Variations on the Majorization Order

Curtis Greene, Haverford College
Halifax, June 18, 2012
A. W. Marshall, I. Olkin, B. C. Arnold

Inequalities: Theory of Majorization and its Applications, 2nd Edition

Springer 2010 (909 p.).
G. H. Hardy, J. E. Littlewood, G. Polya

Inequalities
Muirhead’s Inequalities (1902)

Example:

\[\frac{1}{6}(A^2B^2 + A^2C^2 + \cdots + C^2D^2) \geq \frac{1}{12}(A^2BC + A^2BD + \cdots + B^2CD) \]

Denote this by:

\[M_{22} \gg M_{211}. \]

Similarly:

\[\frac{1}{24}(A^5B^4C + \cdots + B^5C^4D) \geq \frac{1}{12}(A^4B^4C^2 + \cdots + B^4C^2D^2) \]

Denote this by:

\[M_{541} \gg M_{442}. \]

Theorem (Muirhead): \(M_{\lambda} \gg M_{\mu} \iff \lambda \succeq \mu \) ("Majorization")
Majorization: Definition

Assume λ and μ are monotone decreasing sequences. Then $\lambda \succeq \mu$ iff

\[
\begin{align*}
\lambda_1 & \geq \mu_1 \\
\lambda_1 + \lambda_2 & \geq \mu_1 + \mu_2 \\
\lambda_1 + \lambda_2 + \lambda_3 & \geq \mu_1 + \mu_2 + \lambda_3 \\
\lambda_1 + \lambda_2 + \lambda_3 + \lambda_4 & \geq \mu_1 + \mu_2 + \lambda_3 + \lambda_4 \\
\vdots & \quad \text{etc.}
\end{align*}
\]

Example: $\lambda = \{8, 6, 6, 3, 1, 1\} \succeq \{8, 6, 5, 4, 1, 1\} = \mu$

Compare partial sums: 8 14 20 23 24 25 (\(\lambda\))

8 14 19 23 24 25 (\(\mu\))
Moving Boxes

Example:

\[(4, 0, 0, 0) \succeq (3, 1, 0, 0) \succeq (2, 2, 0, 0) \succeq (2, 1, 1, 0) \succeq (1, 1, 1, 1)\]
The Poset \((P_6, \preceq)\): Partitions of 6

Properties
• Lattice
• Self-dual (\(\lambda \leftrightarrow \lambda^\top\))
• Möbius function \(\pm 1, 0\)

Non-Properties
• Not ranked
The Poset \((P_6, \preceq)\): Partitions of 6

Properties
- Lattice
- Self-dual \((\lambda \leftrightarrow \lambda^T)\)
- Möbius function \(\pm 1, 0\)

Non-Properties
- Not ranked
The Poset $DP_{\leq 6}$

"Double-Majorization"
The Poset $DP_{\leq 6}$

"Double-Majorization"

- What is it?
- Why interesting?
- Properties?
Why Interesting?
Non-homogeneous Muirhead-type inequalities
Why Interesting?
Non-homogeneous Muirhead-type inequalities

Examples:

\[
\frac{1}{6}(AB + AC + AD + BC + BD + CD) < ? > \frac{1}{4}(ABC + ABD + ACD + BCD)
\]

There can’t be an inequality, in either direction.
Why Interesting?
Non-homogeneous Muirhead-type inequalities

Examples:

\[
\frac{1}{6}(AB+AC+AD+BC+BD+CD) \ < \ ? \ > \ \frac{1}{4}(ABC+ABD+ACD+BCD)
\]

There can’t be an inequality, in either direction. Instead we have

\[
\left(\frac{1}{6}(AB+AC+\cdots+BD+CD)\right)^{1/2} \ \geq \ \left(\frac{1}{4}(ABC+ABD+ACD+BCD)\right)^{1/3}
\]
or

\[
\left(\frac{1}{6}(AB+AC+\cdots+BD+CD)\right)^{3} \ \geq \ \left(\frac{1}{4}(ABC+ABD+ACD+BCD)\right)^{2}
\]

These last inequalities are TRUE (MacLaurin (1729)).
Why Interesting?

Non-homogeneous Muirhead-type inequalities

Examples:

\[
\frac{1}{6}(AB + AC + AD + BC + BD + CD) < ? > \frac{1}{4}(ABC + ABD + ACD + BCD)
\]

There can’t be an inequality, in either direction. Instead we have

\[
\left(\frac{1}{6}(AB + AC + \cdots + BD + CD)\right)^{1/2} \geq \left(\frac{1}{4}(ABC + ABD + ACD + BCD)\right)^{1/3}
\]

or

\[
\left(\frac{1}{6}(AB + AC + \cdots + BD + CD)\right)^{3} \geq \left(\frac{1}{4}(ABC + ABD + ACD + BCD)\right)^{2}
\]

These last inequalities are TRUE (MacLaurin (1729)).
“Symmetric Monomial Means”

\[
\left(\frac{1}{6} (AB + AC + \cdots + BD + CD) \right)^{1/2} = M_{11}
\]

\[
\left(\frac{1}{4} (ABC + ABD + ACD + BCD) \right)^{1/3} = M_{111}
\]

\[
\left(\frac{1}{6} (A^3B^3 + A^3C^3 + B^3C^3 + A^3D^3 + B^3D^3 + C^3D^3) \right)^{1/6} = M_{33}
\]

\[
\left(\frac{1}{12} (A^2BC + A^2BD + A^2CD + \cdots + D^2AC + D^2BC) \right)^{1/4} = M_{211}
\]
“Symmetric Monomial Means”

\[
\left(\frac{1}{6}(AB + AC + \cdots + BD + CD) \right)^{1/2} = M_{11} \\
\left(\frac{1}{4}(ABC + ABD + ACD + BCD) \right)^{1/3} = M_{111} \\
\left(\frac{1}{6}(A^3B^3 + A^3C^3 + B^3C^3 + A^3D^3 + B^3D^3 + C^3D^3) \right)^{1/6} = M_{33} \\
\left(\frac{1}{12}(A^2BC + A^2BD + A^2CD + \cdots + D^2AC + D^2BC) \right)^{1/4} = M_{211}
\]

Theorems: \(M_{11} \gg M_{111} \) (1729), \(M_{33} \gg M_{211} \) (2009).
What is it?
“Normalized majorization”

NORMALIZE: \[\lambda \mapsto \bar{\lambda} = \frac{\lambda}{|\lambda|} \]

Embeds each \(P_n \) naturally into the lattice \((Q_1, \preceq) \) of nonnegative monotone rational sequences summing to 1, under majorization.
What is it?

“Normalized majorization”

NORMALIZE: \[\lambda \mapsto \bar{\lambda} = \frac{\lambda}{|\lambda|} \]

Embeds each \(P_n \) naturally into the lattice \((\mathbb{Q}_1, \preceq) \) of nonnegative monotone rational sequences summing to 1, under majorization.

Definition:

\[\lambda \sqsubseteq \mu \text{ if } \bar{\lambda} \preceq \bar{\mu}, \text{ i.e., } \frac{\lambda}{|\lambda|} \preceq \frac{\mu}{|\mu|}. \]

Example:

\[
(4, 3, 1, 1, 1) \sqsubseteq (3, 3, 0, 0, 0) \\
(.5, .7, .8, .9, 1) \preceq (.5, 1, 1, 1, 1)
\]
What is it?
“Normalized majorization”

NORMALIZE: \[\lambda \mapsto \bar{\lambda} = \frac{\lambda}{|\lambda|} \]

Embeds each \(P_n \) naturally into the lattice \((Q_1, \preceq) \) of nonnegative monotone rational sequences summing to 1, under majorization.

Definition:
\[\lambda \sqsubseteq \mu \text{ if } \bar{\lambda} \preceq \bar{\mu}, \text{ i.e., } \frac{\lambda}{|\lambda|} \preceq \frac{\mu}{|\mu|}. \]

Example:
\[(4, 3, 1, 1, 1) \sqsubseteq (3, 3, 0, 0, 0) \]
\[(.5, .7, .8, .9, 1) \preceq (.5, 1, 1, 1, 1) \]

But note that \((1, 1, 1) \sqsubseteq (2, 2, 2) \sqsubseteq (1, 1, 1) \). (It’s a preorder.)
<table>
<thead>
<tr>
<th>Majorization</th>
<th>Normalized Majorization</th>
<th>Double Majorization</th>
<th>Majorization on posets</th>
<th>Acknowledgements</th>
</tr>
</thead>
</table>

“Double Majorization”
“Double Majorization”

Definition: \(\lambda \preceq \mu \) iff \(\lambda \preceq \mu \) and \(\lambda^\top \succeq \mu^\top \)
“Double Majorization”

Definition: \(\lambda \preceq \mu \) iff \(\lambda \subseteq \mu \) and \(\lambda^\top \supseteq \mu^\top \)

Equivalently: \(\lambda \preceq \mu \) iff \(\frac{\lambda}{|\lambda|} \preceq \frac{\mu}{|\mu|} \) and \(\frac{\lambda^\top}{|\lambda|} \succeq \frac{\mu^\top}{|\mu|} \)
“Double Majorization”

Definition: \(\lambda \trianglelefteq \mu \) iff \(\lambda \preceq \mu \) and \(\lambda^\top \succeq \mu^\top \)

Equivalently: \(\lambda \trianglelefteq \mu \) iff \(\frac{\lambda}{|\lambda|} \preceq \frac{\mu}{|\mu|} \) and \(\frac{\lambda^\top}{|\lambda|} \succeq \frac{\mu^\top}{|\mu|} \)

Example: \(222 \trianglelefteq 31 \)

\[
\begin{array}{c|c|c|c|c|c}
\text{(Percentages)} & .5 & .5 & \trianglelefteq & .5 & .25\ 25 \\
.33 & .33 & .75 & .25 \\
.33 & .33 & .75 & .25 \\
\end{array}
\]
“Double Majorization”

Definition:
\[\lambda \preceq \mu \text{ iff } \lambda \subseteq \mu \text{ and } \lambda^\top \supseteq \mu^\top \]

Equivalently:
\[\lambda \preceq \mu \text{ iff } \frac{\lambda}{|\lambda|} \preceq \frac{\mu}{|\mu|} \text{ and } \frac{\lambda^\top}{|\lambda^\top|} \succeq \frac{\mu^\top}{|\mu^\top|} \]

Example: 222 \(\preceq\) 31

\[
\begin{array}{cccc}
.5 & 1 & \preceq & .5 \ .75 \ 1 \\
.33 & .66 & \preceq \preceq & \ .75 \\
1 & 1 & \preceq & 1
\end{array}
\]

(Partial sums)
“Double Majorization”

Definition: \(\lambda \preceq \mu \) iff \(\lambda \subseteq \mu \) and \(\lambda^\top \supseteq \mu^\top \)

Equivalently: \(\lambda \preceq \mu \) iff \(\frac{\lambda}{|\lambda|} \preceq \frac{\mu}{|\mu|} \) and \(\frac{\lambda^\top}{|\lambda|} \succeq \frac{\mu^\top}{|\mu|} \)

Example: \(222 \npreceq 311 \)

Observe that the conditions \(\lambda \subseteq \mu \) and \(\lambda^\top \supseteq \mu^\top \) are not equivalent.
The Poset $DP_{\leq 6}$

"Double-Majorization"
The Poset $DP_{\leq 6}$

"Double-Majorization"

- What is it?
- Why interesting?
- Properties?
Application: Muirhead for Symmetric Monomial Means

Theorem (Cuttler-Greene-Skandera 2011) If \(\lambda \) and \(\mu \) are partitions with \(|\lambda| \leq |\mu|\), then \(M_\lambda \leq M_\mu \) if and only if \(\lambda \preceq \mu \).
Application: Muirhead for Symmetric Monomial Means

Theorem (Cuttler-Greene-Skandera 2011) If λ and μ are partitions with $|\lambda| \leq |\mu|$, then $M_\lambda \leq M_\mu$ if and only if $\lambda \preceq \mu$.

Conjecture Also true when $|\lambda| > |\mu|$.
Application: Muirhead for Symmetric Monomial Means

Theorem (Cuttler-Greene-Skandera 2011) If \(\lambda \) and \(\mu \) are partitions with \(|\lambda| \leq |\mu| \), then \(M_\lambda \leq M_\mu \) if and only if \(\lambda \trianglelefteq \mu \).

Conjecture Also true when \(|\lambda| > |\mu| \).

- True for all cases shown in the diagram.
- Includes several families of classical inequalities (e.g. Maclaurin 1729).
- Actually, a very strong form of the inequality holds (“y-positivity”).
- “Only if” part true for all \(\lambda, \mu \).
Properties of \mathcal{DP}_∞

- If $\lambda \preceq \mu$ and $\mu \preceq \lambda$, then $\lambda = \mu$; hence \mathcal{DP}_∞ is a partial order.
Properties of \mathcal{DP}_∞

- If $\lambda \preceq \mu$ and $\mu \preceq \lambda$, then $\lambda = \mu$; hence \mathcal{DP}_∞ is a partial order.
- For all n, (\mathcal{P}_n, \preceq) embeds isomorphically in \mathcal{DP}_∞ as a subposet.
Properties of \mathcal{DP}_∞

- If $\lambda \trianglelefteq \mu$ and $\mu \trianglelefteq \lambda$, then $\lambda = \mu$; hence \mathcal{DP}_∞ is a partial order.
- For all n, $(\mathcal{P}_n, \trianglelefteq)$ embeds isomorphically in \mathcal{DP}_∞ as a subposet.
- $\lambda \trianglelefteq \mu$ if and only if $\lambda^\top \trianglerighteq \mu^\top$; hence \mathcal{DP}_∞ is self-dual.
Properties of \mathcal{DP}_∞

- If $\lambda \preceq \mu$ and $\mu \preceq \lambda$, then $\lambda = \mu$; hence \mathcal{DP}_∞ is a partial order.
- For all n, (\mathcal{P}_n, \preceq) embeds isomorphically in \mathcal{DP}_∞ as a subposet.
- $\lambda \preceq \mu$ if and only if $\lambda^\top \succeq \mu^\top$; hence \mathcal{DP}_∞ is self-dual.
- \mathcal{DP}_∞ is not a lattice.
Properties of \mathcal{DP}_∞

- If $\lambda \preceq \mu$ and $\mu \preceq \lambda$, then $\lambda = \mu$; hence \mathcal{DP}_∞ is a partial order.
- For all n, (\mathcal{P}_n, \preceq) embeds isomorphically in \mathcal{DP}_∞ as a subposet.
- $\lambda \preceq \mu$ if and only if $\lambda^\top \succeq \mu^\top$; hence \mathcal{DP}_∞ is self-dual.
- \mathcal{DP}_∞ is not a lattice.
- \mathcal{DP}_∞ is an infinite poset without universal bounds; it is locally finite, but is not locally ranked.
Properties of \mathcal{DP}_∞

- If $\lambda \sqsubseteq \mu$ and $\mu \sqsubseteq \lambda$, then $\lambda = \mu$; hence \mathcal{DP}_∞ is a partial order.
- For all n, (\mathcal{P}_n, \preceq) embeds isomorphically in \mathcal{DP}_∞ as a subposet.
- $\lambda \sqsubseteq \mu$ if and only if $\lambda^\top \trianglerighteq \mu^\top$; hence \mathcal{DP}_∞ is self-dual.
- \mathcal{DP}_∞ is not a lattice.
- \mathcal{DP}_∞ is an infinite poset without universal bounds; it is locally finite, but is not locally ranked.
- All coverings are obtained by adding or moving boxes up, but not always a single box.
Coverings in \mathcal{DP}_∞

- If $|\lambda| = |\mu|$, then λ is covered by μ if and only if μ is obtained from λ by moving a single box up.
Coverings in \mathcal{DP}_∞

- If $|\lambda| = |\mu|$, then λ is covered by μ if and only if μ is obtained from λ by moving a single box up.
- If λ is covered by μ with $|\lambda| < |\mu|$, then $|\mu| \leq 2|\lambda|$.
Coverings in \mathcal{DP}_∞

- If $|\lambda| = |\mu|$, then λ is covered by μ if and only if μ is obtained from λ by moving a single box up.
- If λ is covered by μ with $|\lambda| < |\mu|$, then $|\mu| \leq 2|\lambda|$.
- All such coverings are obtained as follows: if $|\lambda| = a$, $|\mu| = b$ with $a < b$, then:
 - Let $S(\lambda)$ denote the sequence of partial sums of λ, and let $S^b(\lambda) = \lceil (b/a)S(\lambda) \rceil$. Let μ_0 be the unique composition whose partial sum sequence is $S^b(\lambda)$.

Coverings in \mathcal{DP}_∞

- If $|\lambda| = |\mu|$, then λ is covered by μ if and only if μ is obtained from λ by moving a single box up.
- If λ is covered by μ with $|\lambda| < |\mu|$, then $|\mu| \leq 2|\lambda|$.
- All such coverings are obtained as follows: if $|\lambda| = a$, $|\mu| = b$ with $a < b$, then:
 - Let $S(\lambda)$ denote the sequence of partial sums of λ, and let $S^b(\lambda) = \lceil (b/a)S(\lambda) \rceil$. Let μ_0 be the unique composition whose partial sum sequence is $S^b(\lambda)$.
 - Then μ is the unique partition obtained from μ_0 obtained by repeatedly applying $(\ldots \mu_i \mu_{i+1} \ldots) \mapsto (\ldots \mu_{i+1} \mu_i \ldots)$ if $\mu_i < \mu_{i+1}$.
Coverings in \mathcal{DP}_∞

- If $|\lambda| = |\mu|$, then λ is covered by μ if and only if μ is obtained from λ by moving a single box up.
- If λ is covered by μ with $|\lambda| < |\mu|$, then $|\mu| \leq 2|\lambda|$.
- All such coverings are obtained as follows: if $|\lambda| = a$, $|\mu| = b$ with $a < b$, then:
 - Let $S(\lambda)$ denote the sequence of partial sums of λ, and let $S^b(\lambda) = \lceil (b/a)S(\lambda) \rceil$. Let μ_0 be the unique composition whose partial sum sequence is $S^b(\lambda)$.
 - Then μ is the unique partition obtained from μ_0 obtained by repeatedly applying $(\ldots \mu_i \mu_{i+1} \ldots) \mapsto (\ldots \mu_{i+1} \mu_i \ldots)$ if $\mu_i < \mu_{i+1}$. ("Smort".)
Coverings in \mathcal{DP}_∞

- If $|\lambda| = |\mu|$, then λ is covered by μ if and only if μ is obtained from λ by moving a single box up.
- If λ is covered by μ with $|\lambda| < |\mu|$, then $|\mu| \leq 2|\lambda|$.
- All such coverings are obtained as follows: if $|\lambda| = a$, $|\mu| = b$ with $a < b$, then:
 - Let $S(\lambda)$ denote the sequence of partial sums of λ, and let $S^b(\lambda) = \lceil (b/a)S(\lambda) \rceil$. Let μ_0 be the unique composition whose partial sum sequence is $S^b(\lambda)$.
 - Then μ is the unique partition obtained from μ_0 obtained by repeatedly applying $(\ldots \mu_i \mu_{i+1} \ldots) \mapsto (\ldots \mu_{i+1} \mu_i \ldots)$ if $\mu_i < \mu_{i+1}$. ("Smort".)
- If $|\lambda| = a$, $|\mu| = b$, $a < b$ and λ covers μ, then μ is (uniquely) obtained by applying the above algorithm to λ^\top.
Coverings in \mathcal{DP}_∞

Example: $\lambda = (1, 1, 1, 1)$, $a = 4$, $b = 6$.

$$S(\lambda) = (1, 2, 3, 4)$$
$$\left(\frac{6}{4}\right) S(\lambda) = (3/2, 3, 9/2, 6)$$
$$S^6(\lambda) = (2, 3, 5, 6)$$
$$\mu_0 = (2, 1, 2, 1)$$
$$\mu = (2, 2, 1, 1)$$

Conclusion: λ is covered by μ.
Variation: Majorization on Posets

Setup: $P = \text{finite poset}$, $\mathbb{Z}[P] = \text{set maps from } P \text{ to } \mathbb{Z}$. Identify $f \in \mathbb{Z}[P]$ with the formal sum $\sum_{x \in P} f(x)x$.

Problem: Given $f \in \mathbb{Z}[P]$, find conditions under which f can be written as a positive linear combination

$$\sum_{x < y} c_{xy}(y - x), \quad \text{with } c_{xy} \geq 0 \quad \forall x < y.$$

Denote the set of such f’s by $\mathcal{M}(P)$, and call $\mathcal{M}(P)$ the Muirhead cone of P.

Solution: $f \in \mathcal{M}(P)$ iff $f[K] \geq 0$ for all dual order ideals $K \subseteq P$ and $f[P] = 0$.

Definition (Majorization): $f \preceq g$ iff $g - f \in \mathcal{M}(P)$.
Some Properties (and Non-Properties)

Definition: \(\mathbb{Z}_n[P] = \{ f \in \mathbb{Z}[P] \mid |f| = n \} \)
\(\pi_n[P] = \{ f \in \mathbb{Z}_n[P] \mid f \text{ is order-preserving} \} \)

Both \((\mathbb{Z}_n[P], \preceq) \) and \((\pi_n[P], \preceq) \) form posets under majorization. The latter are “reverse \(P \)-partitions”.
Some Properties (and Non-Properties)

Definition: $\mathbb{Z}_n[P] = \{ f \in \mathbb{Z}[P] \mid |f| = n \}$
$\pi_n[P] = \{ f \in \mathbb{Z}_n[P] \mid f \text{ is order-preserving} \}$

Theorem:

- $\mathbb{Z}_n[P]$ is ranked and self-dual, but in general it is not a lattice.
- In general, $\pi_n(P)$ is neither ranked nor self-dual, and it is not a lattice.
- Coverings in both $\mathbb{Z}_n[P]$ and $\pi_n[P]$ always consist of “moving boxes up”. In $\mathbb{Z}[P]$ it is always a single box, but in $\pi_n[P]$ more than one box may be required.

\[
\begin{array}{c}
1 \\
1 \\
1 \\
\end{array} \quad \prec \quad \begin{array}{c}
0 \\
0 \\
2 \\
\end{array}
\]

α \quad β
\(\pi_n(P) \) is not a Lattice

\[\begin{array}{cccc}
2 & 1 & 0 & 4 \\
5 & 1 & 0 & 2 \\
2 & 4 & 0 & 2 \\
0 & 5 & 1 & 1 \\
\end{array} \]
Another Variation: Principal Majorization

If we replace dual order ideals by principal dual order ideals, we get a larger cone

$$\mathcal{M}^+(P) = \{ f | f[J] \geq 0 \text{ for all principal dual order ideals } J \},$$

and a new type of majorization:

Definition: $f \preceq_p g$ iff $(g - f)[J] \geq 0$ for all principal dual order ideals J.
Another Variation: Principal Majorization

If we replace dual order ideals by principal dual order ideals, we get a larger cone

$$\mathcal{M}^+(P) = \{ f \mid f[J] \geq 0 \text{ for all principal dual order ideals } J \},$$

and a new type of majorization:

Definition: \(f \preceq_p g \) iff \((g - f)[J] \geq 0 \) for all principal dual order ideals \(J \).

\[
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
\end{array}
\preceq_p
\begin{array}{ccc}
2 & 2 & 2 \\
0 & 0 & 0 \\
2 & 2 & 2 \\
\end{array}
\]

\(\alpha \)

\(\beta \)
Extreme ray description of the cone $\mathcal{M}^+(P)$

Theorem: $f \in \mathcal{M}^+(P)$ iff f can be expressed as a positive linear combination

$$\sum_{z \in P} c_z \Delta_z, \quad \text{with } c_z \geq 0 \ \forall z,$$

where for all z,

$$\Delta_z = \sum_{y \leq z} \mu(y, z)y.$$
Theorem: $f \in \mathcal{M}^+(P)$ iff f can be expressed as a positive linear combination

$$
\sum_{z \in P} c_z \Delta_z, \quad \text{with } c_z \geq 0 \ \forall z,
$$

where for all z,

$$
\Delta_z = \sum_{y \leq z} \mu(y, z)y.
$$

Note: The cone $\mathcal{M}^+(P)$ contains the cone $\mathcal{M}(P)$. It’s extreme generators $y - x$ are nonnegative linear combinations of the Δ_z’s. (Standard Möbius function argument.)
Acknowledgements

Papers:

- “The Lattice of Two-Rowed Standard Young Tableaux”, with Jonathan Lima ’10 (in preparation)

Mathematica Packages:

- `symfun.m`: Julien Colvin ’05, Ben Fineman ’05, Renggyi (Emily) Xu ’12, Ian Burnette ’12
- `posets.m`: Eugenie Hunsicker ’91, John Dollhopf ’94, Sam Hsiao ’95, Erica Greene ’10, Ian Burnette ’12