An Improved Bound for First-Fit on Posets Without Two Long Incomparable Chains

Vida Dujmović
Carleton University

Gwenaël Joret
Université Libre de
Bruxelles

David R. Wood
The University of
Melbourne

First-Fit coloring of graphs

Colors $=$ positive integers

First-Fit coloring of G :

- pick an ordering of the vertices, and
- color each vertex in order with the smallest available color

Remark: First-Fit coloring \Leftrightarrow coloring in which every vertex colored i has neighbors colored $1,2, \ldots, i-1$

FF $(G):=$ max. number of colors in a First-Fit coloring

First-Fit on interval graphs

Interval graphs:

Much studied question: $\operatorname{FF}(G)$ vs $\omega(G)$ when G interval graph

FF $(G) \leqslant$	Authors
$40 \omega(G)$	Kierstead
$25.8 \omega(G)$	Kierstead \& Qin
$8 \omega(G)$	Pemmaraju, Raman and Varadarajan (*)

Current record for lower bounds:
$\forall \varepsilon>0 \exists G$ s.t. $\operatorname{FF}(G)>(5-\varepsilon) \omega(G) \quad$ (Smith, 2010)

First-Fit chain partitioning of posets

First-Fit chain partitioning of P :

- pick an ordering of the elements, and
- color each element in order with the smallest available color, ensuring each color class is a chain in P

Same as First-Fit coloring of incomparability graph G of P
Note: $\omega(G)=$ width of P

First-Fit chain partitioning of posets

First-Fit chain partitioning of P :

- pick an ordering of the elements, and
- color each element in order with the smallest available color, ensuring each color class is a chain in P

Same as First-Fit coloring of incomparability graph G of P
Note: $\omega(G)=$ width of P

Interval orders:

G interval graph $\Leftrightarrow G$ incomparability graph of an interval order

Posets without $\mathbf{k}+\mathbf{k}$

forbidden as induced subposet

Interval orders $=$ posets without $2+2$ (Fishburn)

Posets without $\mathbf{k}+\mathbf{k}$

forbidden as induced subposet

Interval orders $=$ posets without $2+2$ (Fishburn)

Let P be a poset of width w without $\mathbf{k}+\mathbf{k}$
First-Fit uses at most

- $3 k w^{2}$ chains (Bosek, Krawczyk, and Szczypka)

Posets without $\mathbf{k}+\mathbf{k}$

Interval orders $=$ posets without $2+2$ (Fishburn)

Let P be a poset of width w without $\mathbf{k}+\mathbf{k}$
First-Fit uses at most

- $3 k w^{2}$ chains (Bosek, Krawczyk, and Szczypka)
- $8(k-1)^{2} w$ chains (J. and Milans)

Posets without $\mathbf{k}+\mathbf{k}$

Interval orders $=$ posets without $2+2$ (Fishburn)

Let P be a poset of width w without $\mathbf{k}+\mathbf{k}$
First-Fit uses at most

- $3 k w^{2}$ chains (Bosek, Krawczyk, and Szczypka)
- $8(k-1)^{2} w$ chains (J. and Milans)
- 16 kw chains (this talk)

Pathwidth

- Path decomposition of a graph G : sequence B_{1}, \ldots, B_{q} of subsets of $V(G)$ (called bags) s.t.
- for every edge $u v$ there exists a bag containing both u and v
- every vertex appears in a non-empty set of consecutive bags

Pathwidth

- Path decomposition of a graph G : sequence B_{1}, \ldots, B_{q} of subsets of $V(G)$ (called bags) s.t.
- for every edge $u v$ there exists a bag containing both u and v
- every vertex appears in a non-empty set of consecutive bags

- Width of decomposition: $\max \left\{\left|B_{i}\right|-1: 1 \leqslant i \leqslant q\right\}$
- Pathwidth $\operatorname{pw}(G):=$ min. width of a path decomposition of G

Pathwidth

- Path decomposition of a graph G : sequence B_{1}, \ldots, B_{q} of subsets of $V(G)$ (called bags) s.t.
- for every edge $u v$ there exists a bag containing both u and v
- every vertex appears in a non-empty set of consecutive bags

- Width of decomposition: $\max \left\{\left|B_{i}\right|-1: 1 \leqslant i \leqslant q\right\}$
- Pathwidth $\operatorname{pw}(G):=\min$. width of a path decomposition of G

Equivalently,
$\operatorname{pw}(G) \leqslant t \Leftrightarrow G \subseteq H$ for some interval graph H with $\omega(H) \leqslant t+1$
homomorphism from G to H : function $f: V(G) \rightarrow V(H)$ that maps edges of G to edges of H

Theorem (Dujmović, J., Wood)
Every graph G with $\mathrm{pw}(G) \leqslant p$ is homomorphic to an interval graph H with $\omega(H) \leqslant p+1$ and $\operatorname{FF}(G) \leqslant \operatorname{FF}(H)$.
homomorphism from G to H : function $f: V(G) \rightarrow V(H)$ that maps edges of G to edges of H

Theorem (Dujmović, J., Wood)

Every graph G with $\mathrm{pw}(G) \leqslant p$ is homomorphic to an interval graph H with $\omega(H) \leqslant p+1$ and $\mathrm{FF}(G) \leqslant \mathrm{FF}(H)$.

Remark: implicitly shown by Kierstead and Saoub (First-Fit coloring of bounded tolerance graphs. Discrete Applied Mathematics, 2011)

Corollary

$\mathrm{FF}(G) \leqslant 8(\mathrm{pw}(G)+1)$ for every graph G

Theorem (DJW)
Every graph G with $\mathrm{pw}(G) \leqslant p$ is homomorphic to an interval graph H with $\omega(H) \leqslant p+1$ and $\mathrm{FF}(G) \leqslant \mathrm{FF}(H)$.

Proof:
$K:=$ spanning interval supergraph of G with $\omega(K) \leqslant p+1$

Theorem (DJW)
Every graph G with $\mathrm{pw}(G) \leqslant p$ is homomorphic to an interval graph H with $\omega(H) \leqslant p+1$ and $\mathrm{FF}(G) \leqslant \mathrm{FF}(H)$.

Proof:
$K:=$ spanning interval supergraph of G with $\omega(K) \leqslant p+1$
Consider a First-Fit coloring of G in the graph K :

Theorem (DJW)
Every graph G with $\mathrm{pw}(G) \leqslant p$ is homomorphic to an interval graph H with $\omega(H) \leqslant p+1$ and $\mathrm{FF}(G) \leqslant \mathrm{FF}(H)$.

Proof:
$K:=$ spanning interval supergraph of G with $\omega(K) \leqslant p+1$
Consider a First-Fit coloring of G in the graph K :

\rightarrow graph H

Pathwidth of incomparability graphs

P poset of width w without $\mathbf{k}+\mathbf{k}$
G incomparability graph of P

Theorem (Dujmović, J., Wood) $p w(G) \leqslant 2 k w-1$

Pathwidth of incomparability graphs

P poset of width w without $\mathbf{k}+\mathbf{k}$
G incomparability graph of P

Theorem (Dujmović, J., Wood) $p w(G) \leqslant 2 k w-1$

Remarks:

- upper bound can be improved to $(2 k-3) w-1$
- $\exists P$ such that $\operatorname{pw}(G) \geqslant(k-1)(w-1)$

Sketch of proof

Dilworth chain decomposition C_{1}, \ldots, C_{w} of P

Sketch of proof

Dilworth chain decomposition C_{1}, \ldots, C_{w} of P

X block if $X \cap C_{i}$ consists of $\min \left\{2 k,\left|C_{i}\right|\right\}$ consecutive elements of $C_{i} \forall i$

Sketch of proof

Dilworth chain decomposition C_{1}, \ldots, C_{w} of P

X block if $X \cap C_{i}$ consists of $\min \left\{2 k,\left|C_{i}\right|\right\}$ consecutive elements of $C_{i} \forall i$ $\operatorname{up}(X)$ chain C_{i} alive or dead

Sketch of proof

$u \in X \cap C_{i}$ good if

- C_{i} alive,
- u minimal in $X \cap C_{i}$,
- $u<v \quad \forall v \in \operatorname{up}(X)$

Claim: X always has a good element (unless all chains are dead)

Claim: X always has a good element (unless all chains are dead) Suppose the claim is true.

Claim: X always has a good element (unless all chains are dead) Suppose the claim is true.

Claim: X always has a good element (unless all chains are dead)
Suppose the claim is true.

Claim: X always has a good element (unless all chains are dead)
Suppose the claim is true.

Claim: X always has a good element (unless all chains are dead)
Suppose the claim is true.

Claim: X always has a good element (unless all chains are dead)
Suppose the claim is true.

Claim: X always has a good element (unless all chains are dead)
Suppose the claim is true.

Claim: X always has a good element (unless all chains are dead)
Suppose the claim is true.

Claim: X always has a good element (unless all chains are dead)
Suppose the claim is true.

\rightarrow sequence X_{1}, \ldots, X_{q} of blocks is a path decomposition of width $\max _{1 \leqslant i \leqslant q}\left|X_{i}\right|-1 \leqslant 2 k \cdot w-1$

Claim: X always has a good element (unless all chains are dead) Proof:

Claim: X always has a good element (unless all chains are dead) Proof:

Claim: X always has a good element (unless all chains are dead) Proof:

Claim: X always has a good element (unless all chains are dead) Proof:

Claim: X always has a good element (unless all chains are dead) Proof:

Claim: X always has a good element (unless all chains are dead) Proof:

Theorem (DJW)
First-Fit partitions every poset of width w without $\mathbf{k}+\mathbf{k}$ into at most 16 kw chains

Theorem (DJW)
First-Fit partitions every poset of width w without $\mathbf{k}+\mathbf{k}$ into at most 16 kw chains

First-Fit can be forced to use $(k-1)(w-1)$ chains:

Thank You!

