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First-Fit coloring of graphs

Colors = positive integers

First-Fit coloring of G :

I pick an ordering of the vertices, and

I color each vertex in order with the smallest available color

Remark: First-Fit coloring ⇔ coloring in which every vertex
colored i has neighbors colored 1, 2, . . . , i − 1

FF(G ) := max. number of colors in a First-Fit coloring



First-Fit on interval graphs

Interval graphs:

Much studied question: FF(G ) vs ω(G ) when G interval graph

FF(G ) 6 Authors

40ω(G ) Kierstead

25.8ω(G ) Kierstead & Qin

8ω(G ) Pemmaraju, Raman and Varadarajan (*)

Current record for lower bounds:

∀ε > 0 ∃G s.t. FF(G ) > (5− ε)ω(G ) (Smith, 2010)



First-Fit chain partitioning of posets

First-Fit chain partitioning of P:

I pick an ordering of the elements, and

I color each element in order with the smallest available color,
ensuring each color class is a chain in P

Same as First-Fit coloring of incomparability graph G of P

Note: ω(G ) = width of P

Interval orders:

G interval graph ⇔ G incomparability graph of an interval order
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Posets without k + k

} k forbidden as induced subposet

Interval orders = posets without 2 + 2 (Fishburn)

Let P be a poset of width w without k + k

First-Fit uses at most

I 3kw2 chains (Bosek, Krawczyk, and Szczypka)

I 8(k − 1)2w chains (J. and Milans)

I 16kw chains (this talk)
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Pathwidth

I Path decomposition of a graph G : sequence B1, . . . ,Bq of
subsets of V (G ) (called bags) s.t.

I for every edge uv there exists a bag containing both u and v

I every vertex appears in a non-empty set of consecutive bags

I Width of decomposition: max{|Bi | − 1 : 1 6 i 6 q}

I Pathwidth pw(G ) := min. width of a path decomposition of G

Equivalently,

pw(G ) 6 t ⇔ G ⊆ H for some interval graph H with ω(H) 6 t + 1
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homomorphism from G to H: function f : V (G )→ V (H) that
maps edges of G to edges of H

Theorem (Dujmović, J., Wood)

Every graph G with pw(G ) 6 p is homomorphic to an interval
graph H with ω(H) 6 p + 1 and FF(G ) 6 FF(H).

Remark: implicitly shown by Kierstead and Saoub (First-Fit coloring of

bounded tolerance graphs. Discrete Applied Mathematics, 2011)

Corollary

FF(G ) 6 8(pw(G ) + 1) for every graph G
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Theorem (DJW)

Every graph G with pw(G ) 6 p is homomorphic to an interval
graph H with ω(H) 6 p + 1 and FF(G ) 6 FF(H).

Proof:

K := spanning interval supergraph of G with ω(K ) 6 p + 1

Consider a First-Fit coloring of G in the graph K :→ graph H
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Pathwidth of incomparability graphs

P poset of width w without k + k

G incomparability graph of P

Theorem (Dujmović, J., Wood)

pw(G ) 6 2kw − 1

Remarks:

I upper bound can be improved to (2k − 3)w − 1

I ∃P such that pw(G ) > (k − 1)(w − 1)
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pw(G ) 6 2kw − 1

Remarks:

I upper bound can be improved to (2k − 3)w − 1

I ∃P such that pw(G ) > (k − 1)(w − 1)



Sketch of proof
Dilworth chain decomposition C1, . . . ,Cw of P

X block if X ∩ Ci consists of min{2k, |Ci |} consecutive elements of Ci ∀i

up(X ) chain Ci alive or dead

u ∈ X ∩ Ci good if
I Ci alive,
I u minimal in X ∩ Ci ,
I u < v ∀v ∈ up(X )
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Sketch of proof

k = 3

u ∈ X ∩ Ci good if

I Ci alive,

I u minimal in X ∩ Ci ,

I u < v ∀v ∈ up(X )



k = 3

Claim: X always has a good element (unless all chains are dead)

Suppose the claim is true.
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Claim: X always has a good element (unless all chains are dead)

Suppose the claim is true.

k = 3

→ sequence X1, . . . ,Xq of blocks is a path decomposition of width
max

16i6q
|Xi | − 1 6 2k · w − 1
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Theorem (DJW)

First-Fit partitions every poset of width w without k + k into at
most 16kw chains

First-Fit can be forced to use (k − 1)(w − 1) chains:
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Thank You!


