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For a poset P, we consider how large a family F of subsets of
[n] := {1, . . . , n} we may have in the Boolean Lattice Bn : (2[n],⊆)
containing no (weak) subposet P. We are interested in determining

or estimating La(n,P) := max{|F| : F ⊆ 2[n],P 6⊂ F}.

Example
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For the poset P = N , F 6⊃ q qq q
@ means F contains no 4 subsets A,

B, C , D such that A ⊂ B, C ⊂ B, C ⊂ D. Note that A ⊂ C is
allowed: The subposet does not have to be induced.
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The Boolean Lattice B4
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A Family of Subsets F in B4
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F contains the poset N
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A Family of Subsets F in B4

Q
Q
Q
Q
Q
Q

A
A
A
A

�
�
�
�

�
�

�
�
�

�

@
@

@
@

�
�
�
�

H
HH

H
HH

H
H

�
�
�
�

�
��

�
��

�
�

H
HH

H
HH

H
H

�
��

�
��

�
�

H
HH

H
HH

H
H

�
�
�
�

�
�

�
�

HH
HHH

HHH

��
���

���

HH
HHH

HHH

��
���

���

�
�

�
�

HH
HHH

HHH

�
�

�
�
�

�
�
�

@
@
@
@

�
�
�
�
�
�

�
�
�
�

A
A
A
A

Q
Q

Q
Q
Q

Q

t
t t t
t t

t

{4}

{1, 3} {1, 4} {2, 4}

{1, 2, 3} {2, 3, 4}

{1, 2, 3, 4}

y
y y y

y y y
y y

∅

{1} {2} {3}

{1, 2} {2, 3} {3, 4}

{1, 2, 4} {1, 3, 4}



F Contains a 4-Chain P4
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Hence, F Contains Another N
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A Large N -free Family in B4
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Given a finite poset P, we are interested in determining or

estimating La(n,P) := max{|F| : F ⊆ 2[n],P 6⊂ F}.

For many posets, La(n,P) is
exactly equal to the sum of middle
k binomial coefficients, denoted by
Σ(n, k).

Moreover, the largest families may
be B(n, k), the families of subsets
of middle k sizes.

q∅

q[n]

q q q q q q q q q q qq q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q } k
levels
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Excluded subposet P La(n,P)

P2

r
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b n
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´
[Sperner, 1928]

Path Pk , k ≥ 2
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rr
... Σ(n, k − 1)

∼ (k − 1)
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2
c

´ [P. Erdős, 1945]

r -fork Vr

r︷ ︸︸ ︷
r rrrr ....

�
�

A
A
�
�

S
S

∼
`

n
b n

2
c

´ [Katona-Tarján, 1981]

[DeBonis-Katona 2007]



Excluded subposet P La(n,P)

Butterfly B
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Excluded subposet P La(n,P)

Batons, Pk(s, t)
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[G.-Lu, 2009]

Crowns O2k
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k even: ∼
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2
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´
k odd: ≤ (1 + 1√

2
)
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n
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2
c

´ [G.-Lu, 2009]
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Σ(n, 2)

∼ 2
`

n
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2
c

´ [Li, 2009]



Asymptotic behavior of La(n,P)

Definition
π(P):= limn→∞

La(n,P)

( n
b n

2 c
)

.

Conjecture (G.-Lu, 2008)

For all P, π(P) exists and is integer.

Moreover, Saks and Winkler (2008) observed what π(P) is in
known cases, leading to the stronger

Conjecture (G.-Lu, 2009)

For all P, π(P) = e(P), where

Definition
e(P):= max m such that for all n, P 6⊂ B(n,m).
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Example: Butterfly B

For all n, B(n, 2) 6⊃ q qq q
�@ ⇒ e(q qq q

�@) = 2,

Bn

Consecutive two levels

while La(n, q qq q
�@) = Σ(n, 2) ⇒ π(q qq q

�@) = 2.



π(P) and Height

Definition
The height h(P) is the maximum size of any chain in P.

Theorem (G.-Lu, 2009)

Let T be a height 2 poset which is a tree (as a graph) of order t,
then

La(n,T )( n
b n

2
c
) ≤ 1 +

16t

n
+ O

(
1

n
√

n log n

)
.
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π(P) and Height

The Forbidden Tree Theorem

Theorem (Bukh, 2010)

Let T be a poset such that the Hasse diagram is a tree. Then

π(T ) = e(T ) = h(T )− 1.
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π(P) and Height

For P of height 2 π(P) ≤ 2 (when it exists).

What about taller posets P?

For P of height 3 π(P) cannot be bounded:

Example (Jiang, Lu) k-diamond poset Dk
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Dk

rr 2r−1 − 2 sets} B(n, r)

Bn

B(n, r) 6⊃ Dk for k = 2r−1 − 1, so π(Dk) ≥ r if it exists.
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On the Diamond D2

Problem
Despite considerable effort it remains open to determine the value
π(D2) or even to show it exists!

t
tt tS
S

�
�

�
�

S
S

Easy bounds:
Σ(n, 2) ≤ La(n,D2) ≤ Σ(n, 3)
⇒ 2 ≤ π(D2) ≤ 3

The conjectured value of π(D2) is its lower bound, e(D2) = 2.



The D2 Diamond Theorem

Theorem
As n→∞,

Σ(n, 2) ≤ La(n,D2) ≤
(

2
3

11
+ on(1)

)(
n

bn2c

)
.

We prove this and most of our other results by considering, for a
P-free family F of subsets of [n], the average number of times a
random full (maximal) chain in the Boolean lattice Bn meets F ,
called the Lubell function.
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Lubell Function

A full chain C in Bn is a collection of
n + 1 subsets as follows:

∅ ⊂ {a1} ⊂ · · · ⊂ {a1, . . . , an}. q∅

q[n]

qq qq
q qqq q q qq q q qq q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q qq q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q q

Definitions
Let C = Cn be the set of full chains in Bn.

For F ⊂ 2[n], the height h(F):= max
C∈C
|F ∩ C |.

The Lubell function h̄(F):= aveC∈C |F ∩ C |.
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Lubell Function

Lemma
Let F be a collection of subsets of [n].
1. We have

h̄(F) =
∑
A∈F

1( n
|A|
) .

2. If h̄(F) ≤ m, for some real number m > 0, then

|F| ≤ m

(
n

bn2c

)
.

It means that the Lubell function provides an upper bound on
|F|/

( n
b n

2
c
)
.



Lubell Function

Lemma
(ctd.) Let F be a collection of subsets of [n].

3. If h̄(F) ≤ m, for some integer m > 0, then

|F| ≤ Σ(n,m),

and equality holds if and only if

(1) F = B(n,m) when n + m is odd, or

(2) F = B(n,m − 1) together with any
( n
(n+m)/2

)
subsets of sizes

(n ±m)/2 when n + m is even.



Lubell Function

Let λn(P) be max h̄(F) over all P-free families F ⊂ 2[n]. Then we
have

Σ(n, e(P)) ≤ La(n,P) ≤ λn(P)

(
n

bn2c

)
.

We study λn(P) and use it to investigate the π(P) = e(P)
conjecture for many posets.

Asymptotics: Recall the limit π(P) := limn→∞
La(n,P)

( n
b n

2 c
)
. Let

λ(P) := lim
n→∞

λn(P).

e(P) ≤ π(P) ≤ λ(P),

if both limits exist.
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We study λn(P) and use it to investigate the π(P) = e(P)
conjecture for many posets.
Asymptotics: Recall the limit π(P) := limn→∞

La(n,P)

( n
b n

2 c
)
. Let

λ(P) := lim
n→∞

λn(P).

e(P) ≤ π(P) ≤ λ(P),

if both limits exist.



Note on D2-free Families

The limit π(D2) is shown to be < 2.3, if it exists, by proving that
the maximum Lubell values λn(D2) are nonincreasing for n ≥ 4
and by investigating their values for n ≤ 12.



Easy Upper Bound for D2

Let
dn := max

F⊂2[n]

F6⊃♦

h̄(F)

Proposition

For all n, dn ≤ 2.5. Hence, π(♦) ≤ 2.5.

Proof.
Suppose F 6⊇ ♦.
Let γi := Pr(|F ∩ C | = i). h̄(F) = E(|F ∩ C |) =

∑3
i=1 iγi .

One shows easily that γ3 ≤ γ2.

rC r b C ′
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Improved Bound for D2

Theorem
π(♦) < 2.3

Lemma
For n ≥ 3, dn ≤ dn−1.

n 2 3 4 5 6 7

dn 21
2 21

3 21
3 2.3 2.3 < 2.3

Proof.
Let F achieve dn. If ∅, [n] ∈ F , then h̄(F) ≤ 2 + 1

n ≤ dn.

r
r r Bn

Else we may assume [n] 6∈ F .



dn = h̄(F) = E(|F ∩ C |)

≤
∑n

i=1 E(|F(i) ∩ Ci |)
n

≤ dn−1

q qq

Cn

�A��HH

A�
H
H

�
�

......

[n]

∅

F(n) F(1)

{1, ..., n − 1} {2, ..., n}

where F(i) := {F ∈ F|i 6∈ F} and Ci is a random full chain of
subset of [n]− {i}.



Improved upper bounds on π(D2):

2.296 [G.-Li-Lu, 2008]
2.283 [Axenovich-Manske-Martin, 2011]
2.273 [G.-Li-Lu, 2011]
2.25 [Kramer-Martin-Young, 2012]
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How well can this Lubell function method do? Consider this
diamond-free family:
Ex: F2,n q

s

[n]

∅

s s · · · s s�
�

�
�
�
�

� �
�

� �
�
�H

HHH

Q
Q
Q
A
A

}{odd}

{ odd, even}︷ ︸︸ ︷s s s s · · · s s {even, even}︷ ︸︸ ︷s s · · · s s
h̄(F2,n) = 1 +

d n
2
e

n +
b n

2
cd n

2
e+(b

n
2 c
2 )

(n
2)

For n > 1, h̄(F2,n) > 2.25.



What we then see is there are families of subsets with Lubell
function values → 2.25 as n→∞. Hence, λ(D2) exists, and is at
least 2.25, which is a barrier for this approach to showing
π(D2) = 2.

Problem
Does limn→∞ dn = 2.25?

Answer: YES! [Li, 2012]

Problem
Is h̄(F) < 2 + ε if F 6⊃ ♦ such that ||F | − n

2 | < C
√

n log n for all
F ∈ F?
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function values → 2.25 as n→∞. Hence, λ(D2) exists, and is at
least 2.25, which is a barrier for this approach to showing
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Three level problem

To make things simpler, what if we restrict attention to D2-free
families in the middle three levels of the Boolean lattice Bn. We
should get better upper bounds on |F|/

( n
b n

2
c
)
:

2.207 [Axenovich-Manske-Martin, 2011]
2.1547 [Manske-Shen, 2012]
2.1512 [Balogh-Hu-Lidický-Liu, 2012]
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Uniformly L-bounded Posets

For many posets we can use the Lubell function to completely
determine La(n,P) and the extremal families.

Proposition

For a poset P satisfying λn(P) ≤ e(P) for all n, we have

La(n,P) = Σ(n, e(P)) for all n.

If F is a P-free family of the largest size, then

F = B(n, e(P)).

We say posets that satisfy the inequality above are uniformly
L-bounded.



The k-Diamond Theorem

Theorem
The k-diamond posets Dk satisfy

λn(P) ≤ e(P)

for all n, if k is an integer in the
interval [2m−1 − 1, 2m −

( m
bm

2
c
)
− 1]

for any integer m ≥ 2.
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This means the posets Dk are uniformly L-bounded for
k = 1, 3, 4, 7, 8, 9, . . .. Consequently, for most values of k , Dk

satisfies the π = e conjecture, and, moreover, we know the largest
Dk -families for all values of n.



Proof Sketch: The Partition Method

The Lubell function h̄(F) is equal to the average number of times
a full chain intersects the family F .
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One of the key ideas (due to Li) involves splitting up the collection
Cn of full chains into blocks that have a nice property, and
computing the average on each block. Then h̄(F) is at most the
maximum of those averages.
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Proof Sketch: The k-Diamond Theorem

Min-Max Partition
The block C[A,B] consists of full chains with minF ∩ C = A and
maxF ∩ C = B.

q
tt
t
q

∅

A

B

[n]

...

...

q
ttt
t
q

∅

A

B

[n]

...

...

q
tt
tt
q

∅

A

B

[n]

...

...

C[A,B]

q∅

q[n]

tA

tB

t t t tt t tt



q∅

q[n]

tA

tB

t t t tt t tt

Compute aveC∈C[A,B]
|F ∩ C| for each block C[A,B]. If say we forbid

D3, there are at most two points between A and B, and the largest
average value |F ∩ C| is when we get a diamond D2 for [A,B],
which is 3 = e(D3).



The Harp Theorem

Theorem
The harp posets H(`1, ..., `k) satisfy

λn(P) ≤ e(P)

for all n, if `1 > · · · > `k ≥ 3.
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H(7, 6, 5, 4, 3)

Hence, harps with distinct path lengths are uniformly L-bounded
and satisfy the π = e conjecture.



More on the Lubell Function

Recall that e(P) ≤ π(P) ≤ λ(P) when the limits π(P) and λ(P)
both exist. For a uniformly L-bounded poset P,
e(P) = π(P) = λ(P).

Examples

A chain Pk is uniformly L-bounded.
The poset V2 is not uniformly L-bounded: We have e = π = 1,
while λ = 2.
The Butterfly B is not uniformly L-bounded (since λ2 = 3 > e),
though La(n,B) = Σ(n, 2) for all n ≥ 3.
The diamond D2 is not uniformly L-bounded, though many
diamonds Dk and harps are.
Still, it can be proven that λ(P) exists whenever P is a diamond
Dk or a harp H(`1, ..., `k).
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More on the Lubell Function

More uniformly L-bounded posets
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Definition
Suppose posets P1, . . . ,Pk are uniformly L-bounded with 0 and 1.
A blow-up of a rooted tree T on k edges has each edge replaced
by a Pi .
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Definition
Suppose posets P1, . . . ,Pk are uniformly L-bounded with 0 and 1.
A blow-up of a rooted tree T on k edges has each edge replaced
by a Pi .



Constructions

Theorem (Li, 2011)
If P is a blow-up of a rooted tree T ,
then π(P) = e(P).
If the tree is a path, then P is
uniformly L-bounded.
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A blow-up of the rooted tree above:



Future Research

Problem
Determine for the diamond D2 whether π(D2) exists and equals 2.

Problem
Determine for the crown O6 whether π(O6) exists and equals 1.
The current best upper bound is 1.707 . . .. Lu believes we can
solve O14.

Conjecture (G.-Lu, 2009)

For any finite poset, π(P) exists and is e(P).

Problem
Prove that λ(P) exists for general P.
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Problem
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Problem
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The current best upper bound is 1.707 . . .. Lu believes we can
solve O14.

Conjecture (G.-Lu, 2009)

For any finite poset, π(P) exists and is e(P).

Problem
Prove that λ(P) exists for general P.



Future Research

Problem
Provide insight into why

I La(n,P) behaves very nicely for some posets, equalling
Σ(n, e(P)) for all n ≥ no (such as the butterfly B and the
diamonds Dk for most values of k);

I Is more complicated, but behaves well asymptotically (such as
V2); or

I Continues to resist asymptotic determination (such as D2 and
O6).





Foundational results: Let Pk denote the k-element chain (path
poset).

Theorem (Sperner, 1928)

For all n,

La(n,P2) =

(
n

bn2c

)
,

and the extremal families are B(n, 1).

Theorem (Erdős, 1945)

For general k and n,

La(n,Pk) = Σ(n, k − 1),

and the extremal families are B(n, k − 1).
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Foundational results: Let Vr denote the poset of r elements above
a single element.

Theorem (Katona-Tarján, 1981)

As n→∞,(
1 +

1

n
+ Ω

(
1

n2

))(
n

bn2c

)
≤ La(n,V2) ≤

(
1 +

2

n

)(
n

bn2c

)
.

Theorem (Thanh 1998, DeBonis-Katona, 2007)

For general r , as n→∞,(
1 +

r − 1

n
+ Ω

(
1

n2

))
≤ La(n,Vr )( n

b n
2
c
) ≤

(
1 + 2

r − 1

n
+ O

(
1

n2

))
.
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More results for small posets: Let B denote the Butterfly poset
with two elements each above two other elements. Let N denote
the four-element poset shaped like an N.

Theorem (DeBonis-Katona-Swanepoel, 2005)

For all n ≥ 3
La(n,B) = Σ(n, 2),

and the extremal families are B(n, 2).

Theorem (G.-Katona, 2008)
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Forbidding Induced Subposets

Less is known for this problem:

Definition
We say P is an induced subposet of Q, written P ⊂∗ Q if there
exists an injection f : P → Q such that for all x , y ∈ P, x ≤ y iff
f (x) ≤ f (y). We define La∗(n,P) to be the largest size of a family
of subsets of [n] that contains no induced subposet P.

Theorem (Carroll-Katona, 2008)
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Forbidding Induced Subposets

Extending Bukh’s Forbidden Tree Theorem:

Theorem (Boehnlein-Jiang, 2011)

For every tree poset T ,

La∗(n,T ) ∼ (h(T )− 1)

(
n

bn2c

)
, asn→∞.



What about J ? Let us use the Lubell function.
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π ≤ 2.3

Theorem (Li)

La(n,J ) = La(n,P3) = Σ(n, 2)

Proof.
Let F ⊂ 2[n] achieve La(n,J ). Then h̄(F) ≤ 3. If F contains
some P3, make a swap:

rF 3 B r A

b B ′ 6∈ F
rC
JĴ
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Then F ′ := F − {C}+ {B ′}.
• contains no J
• |F ′| = |F|
• |F ′| contains fewer P ′3s

Iterate until we get J -free F̃ of height 2, so

|F| = |F̃ | ≤ La(n,P3).



The Union-free Family Theorem

A related problem

Theorem (Kleitman, 1965)

Let F be a collection of subsets of [2n], that contains no two sets
and their union. Then

|F| ≤
(2n

n

)
(1 + O(n−1/2)).

Kleitman believes the error term can be reduced to O(n−1), and
perhaps 1/n.

In connection with this, he proposes to investigate two-level
“triangle-free” families of subsets of [2n].
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Triangle-free Families

Let k ≥ 1. Consider a family F of subsets of [2n] such that every
A ∈ F has size n or n − k. Further, suppose that there are no
three sets A1,A2,B ∈ F with |A1| = |A2| = n − k , |B| = n,
A1,A2 ⊂ B, and A1,A2 are at Hamming distance 2k. This
forbidden configuration we call a triangle.

Note that it means A1 ∪ A2 = B.

Kleitman asked for a good upper bound on triangle-free F for
k = 2 and for general k. Trivially,

(2n
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)
≤ |F| ≤ 2
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)
.

Proposition (G.-Li)

For triangle-free F ,

|F| ≤
(2n
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)
(1 + (k/n)).

This can be proven with the Lubell function.
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