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Muirhead’s Inequalities (1902)

Example:

1

6
(A2B2 +A2C 2 + · · ·+C 2D2) ≥ 1

12
(A2BC +A2BD + · · ·+B2CD)

Denote this by:
M22 � M211.

Similarly:

1

24
(A5B4C + · · ·+ B5C 4D) ≥ 1

12
(A4B4C 2 + · · ·+ B4C 2D2)

Denote this by:
M541 � M442.

Theorem (Muirhead): Mλ � Mµ ⇔ λ � µ (“Majorization”)



Majorization Normalized Majorization Double Majorization Majorization on posets Acknowledgements

Majorization: Definition

Assume λ and µ are monotone decreasing sequences. Then λ � µ
iff

λ1 ≥ µ1

λ1 + λ2 ≥ µ1 + µ2

λ1 + λ2 + λ3 ≥ µ1 + µ2 + λ3

λ1 + λ2 + λ3 + λ4 ≥ µ1 + µ2 + λ3 + λ4

... etc.

Example: λ = {8, 6, 6, 3, 1, 1} � {8, 6, 5, 4, 1, 1} = µ

Compare partial sums:
8 14 20 23 24 25
8 14 19 23 24 25

(λ)
(µ)
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Moving Boxes

X �
X

8

6

6

3

1

1

8

6

5

4

1

1

Example:

(4, 0, 0, 0) � (3, 1, 0, 0) � (2, 2, 0, 0) � (2, 1, 1, 0) � (1, 1, 1, 1)

M4 � M31 � M22 � M211 � M1111
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The Poset (P6,�): Partitions of 6

Properties

• Lattice

• Self-dual (λ↔ λ>)

• Möbius function ±1, 0

Non-Properties

• Not ranked
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The Poset DP≤6

”Double-Majorization”
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The Poset DP≤6

”Double-Majorization”

• What is it?

• Why interesting?

• Properties?
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Why Interesting?
Non-homogeneous Muirhead-type inequalities

Examples:

1

6
(AB+AC+AD+BC+BD+CD) < ? >

1

4
(ABC+ABD+ACD+BCD)

There can’t be an inequality, in either direction. Instead we have(
1

6
(AB+AC+· · ·+BD+CD)

)1/2

≥
(

1

4
(ABC+ABD+ACD+BCD)

)1/3

or(
1

6
(AB+AC+· · ·+BD+CD)

)3

≥
(

1

4
(ABC+ABD+ACD+BCD)

)2

These last inequalities are TRUE (MacLaurin (1729)).



Majorization Normalized Majorization Double Majorization Majorization on posets Acknowledgements

Why Interesting?
Non-homogeneous Muirhead-type inequalities

Examples:

1

6
(AB+AC+AD+BC+BD+CD) < ? >

1

4
(ABC+ABD+ACD+BCD)

There can’t be an inequality, in either direction.

Instead we have(
1

6
(AB+AC+· · ·+BD+CD)

)1/2

≥
(

1

4
(ABC+ABD+ACD+BCD)

)1/3

or(
1

6
(AB+AC+· · ·+BD+CD)

)3

≥
(

1

4
(ABC+ABD+ACD+BCD)

)2

These last inequalities are TRUE (MacLaurin (1729)).



Majorization Normalized Majorization Double Majorization Majorization on posets Acknowledgements

Why Interesting?
Non-homogeneous Muirhead-type inequalities

Examples:

1

6
(AB+AC+AD+BC+BD+CD) < ? >

1

4
(ABC+ABD+ACD+BCD)

There can’t be an inequality, in either direction. Instead we have(
1

6
(AB+AC+· · ·+BD+CD)

)1/2

≥
(

1

4
(ABC+ABD+ACD+BCD)

)1/3

or(
1

6
(AB+AC+· · ·+BD+CD)

)3

≥
(

1

4
(ABC+ABD+ACD+BCD)

)2

These last inequalities are TRUE (MacLaurin (1729)).



Majorization Normalized Majorization Double Majorization Majorization on posets Acknowledgements

Why Interesting?
Non-homogeneous Muirhead-type inequalities

Examples:

1

6
(AB+AC+AD+BC+BD+CD) < ? >

1

4
(ABC+ABD+ACD+BCD)

There can’t be an inequality, in either direction. Instead we have(
1

6
(AB+AC+· · ·+BD+CD)

)1/2

≥
(

1

4
(ABC+ABD+ACD+BCD)

)1/3

or(
1

6
(AB+AC+· · ·+BD+CD)

)3

≥
(

1

4
(ABC+ABD+ACD+BCD)

)2

These last inequalities are TRUE (MacLaurin (1729)).



Majorization Normalized Majorization Double Majorization Majorization on posets Acknowledgements

“Symmetric Monomial Means”

(
1

6
(AB + AC + · · ·+ BD + CD)

)1/2

= M11(
1

4
(ABC + ABD + ACD + BCD)

)1/3

= M111(
1

6
(A3B3 + A3C 3 + B3C 3 + A3D3 + B3D3 + C 3D3)

)1/6

= M33(
1

12
(A2BC + A2BD + A2CD + · · ·+ D2AC + D2BC )

)1/4

= M211

Theorems: M11 �M111 (1729), M33 �M211 (2009).
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What is it?
“Normalized majorization”

NORMALIZE: λ 7−→ λ̄ = λ
|λ|

Embeds each Pn naturally into the lattice (Q1,�) of nonnegative
monotone rational sequences summing to 1, under majorization.

Definition:

λ v µ if λ̄ � µ̄, i.e.,
λ

|λ|
� µ

|µ|
.

Example: (4, 3, 1, 1, 1) v ( 3, 3, 0, 0, 0)
(.5, .7, .8, .9, 1) � (.5, 1, 1, 1, 1)

But note that (1, 1, 1) v (2, 2, 2) v (1, 1, 1). (It’s a preorder.)
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“Double Majorization”
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“Double Majorization”

Definition: λ E µ iff λ v µ and λ>w µ>
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“Double Majorization”

Definition: λ E µ iff λ v µ and λ>w µ>

Equivalently: λ E µ iff λ
|λ| �

µ
|µ| and λ>

|λ| �
µ>

|µ|
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“Double Majorization”

Definition: λ E µ iff λ v µ and λ>w µ>

Equivalently: λ E µ iff λ
|λ| �

µ
|µ| and λ>

|λ| �
µ>

|µ|

Example: 222 E 31

.75

.25

.5 .25.25
E.33

.33

.33

.5 .5

(Percentages)
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“Double Majorization”

Definition: λ E µ iff λ v µ and λ>w µ>

Equivalently: λ E µ iff λ
|λ| �

µ
|µ| and λ>

|λ| �
µ>

|µ|

Example: 222 E 31

.75

1

.5 .75 1
E.33

.66

1

.5 1

(Partial sums)
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“Double Majorization”

Definition: λ E µ iff λ v µ and λ>w µ>

Equivalently: λ E µ iff λ
|λ| �

µ
|µ| and λ>

|λ| �
µ>

|µ|

Example: 222 6E 311

.6

.8

1

.6 .8 1
6E.33

.66

1

.5 1

(Partial sums)

Observe that the conditions λ v µ and λ>w µ> are not equivalent.
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The Poset DP≤6

”Double-Majorization”
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”Double-Majorization”

• What is it?

• Why interesting?

• Properties?
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Application: Muirhead for Symmetric Monomial Means

Theorem (Cuttler-Greene-Skandera 2011) If λ and µ are partitions
with |λ| ≤ |µ|, then Mλ ≤Mµ if and only if λ E µ.

Conjecture Also true when |λ| > |µ|.

• True for all cases shown in the diagram.

• Includes several families of classical inequalities (e.g.
Maclaurin 1729).

• Actually, a very strong form of the inequality holds
(“y-positivity”).

• “Only if” part true for all λ, µ.



Majorization Normalized Majorization Double Majorization Majorization on posets Acknowledgements

Application: Muirhead for Symmetric Monomial Means

Theorem (Cuttler-Greene-Skandera 2011) If λ and µ are partitions
with |λ| ≤ |µ|, then Mλ ≤Mµ if and only if λ E µ.

Conjecture Also true when |λ| > |µ|.

• True for all cases shown in the diagram.

• Includes several families of classical inequalities (e.g.
Maclaurin 1729).

• Actually, a very strong form of the inequality holds
(“y-positivity”).

• “Only if” part true for all λ, µ.



Majorization Normalized Majorization Double Majorization Majorization on posets Acknowledgements

Application: Muirhead for Symmetric Monomial Means

Theorem (Cuttler-Greene-Skandera 2011) If λ and µ are partitions
with |λ| ≤ |µ|, then Mλ ≤Mµ if and only if λ E µ.

Conjecture Also true when |λ| > |µ|.

• True for all cases shown in the diagram.

• Includes several families of classical inequalities (e.g.
Maclaurin 1729).

• Actually, a very strong form of the inequality holds
(“y-positivity”).

• “Only if” part true for all λ, µ.



Majorization Normalized Majorization Double Majorization Majorization on posets Acknowledgements

Properties of DP∞
• If λ E µ and µ E λ, then λ = µ; hence DP∞ is a partial

order.

• For all n, (Pn,�) embeds isomorphically in DP∞ as a
subposet.

• λ E µ if and only if λ>D µ>; hence DP∞ is self-dual.

• DP∞ is not a lattice.

• DP∞ is an infinite poset without universal bounds; it is
locally finite, but is not locally ranked.

• All coverings are obtained by adding or moving boxes up, but
not always a single box.
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Coverings in DP∞

• If |λ| = |µ|, then λ is covered by µ if and only if µ is obtained
from λ by moving a single box up.

• If λ is covered by µ with |λ| < |µ|, then |µ| ≤ 2|λ|.
• All such coverings are obtained as follows: if |λ| = a, |µ| = b

with a < b, then:
• Let S(λ) denote the sequence of partial sums of λ, and let

Sb(λ) = d(b/a)S(λ)e. Let µ0 be the unique composition

whose partial sum sequence is Sb(λ).
• Then µ is the unique partition obtained from µ0 obtained by

repeatedly applying (. . . µiµi+1 . . . ) 7→ (. . . µi+1µi . . . ) if
µi < µi+1. (“Smort”.)

• If |λ| = a, |µ| = b, a < b and λ covers µ, then µ is (uniquely)
obtained by applying the above algorithm to λ>.
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Coverings in DP∞

Example: λ = (1, 1, 1, 1), a = 4, b = 6.

S(λ) = (1, 2, 3, 4)

(6/4)S(λ) = (3/2, 3, 9/2, 6)

S6(λ) = (2, 3, 5, 6)

µ0 = (2, 1, 2, 1)

µ = (2, 2, 1, 1)

Conclusion: λ is covered by µ.
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Variation: Majorization on Posets

Setup: P = finite poset, Z[P] = set maps from P to Z. Identify
f ∈ Z[P] with the formal sum

∑
x∈P f (x)x .

Problem: Given f ∈ Z[P], find conditions under which f can be
written as a positive linear combination∑

x<y

cxy (y − x), with cxy ≥ 0 ∀x < y .

Denote the set of such f ’s by M(P), and call M(P) the Muirhead
cone of P,

Solution: f ∈M(P) iff f [K ] ≥ 0 for all dual order ideals K ⊆ P
and f [P] = 0.

Definition (Majorization): f � g iff g − f ∈M(P).
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Some Properties (and Non-Properties)

Definition: Zn[P] = {f ∈ Z[P] | |f | = n}
πn[P] = {f ∈ Zn[P] | f is order-preserving}

Both (Zn[P],�) and (πn[P],�) form posets under majorization.
The latter are “reverse P-partitions”.
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Some Properties (and Non-Properties)

Definition: Zn[P] = {f ∈ Z[P] | |f | = n}
πn[P] = {f ∈ Zn[P] | f is order-preserving}

Theorem:

• Zn[P] is ranked and self-dual, but in general it is not a lattice.

• In general, πn(P) is neither ranked nor self-dual, and it is not
a lattice.

• Coverings in both Zn[P] and πn[P] always consist of “moving
boxes up”. In Z[P] it is always a single box, but in πn[P]
more than one box may be required.

j1 l1l1
l1

��
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@@

��
� j0 l2l0
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��
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@@

��

α β
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πn(P) is not a Lattice
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Another Variation: Principal Majorization

If we replace dual order ideals by principal dual order ideals, we get
a larger cone

M+(P) = {f | f [J] ≥ 0 for all principal dual order ideals J},

and a new type of majorization:

Definition: f �p g iff (g − f )[J] ≥ 0 for all principal dual order
ideals J.

l1 n1
n1

n1
�
�

@
@

@
@

�
�

�p
l0 n0

n2

n2
�
�

@
@

@
@

�
�

α β
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Extreme ray description of the cone M+(P)

Theorem: f ∈M+(P) iff f can be expressed as a positive linear
combination ∑

z∈P

cz ∆z , with cz ≥ 0 ∀z ,

where for all z ,
∆z =

∑
y≤z

µ(y , z)y .

Note: The cone M+(P) contains the cone M(P). It’s extreme
generators y − x are nonnegative linear combinations of the ∆z ’s.
(Standard Möbius function argument.)
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