideals by principal dual order ideals, we get a larger cone

$$
\mathcal{M}^{+}(P)=\{f \mid f[J] \geq 0 \text { for all principal dual order ideals } J\}
$$

and a new type of majorization:
Definition: $f \preceq_{p} g$ iff $(g-f)[J] \geq 0$ for all principal dual order ideals J.

Another Variation: Principal Majorization

If we replace dual order ideals by principal dual order ideals, we get a larger cone

$$
\mathcal{M}^{+}(P)=\{f \mid f[J] \geq 0 \text { for all principal dual order ideals } J\}
$$

and a new type of majorization:
Definition: $f \preceq_{p} g$ iff $(g-f)[J] \geq 0$ for all principal dual order ideals J.

Extreme ray description of the cone $\mathcal{M}^{+}(P)$

Theorem: $f \in \mathcal{M}^{+}(P)$ iff f can be expressed as a positive linear combination

$$
\sum_{z \in P} c_{z} \Delta_{z}, \quad \text { with } c_{z} \geq 0 \forall z
$$

where for all z,

$$
\Delta_{z}=\sum_{y \leq z} \mu(y, z) y
$$

Extreme ray description of the cone $\mathcal{M}^{+}(P)$

Theorem: $f \in \mathcal{M}^{+}(P)$ iff f can be expressed as a positive linear combination

$$
\sum_{z \in P} c_{z} \Delta_{z}, \quad \text { with } c_{z} \geq 0 \forall z
$$

where for all z,

$$
\Delta_{z}=\sum_{y \leq z} \mu(y, z) y
$$

Note: The cone $\mathcal{M}^{+}(P)$ contains the cone $\mathcal{M}(P)$. It's extreme generators $y-x$ are nonnegative linear combinations of the Δ_{z} 's. (Standard Möbius function argument.)

References/Acknowledgements

Papers:

- "Inequalities for Symmetric Means", with Allison Cuttler '07, Mark Skandera (European Jour. Combinatorics, 2011).
- "Inequalities for Symmetric Functions of Degree 3", with Jeffrey Kroll '09, Jonathan Lima '10, Mark Skandera, and Rengyi Xu '12 (in preparation).
- "The Lattice of Two-Rowed Standard Young Tableaux", with Jonathan Lima '10 (in preparation)

Mathematica Packages:

- symfun.m: Julien Colvin '05, Ben Fineman '05, Renggyi (Emily) Xu '12, Ian Burnette '12
- posets.m: Eugenie Hunsicker '91, John Dollhopf '94, Sam Hsiao '95, Erica Greene '10, Ian Burnette '12

