Poset-free Families of Sets

Jerrold R. Griggs Wei-Tian Li Linyuan Lu

Department of Mathematics University of South Carolina Columbia, SC USA

Combinatorics and Posets Minisymposium SIAM-DM12 Halifax, June 20, 2012

イロト イヨト イヨト イ

For a poset P, we consider how large a family \mathcal{F} of subsets of $[n] := \{1, \ldots, n\}$ we may have in the Boolean Lattice $\mathcal{B}_n : (2^{[n]}, \subseteq)$ containing no (weak) subposet P. We are interested in determining

or estimating $\operatorname{La}(n, P) := \max\{|\mathcal{F}| : \mathcal{F} \subseteq 2^{[n]}, P \not\subset \mathcal{F}\}.$

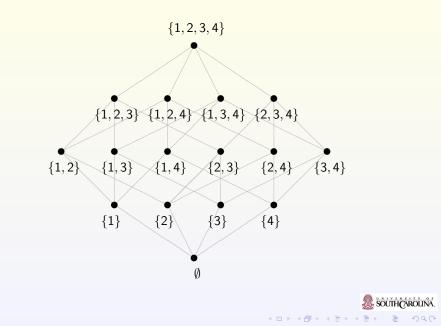
(日)

For a poset *P*, we consider how large a family \mathcal{F} of subsets of $[n] := \{1, \ldots, n\}$ we may have in the Boolean Lattice $\mathcal{B}_n : (2^{[n]}, \subseteq)$ containing no (weak) subposet *P*. We are interested in determining or estimating $La(n, P) := max\{|\mathcal{F}| : \mathcal{F} \subseteq 2^{[n]}, P \not\subset \mathcal{F}\}.$

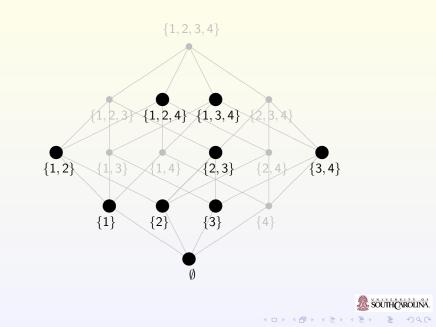
Example

For the poset $P = \mathcal{N}$, $\mathcal{F} \not\supset \mathbb{N}$ means \mathcal{F} contains no 4 subsets A, B, C, D such that $A \subset B$, $C \subset B$, $C \subset D$. Note that $A \subset C$ is allowed: The subposet does not have to be induced.

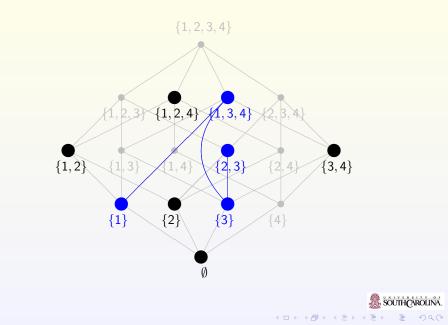
The Boolean Lattice \mathcal{B}_4



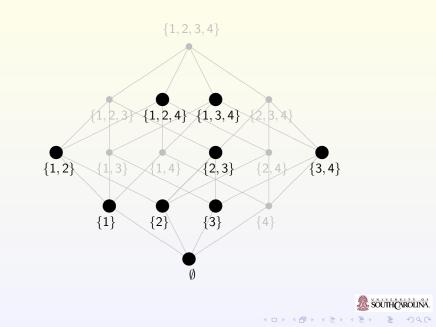
A Family of Subsets \mathcal{F} in \mathcal{B}_4



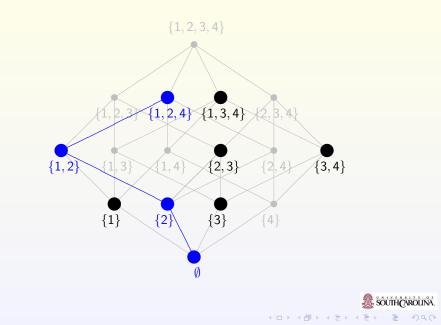
 ${\mathcal F}$ contains the poset ${\mathcal N}$



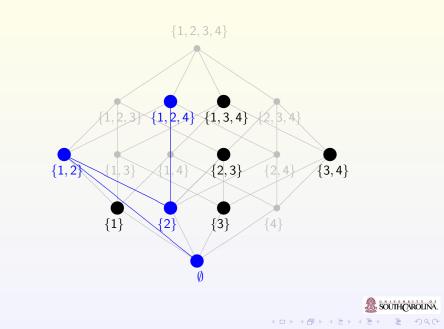
A Family of Subsets \mathcal{F} in \mathcal{B}_4



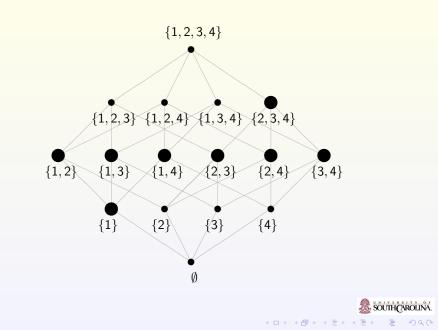
 $\mathcal F$ Contains a 4-Chain $\mathcal P_4$



Hence, $\mathcal F$ Contains Another $\mathcal N$



A Large \mathcal{N} -free Family in \mathcal{B}_4

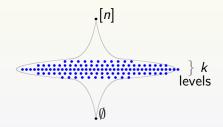


Given a finite poset *P*, we are interested in determining or estimating $La(n, P) := max\{|\mathcal{F}| : \mathcal{F} \subseteq 2^{[n]}, P \not\subset \mathcal{F}\}.$

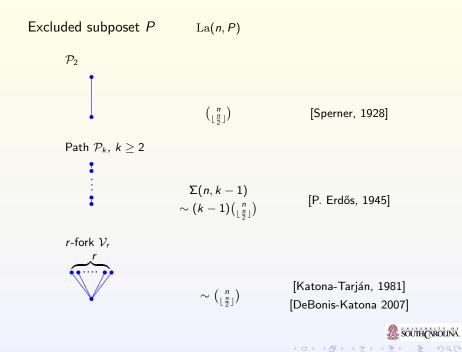
Given a finite poset *P*, we are interested in determining or estimating $La(n, P) := max\{|\mathcal{F}| : \mathcal{F} \subseteq 2^{[n]}, P \notin \mathcal{F}\}.$

For many posets, La(n, P) is exactly equal to the sum of middle k binomial coefficients, denoted by $\Sigma(n, k)$.

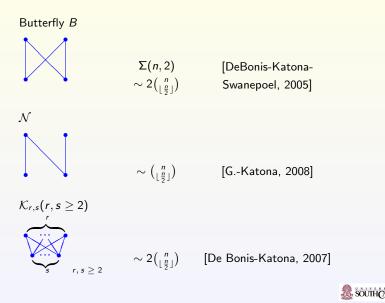
Moreover, the largest families may be $\mathcal{B}(n, k)$, the families of subsets of middle k sizes.



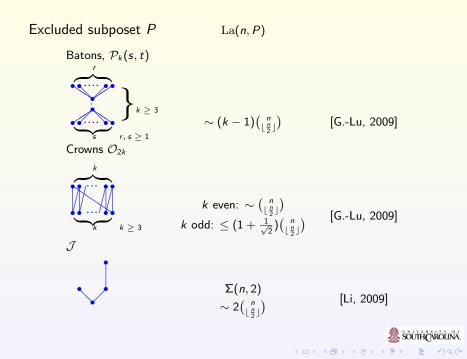
・ロト ・ 理 ・ ・ ヨ ・ ・



Excluded subposet P La(n, P)



うせん 御 (中) (日) (日) (日)



Asymptotic behavior of La(n, P)

Definition

$$\pi(P) := \lim_{n \to \infty} \frac{\operatorname{La}(n,P)}{\binom{n}{\lfloor \frac{n}{2} \rfloor}}.$$

Asymptotic behavior of La(n, P)

Definition

$$\pi(P) := \lim_{n \to \infty} \frac{\operatorname{La}(n,P)}{\binom{n}{\lfloor \frac{n}{2} \rfloor}}.$$

Conjecture (G.-Lu, 2008) For all P, $\pi(P)$ exists and is integer.

Asymptotic behavior of La(n, P)

Definition

$$\pi(P) := \lim_{n \to \infty} \frac{\operatorname{La}(n,P)}{\binom{n}{\lfloor \frac{n}{2} \rfloor}}.$$

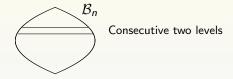
Conjecture (G.-Lu, 2008) For all P, $\pi(P)$ exists and is integer.

Moreover, Saks and Winkler (2008) observed what $\pi(P)$ is in known cases, leading to the stronger

Conjecture (G.-Lu, 2009) For all P, $\pi(P) = e(P)$, where

Definition $e(P):= \max m \text{ such that for all } n, P \not\subset \mathcal{B}(n, m).$

Example: Butterfly *B* For all *n*, $\mathcal{B}(n, 2) \not\supset \bowtie \Rightarrow e(\bowtie) = 2$,



while
$$\operatorname{La}(n, \bowtie) = \Sigma(n, 2) \Rightarrow \pi(\bowtie) = 2.$$

Definition The height h(P) is the maximum size of any chain in P.

Definition The height h(P) is the maximum size of any chain in P.

Theorem (G.-Lu, 2009)

Let T be a height 2 poset which is a tree (as a graph) of order t, then

$$\frac{\operatorname{La}(n,T)}{\binom{n}{\lfloor \frac{n}{2} \rfloor}} \leq 1 + \frac{16t}{n} + O\left(\frac{1}{n\sqrt{n\log n}}\right)$$


```
The Forbidden Tree Theorem

Theorem (Bukh, 2010)

Let T be a poset such that the Hasse diagram is a tree. Then
```

 $\pi(T)=e(T)=h(T)-1.$

For P of height 2 $\pi(P) \leq 2$ (when it exists).


```
For P of height 2 \pi(P) \leq 2 (when it exists).
```

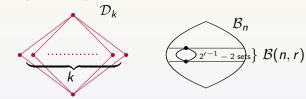
```
What about taller posets P?
```


For P of height 2 $\pi(P) \leq 2$ (when it exists).

What about taller posets P?

For P of height 3 $\pi(P)$ cannot be bounded:

Example (Jiang, Lu) k-diamond poset \mathcal{D}_k



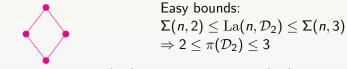
 $\mathcal{B}(n,r)
ot \supset \mathcal{D}_k$ for $k = 2^{r-1} - 1$, so $\pi(\mathcal{D}_k) \ge r$ if it exists.

・ロト ・ 戸 ・ ・ ヨ ・ ・

On the Diamond \mathcal{D}_2

Problem

Despite considerable effort it remains open to determine the value $\pi(D_2)$ or even to show it exists!



The conjectured value of $\pi(\mathcal{D}_2)$ is its lower bound, $e(\mathcal{D}_2) = 2$.

The D_2 Diamond Theorem

Theorem *As* $n \to \infty$,

$$\Sigma(n,2) \leq \operatorname{La}(n,\mathcal{D}_2) \leq \left(2\frac{3}{11} + o_n(1)\right) \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

The D_2 Diamond Theorem

Theorem *As* $n \to \infty$,

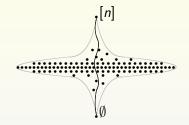
$$\Sigma(n,2) \leq \operatorname{La}(n,\mathcal{D}_2) \leq \left(2\frac{3}{11} + o_n(1)\right) \binom{n}{\lfloor \frac{n}{2} \rfloor}.$$

We prove this and most of our other results by considering, for a P-free family \mathcal{F} of subsets of [n], the average number of times a random full (maximal) chain in the Boolean lattice \mathcal{B}_n meets \mathcal{F} , called the *Lubell function*.

イロト 不良 ト イヨト イヨト

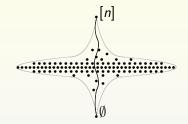
A *full chain* C in B_n is a collection of n + 1 subsets as follows:

 $\emptyset \subset \{a_1\} \subset \cdots \subset \{a_1, \ldots, a_n\}.$



A *full chain* C in B_n is a collection of n + 1 subsets as follows:

 $\emptyset \subset \{a_1\} \subset \cdots \subset \{a_1, \ldots, a_n\}.$



・ロト ・ 理 ・ ・ ヨ ・ ・

Definitions Let $C = C_n$ be the set of full chains in \mathcal{B}_n . For $\mathcal{F} \subset 2^{[n]}$, the height $h(\mathcal{F}) := \max_{C \in C} |\mathcal{F} \cap C|$. The Lubell function $\overline{h}(\mathcal{F}) := \operatorname{ave}_{C \in C} |\mathcal{F} \cap C|$.

Lemma Let \mathcal{F} be a collection of subsets of [n]. 1. We have

$$ar{h}(\mathcal{F}) = \sum_{A \in \mathcal{F}} rac{1}{inom{n}{|A|}}.$$

2. If $\bar{h}(\mathcal{F}) \leq m$, for some real number m > 0, then

 $|\mathcal{F}| \leq m \binom{n}{\lfloor \frac{n}{2} \rfloor}.$

It means that the Lubell function provides an upper bound on $|\mathcal{F}|/\binom{n}{\lfloor \frac{n}{2} \rfloor}$.

Lemma (ctd.) Let \mathcal{F} be a collection of subsets of [n]. 3. If $\overline{h}(\mathcal{F}) \leq m$, for some integer m > 0, then $|\mathcal{F}| \leq \Sigma(n, m)$,

and equality holds if and only if (1) $\mathcal{F} = \mathcal{B}(n, m)$ when n + m is odd, or (2) $\mathcal{F} = \mathcal{B}(n, m - 1)$ together with any $\binom{n}{(n+m)/2}$ subsets of sizes $(n \pm m)/2$ when n + m is even.

(日)

Let $\lambda_n(P)$ be max $\overline{h}(\mathcal{F})$ over all *P*-free families $\mathcal{F} \subset 2^{[n]}$. Then we have

$$\Sigma(n, e(P)) \leq \operatorname{La}(n, P) \leq \lambda_n(P) {n \choose \lfloor \frac{n}{2} \rfloor}.$$

We study $\lambda_n(P)$ and use it to investigate the $\pi(P) = e(P)$ conjecture for many posets.

Let $\lambda_n(P)$ be max $\overline{h}(\mathcal{F})$ over all *P*-free families $\mathcal{F} \subset 2^{[n]}$. Then we have

$$\Sigma(n, e(P)) \leq \operatorname{La}(n, P) \leq \lambda_n(P) {n \choose \lfloor \frac{n}{2} \rfloor}.$$

We study $\lambda_n(P)$ and use it to investigate the $\pi(P) = e(P)$ conjecture for many posets. Asymptotics: Recall the limit $\pi(P) := \lim_{n \to \infty} \frac{\operatorname{La}(n,P)}{\binom{n}{\lfloor \frac{n}{2} \rfloor}}$. Let $\lambda(P) := \lim_{n \to \infty} \lambda_n(P)$.

$$e(P) \leq \pi(P) \leq \lambda(P),$$

if both limits exist.

Note on \mathcal{D}_2 -free Families

The limit $\pi(\mathcal{D}_2)$ is shown to be < 2.3, if it exists, by proving that the maximum Lubell values $\lambda_n(\mathcal{D}_2)$ are nonincreasing for $n \ge 4$ and by investigating their values for $n \le 12$.

Easy Upper Bound for \mathcal{D}_2

Let

$$d_n := \max_{\substack{\mathcal{F} \subset 2^{[n]} \\ \mathcal{F}
ot \diamond}} ar{h}(\mathcal{F})$$

Proposition

For all n, $d_n \leq 2.5$. Hence, $\pi(\diamondsuit) \leq 2.5$.

Proof.

Suppose $\mathcal{F} \not\supseteq \Diamond$. Let $\gamma_i := \Pr(|\mathcal{F} \cap C| = i)$. $\bar{h}(\mathcal{F}) = \operatorname{E}(|\mathcal{F} \cap C|) = \sum_{i=1}^3 i\gamma_i$. One shows easily that $\gamma_3 \leq \gamma_2$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

Improved Bound for \mathcal{D}_2

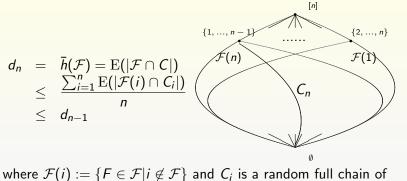
Theorem $\pi(\diamondsuit) < 2.3$

Lemma For $n \ge 3$, $d_n \le d_{n-1}$.

Proof.

Let \mathcal{F} achieve d_n . If \emptyset , $[n] \in \mathcal{F}$, then $\overline{h}(\mathcal{F}) \leq 2 + \frac{1}{n} \leq d_n$.

Else we may assume $[n] \notin \mathcal{F}$.



subset of $[n] - \{i\}$.

ヘロア ヘロア ヘビア ヘ

2.296 [G.-Li-Lu, 2008]

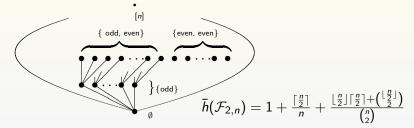
2.296 [G.-Li-Lu, 2008] 2.283 [Axenovich-Manske-Martin, 2011]

2.296 [G.-Li-Lu, 2008] 2.283 [Axenovich-Manske-Martin, 2011] 2.273 [G.-Li-Lu, 2011]

2.296 [G.-Li-Lu, 2008] 2.283 [Axenovich-Manske-Martin, 2011] 2.273 [G.-Li-Lu, 2011] 2.25 [Kramer-Martin-Young, 2012]

How well can this Lubell function method do? Consider this diamond-free family:

Ex: $\mathcal{F}_{2,n}$



For n > 1, $\bar{h}(\mathcal{F}_{2,n}) > 2.25$.

What we then see is there are families of subsets with Lubell function values $\rightarrow 2.25$ as $n \rightarrow \infty$. Hence, $\lambda(D_2)$ exists, and is at least 2.25, which is a barrier for this approach to showing $\pi(D_2) = 2$.

What we then see is there are families of subsets with Lubell function values $\rightarrow 2.25$ as $n \rightarrow \infty$. Hence, $\lambda(\mathcal{D}_2)$ exists, and is at least 2.25, which is a barrier for this approach to showing $\pi(\mathcal{D}_2) = 2$.

Problem Does $\lim_{n\to\infty} d_n = 2.25$?

What we then see is there are families of subsets with Lubell function values $\rightarrow 2.25$ as $n \rightarrow \infty$. Hence, $\lambda(D_2)$ exists, and is at least 2.25, which is a barrier for this approach to showing $\pi(D_2) = 2$.

Problem Does $\lim_{n\to\infty} d_n = 2.25$? Answer: YES! [Li, 2012]

What we then see is there are families of subsets with Lubell function values $\rightarrow 2.25$ as $n \rightarrow \infty$. Hence, $\lambda(\mathcal{D}_2)$ exists, and is at least 2.25, which is a barrier for this approach to showing $\pi(\mathcal{D}_2) = 2$.

Problem

Does $\lim_{n\to\infty} d_n = 2.25$? Answer: YES! [Li, 2012]

Problem

Is $\overline{h}(\mathcal{F}) < 2 + \epsilon$ if $\mathcal{F} \not\supset \diamondsuit$ such that $||F| - \frac{n}{2}| < C\sqrt{n \log n}$ for all $F \in \mathcal{F}$?

To make things simpler, what if we restrict attention to D_2 -free families in the middle three levels of the Boolean lattice B_n . We should get better upper bounds on $|\mathcal{F}|/{\binom{n}{\lfloor \frac{n}{2} \rfloor}}$:

To make things simpler, what if we restrict attention to D_2 -free families in the middle three levels of the Boolean lattice B_n . We should get better upper bounds on $|\mathcal{F}|/{\binom{n}{\lfloor \frac{n}{2} \rfloor}}$:

2.207 [Axenovich-Manske-Martin, 2011]

To make things simpler, what if we restrict attention to D_2 -free families in the middle three levels of the Boolean lattice B_n . We should get better upper bounds on $|\mathcal{F}|/{\binom{n}{2}}$:

- 2.207 [Axenovich-Manske-Martin, 2011]
- 2.1547 [Manske-Shen, 2012]

To make things simpler, what if we restrict attention to D_2 -free families in the middle three levels of the Boolean lattice B_n . We should get better upper bounds on $|\mathcal{F}|/{\binom{n}{\lfloor \frac{n}{2} \rfloor}}$:

・ロット 御 マイ ヨマ ・ ヨマ

3

- 2.207 [Axenovich-Manske-Martin, 2011]
- 2.1547 [Manske-Shen, 2012]
- 2.1512 [Balogh-Hu-Lidický-Liu, 2012]

Uniformly L-bounded Posets

For many posets we can use the Lubell function to completely determine La(n, P) and the extremal families.

Proposition

For a poset P satisfying $\lambda_n(P) \leq e(P)$ for all n, we have

 $La(n, P) = \Sigma(n, e(P))$ for all n.

If \mathcal{F} is a P-free family of the largest size, then

 $\mathcal{F} = \mathcal{B}(n, e(P)).$

We say posets that satisfy the inequality above are *uniformly L-bounded*.

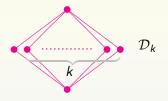
The k-Diamond Theorem

Theorem

The k-diamond posets \mathcal{D}_k satisfy

$$\lambda_n(P) \leq e(P)$$

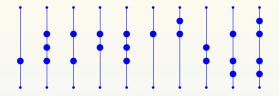
for all n, if k is an integer in the interval $[2^{m-1} - 1, 2^m - {m \choose \lfloor \frac{m}{2} \rfloor} - 1]$ for any integer $m \ge 2$.



This means the posets D_k are uniformly L-bounded for $k = 1, 3, 4, 7, 8, 9, \ldots$ Consequently, for most values of k, D_k satisfies the $\pi = e$ conjecture, and, moreover, we know the largest D_k -families for all values of n.

Proof Sketch: The Partition Method

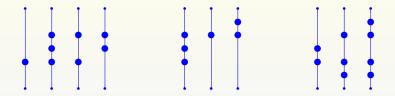
The Lubell function $\bar{h}(\mathcal{F})$ is equal to the average number of times a full chain intersects the family \mathcal{F} .



One of the key ideas (due to Li) involves splitting up the collection C_n of full chains into blocks that have a nice property, and computing the average on each block. Then $\bar{h}(\mathcal{F})$ is at most the maximum of those averages.

Proof Sketch: The Partition Method

The Lubell function $\overline{h}(\mathcal{F})$ is equal to the average number of times a full chain intersects the family \mathcal{F} .



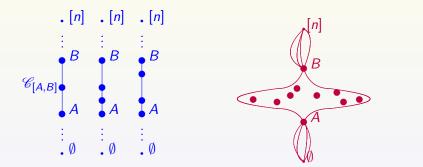
One of the key ideas (due to Li) involves splitting up the collection C_n of full chains into blocks that have a nice property, and computing the average on each block. Then $\bar{h}(\mathcal{F})$ is at most the maximum of those averages.

イロト 不得 トイヨト イヨト

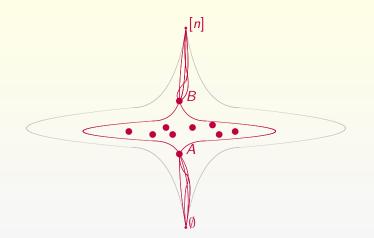
Proof Sketch: The k-Diamond Theorem

Min-Max Partition

The block $\mathscr{C}_{[A,B]}$ consists of full chains with min $\mathcal{F} \cap \mathcal{C} = A$ and max $\mathcal{F} \cap \mathcal{C} = B$.



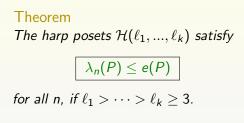
・ロト ・ 四ト ・ モト ・ モト

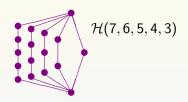


Compute $\operatorname{ave}_{\mathcal{C}\in\mathscr{C}_{[A,B]}}|\mathcal{F}\cap\mathcal{C}|$ for each block $\mathscr{C}_{[A,B]}$. If say we forbid \mathcal{D}_3 , there are at most two points between A and B, and the largest average value $|\mathcal{F}\cap\mathcal{C}|$ is when we get a diamond \mathcal{D}_2 for [A, B], which is $3 = e(\mathcal{D}_3)$.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The Harp Theorem





Hence, harps with distinct path lengths are uniformly L-bounded and satisfy the $\pi = e$ conjecture.

Recall that $e(P) \le \pi(P) \le \lambda(P)$ when the limits $\pi(P)$ and $\lambda(P)$ both exist. For a uniformly L-bounded poset P, $e(P) = \pi(P) = \lambda(P)$.

Recall that $e(P) \le \pi(P) \le \lambda(P)$ when the limits $\pi(P)$ and $\lambda(P)$ both exist. For a uniformly L-bounded poset P, $e(P) = \pi(P) = \lambda(P)$.

Examples

A chain \mathcal{P}_k is uniformly L-bounded.

Recall that $e(P) \leq \pi(P) \leq \lambda(P)$ when the limits $\pi(P)$ and $\lambda(P)$ both exist. For a uniformly L-bounded poset P, $e(P) = \pi(P) = \lambda(P)$.

Examples

A chain \mathcal{P}_k is uniformly L-bounded. The poset \mathcal{V}_2 is not uniformly L-bounded: We have $e = \pi = 1$, while $\lambda = 2$.

Recall that $e(P) \le \pi(P) \le \lambda(P)$ when the limits $\pi(P)$ and $\lambda(P)$ both exist. For a uniformly L-bounded poset P, $e(P) = \pi(P) = \lambda(P)$.

Examples

A chain \mathcal{P}_k is uniformly L-bounded. The poset \mathcal{V}_2 is not uniformly L-bounded: We have $e = \pi = 1$, while $\lambda = 2$. The Butterfly B is not uniformly L-bounded (since $\lambda_2 = 3 > e$), though $\operatorname{La}(n, B) = \Sigma(n, 2)$ for all $n \ge 3$.

Recall that $e(P) \le \pi(P) \le \lambda(P)$ when the limits $\pi(P)$ and $\lambda(P)$ both exist. For a uniformly L-bounded poset P, $e(P) = \pi(P) = \lambda(P)$.

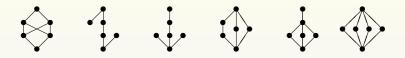
Examples

A chain \mathcal{P}_k is uniformly L-bounded. The poset \mathcal{V}_2 is not uniformly L-bounded: We have $e = \pi = 1$, while $\lambda = 2$. The Butterfly B is not uniformly L-bounded (since $\lambda_2 = 3 > e$), though $\operatorname{La}(n, B) = \Sigma(n, 2)$ for all $n \ge 3$. The diamond \mathcal{D}_2 is not uniformly L-bounded, though many diamonds \mathcal{D}_k and harps are. Still, it can be proven that $\lambda(P)$ exists whenever P is a diamond \mathcal{D}_k or a harp $\mathcal{H}(\ell_1, ..., \ell_k)$.

More uniformly L-bounded posets



More uniformly L-bounded posets



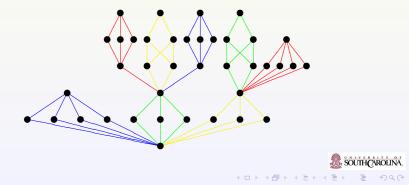
Definition

Suppose posets P_1, \ldots, P_k are uniformly L-bounded with 0 and 1. A blow-up of a rooted tree T on k edges has each edge replaced by a P_i .

Constructions

```
Theorem (Li, 2011)
If P is a blow-up of a rooted tree T,
then \pi(P) = e(P).
If the tree is a path, then P is
uniformly L-bounded.
```


A blow-up of the rooted tree above:



Problem Determine for the diamond D_2 whether $\pi(D_2)$ exists and equals 2.

Problem Determine for the diamond D_2 whether $\pi(D_2)$ exists and equals 2.

Problem Determine for the crown \mathcal{O}_6 whether $\pi(\mathcal{O}_6)$ exists and equals 1. The current best upper bound is 1.707.... Lu believes we can solve \mathcal{O}_{14} .

Problem Determine for the diamond D_2 whether $\pi(D_2)$ exists and equals 2.

Problem Determine for the crown \mathcal{O}_6 whether $\pi(\mathcal{O}_6)$ exists and equals 1. The current best upper bound is 1.707.... Lu believes we can solve \mathcal{O}_{14} .

Conjecture (G.-Lu, 2009) For any finite poset, $\pi(P)$ exists and is e(P).

Problem

Determine for the diamond \mathcal{D}_2 whether $\pi(\mathcal{D}_2)$ exists and equals 2.

Problem

Determine for the crown \mathcal{O}_6 whether $\pi(\mathcal{O}_6)$ exists and equals 1. The current best upper bound is 1.707.... Lu believes we can solve \mathcal{O}_{14} .

Conjecture (G.-Lu, 2009) For any finite poset, $\pi(P)$ exists and is e(P).

Problem Prove that $\lambda(P)$ exists for general P.

Problem

Provide insight into why

- La(n, P) behaves very nicely for some posets, equalling Σ(n, e(P)) for all n ≥ n₀ (such as the butterfly B and the diamonds D_k for most values of k);
- Is more complicated, but behaves well asymptotically (such as V₂); or
- ► Continues to resist asymptotic determination (such as D₂ and O₆).

Foundational results: Let \mathcal{P}_k denote the *k*-element chain (path poset).

Theorem (Sperner, 1928) For all n,

$$\operatorname{La}(n,\mathcal{P}_2) = \binom{n}{\lfloor \frac{n}{2} \rfloor},$$

and the extremal families are $\mathcal{B}(n, 1)$.

Foundational results: Let \mathcal{P}_k denote the *k*-element chain (path poset).

Theorem (Sperner, 1928) For all n,

$$\operatorname{La}(n,\mathcal{P}_2) = \binom{n}{\lfloor \frac{n}{2} \rfloor},$$

and the extremal families are $\mathcal{B}(n,1)$.

Theorem (Erdős, 1945) For general k and n,

$$\operatorname{La}(n,\mathcal{P}_k)=\Sigma(n,k-1),$$

and the extremal families are $\mathcal{B}(n, k-1)$.

Foundational results: Let V_r denote the poset of r elements above a single element.

Theorem (Katona-Tarján, 1981) As $n \to \infty$,

$$\left(1+rac{1}{n}+\Omega\left(rac{1}{n^2}
ight)
ight) inom{n}{\left\lfloorrac{n}{2}
ight
floor} \leq \mathrm{La}(n,\mathcal{V}_2) \leq \left(1+rac{2}{n}
ight) inom{n}{\left\lfloorrac{n}{2}
ight
floor}.$$

Foundational results: Let V_r denote the poset of r elements above a single element.

Theorem (Katona-Tarján, 1981) As $n \to \infty$,

$$\left(1+rac{1}{n}+\Omega\left(rac{1}{n^2}
ight)
ight) inom{n}{\left\lfloorrac{n}{2}
ight
floor} \leq \mathrm{La}(n,\mathcal{V}_2) \leq \left(1+rac{2}{n}
ight) inom{n}{\left\lfloorrac{n}{2}
ight
floor}.$$

Theorem (Thanh 1998, DeBonis-Katona, 2007) For general r, as $n \to \infty$,

$$\left(1+\frac{r-1}{n}+\Omega\left(\frac{1}{n^2}\right)\right) \leq \frac{\operatorname{La}(n,\mathcal{V}_r)}{\binom{n}{\lfloor \frac{n}{2} \rfloor}} \leq \left(1+2\frac{r-1}{n}+O\left(\frac{1}{n^2}\right)\right).$$

More results for small posets: Let B denote the Butterfly poset with two elements each above two other elements. Let N denote the four-element poset shaped like an N.

Theorem (DeBonis-Katona-Swanepoel, 2005) For all $n \ge 3$ $La(n, B) = \Sigma(n, 2)$,

and the extremal families are $\mathcal{B}(n, 2)$.

More results for small posets: Let *B* denote the Butterfly poset with two elements each above two other elements. Let \mathcal{N} denote the four-element poset shaped like an N.

Theorem (DeBonis-Katona-Swanepoel, 2005) For all $n \ge 3$ La $(n, B) = \Sigma(n, 2)$,

and the extremal families are $\mathcal{B}(n,2)$.

Theorem (G.-Katona, 2008) As $n \to \infty$, $\left(1 + \frac{1}{n} + \Omega\left(\frac{1}{n^2}\right)\right) \binom{n}{\lfloor \frac{n}{2} \rfloor} \leq \operatorname{La}(n, \mathcal{N}) \leq \left(1 + \frac{2}{n} + O\left(\frac{1}{n^2}\right)\right) \binom{n}{\lfloor \frac{n}{2} \rfloor}.$

・ 日 > ・ 雪 > ・ 雪 > ・ 日 >

Forbidding Induced Subposets

Less is known for this problem:

Definition

We say P is an induced subposet of Q, written $P \subset^* Q$ if there exists an injection $f : P \to Q$ such that for all $x, y \in P, x \leq y$ iff $f(x) \leq f(y)$. We define $\operatorname{La}^*(n, P)$ to be the largest size of a family of subsets of [n] that contains no induced subposet P.

Forbidding Induced Subposets

Less is known for this problem:

Definition

We say P is an induced subposet of Q, written $P \subset^* Q$ if there exists an injection $f : P \to Q$ such that for all $x, y \in P, x \leq y$ iff $f(x) \leq f(y)$. We define $\operatorname{La}^*(n, P)$ to be the largest size of a family of subsets of [n] that contains no induced subposet P.

Theorem (Carroll-Katona, 2008)

As $n \to \infty$,

$$\left(1+\frac{1}{n}+\Omega\left(\frac{1}{n^2}\right)\right)\binom{n}{\lfloor \frac{n}{2} \rfloor} \leq \operatorname{La}^*(n,\mathcal{V}_2) \leq \left(1+\frac{2}{n}+O\left(\frac{1}{n^2}\right)\right)\binom{n}{\lfloor \frac{n}{2} \rfloor}$$

イロト 不同ト イヨト イヨト

Extending Bukh's Forbidden Tree Theorem: Theorem (Boehnlein-Jiang, 2011) For every tree poset T,

$$\operatorname{La}^*(n, T) \sim (h(T) - 1) \binom{n}{\lfloor \frac{n}{2} \rfloor}, \operatorname{as} n \to \infty.$$

What about \mathcal{J} ? Let us use the Lubell function.

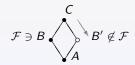
Theorem (Li) La $(n, \mathcal{J}) = La(n, \mathcal{P}_3) = \Sigma(n, 2)$

What about \mathcal{J} ? Let us use the Lubell function.

$$\begin{array}{c|c} C \\ \pi = 2 \end{array} \xrightarrow{\pi = ?} \begin{array}{c} \\ \pi = ? \end{array} \xrightarrow{\pi \leq 2.3} \end{array}$$

Theorem (Li) La $(n, \mathcal{J}) = La(n, \mathcal{P}_3) = \Sigma(n, 2)$ **Proof.** Let $\mathcal{F} \subset 2^{[n]}$ achieve La (n, \mathcal{J}) . Then $\overline{h}(\mathcal{F}) \leq 3$. If \mathcal{F} contains

some \mathcal{P}_3 , make a swap:



Then $\mathcal{F}' := \mathcal{F} - \{C\} + \{B'\}.$

 \bullet contains no ${\cal J}$

$$\bullet \ |\mathcal{F}'| = |\mathcal{F}|$$

 $\bullet \; |\mathcal{F}'|$ contains fewer $\mathcal{P}'_3 s$

Iterate until we get $\mathcal J\text{-}\mathsf{free}\;\tilde{\mathcal F}$ of height 2, so

$$|\mathcal{F}| = |\tilde{\mathcal{F}}| \leq \operatorname{La}(n, \mathcal{P}_3)$$

The Union-free Family Theorem

A related problem

Theorem (Kleitman, 1965)

Let $\mathcal F$ be a collection of subsets of [2n], that contains no two sets and their union. Then

$$|\mathcal{F}| \leq \binom{2n}{n}(1+O(n^{-1/2})).$$

・ロト ・ 聞 ト ・ 注 ト ・ 注 ト

The Union-free Family Theorem

A related problem

Theorem (Kleitman, 1965)

Let $\mathcal F$ be a collection of subsets of [2n], that contains no two sets and their union. Then

$$|\mathcal{F}| \leq \binom{2n}{n}(1+O(n^{-1/2})).$$

Kleitman believes the error term can be reduced to $O(n^{-1})$, and perhaps 1/n.

The Union-free Family Theorem

A related problem

Theorem (Kleitman, 1965)

Let $\mathcal F$ be a collection of subsets of [2n], that contains no two sets and their union. Then

$$|\mathcal{F}| \leq \binom{2n}{n}(1+O(n^{-1/2})).$$

Kleitman believes the error term can be reduced to $O(n^{-1})$, and perhaps 1/n.

In connection with this, he proposes to investigate two-level "triangle-free" families of subsets of [2n].

Let $k \ge 1$. Consider a family \mathcal{F} of subsets of [2n] such that every $A \in \mathcal{F}$ has size n or n - k. Further, suppose that there are no three sets $A_1, A_2, B \in \mathcal{F}$ with $|A_1| = |A_2| = n - k$, |B| = n, $A_1, A_2 \subset B$, and A_1, A_2 are at Hamming distance 2k. This forbidden configuration we call a *triangle*.

Note that it means $A_1 \cup A_2 = B$.

Kleitman asked for a good upper bound on triangle-free \mathcal{F} for k = 2 and for general k. Trivially, $\binom{2n}{n} \leq |\mathcal{F}| \leq 2\binom{2n}{n}$.

Let $k \geq 1$. Consider a family \mathcal{F} of subsets of [2n] such that every $A \in \mathcal{F}$ has size n or n - k. Further, suppose that there are no three sets $A_1, A_2, B \in \mathcal{F}$ with $|A_1| = |A_2| = n - k$, |B| = n, $A_1, A_2 \subset B$, and A_1, A_2 are at Hamming distance 2k. This forbidden configuration we call a *triangle*.

Note that it means $A_1 \cup A_2 = B$.

Kleitman asked for a good upper bound on triangle-free \mathcal{F} for k = 2 and for general k. Trivially, $\binom{2n}{n} \leq |\mathcal{F}| \leq 2\binom{2n}{n}$.

Proposition (G.-Li)

For triangle-free \mathcal{F} ,

$$|\mathcal{F}| \leq \binom{2n}{n} (1 + (k/n)).$$

This can be proven with the Lubell function.

Proposition (G.-Li) For triangle-free \mathcal{F} ,

$$|\mathcal{F}| \leq \binom{2n}{n} (1 + (k/n)).$$

Proposition (G.-Li) For triangle-free \mathcal{F} ,

$$|\mathcal{F}| \leq \binom{2n}{n} (1 + (k/n)).$$

Kleitman believes it is possible to remove the factor k:

Conjecture

For triangle-free families \mathcal{F} for $k \geq 2$,

$$|\mathcal{F}| \leq \binom{2n}{n} (1 + (1/n)).$$

