An Improved Bound for First-Fit on Posets Without Two Long Incomparable Chains

Vida Dujmović Carleton University

Gwenaël Joret

Université Libre de Bruxelles David R. Wood

The University of Melbourne

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

First-Fit coloring of graphs

Colors = positive integers

First-Fit coloring of *G*:

- pick an ordering of the vertices, and
- color each vertex in order with the smallest available color

Remark: First-Fit coloring \Leftrightarrow coloring in which every vertex colored *i* has neighbors colored $1, 2, \dots, i-1$

FF(G) := max. number of colors in a First-Fit coloring

◆□ → ◆昼 → ◆臣 → ◆臣 → ◆ ● ◆ ◆ ● ◆

First-Fit on interval graphs

Interval graphs:

Much studied question: FF(G) vs $\omega(G)$ when G interval graph

$FF(G) \leq$	Authors
$40\omega(G)$	Kierstead
$25.8\omega(G)$	Kierstead & Qin
$8\omega(G)$	Pemmaraju, Raman and Varadarajan (*)

Current record for lower bounds:

 $\forall \varepsilon > 0 \ \exists G \text{ s.t. } \mathsf{FF}(G) > (5 - \varepsilon)\omega(G)$ (Smith, 2010)

First-Fit chain partitioning of posets

First-Fit chain partitioning of P:

- pick an ordering of the elements, and
- color each element in order with the smallest available color, ensuring each color class is a chain in P

Same as First-Fit coloring of incomparability graph G of P Note: $\omega(G) =$ width of P

First-Fit chain partitioning of posets

First-Fit chain partitioning of P:

- pick an ordering of the elements, and
- color each element in order with the smallest available color, ensuring each color class is a chain in P

Same as First-Fit coloring of incomparability graph G of P Note: $\omega(G) =$ width of P

Interval orders:

G interval graph \Leftrightarrow G incomparability graph of an interval order

Posets without $\mathbf{k} + \mathbf{k}$

forbidden as induced subposet

Interval orders = posets without 2 + 2 (Fishburn)

Posets without $\mathbf{k} + \mathbf{k}$

forbidden as induced subposet

Interval orders = posets without 2 + 2 (Fishburn)

Let *P* be a poset of width *w* without $\mathbf{k} + \mathbf{k}$

First-Fit uses at most

3kw² chains (Bosek, Krawczyk, and Szczypka)

Posets without $\mathbf{k} + \mathbf{k}$

forbidden as induced subposet

Interval orders = posets without 2 + 2 (Fishburn)

Let *P* be a poset of width *w* without $\mathbf{k} + \mathbf{k}$

First-Fit uses at most

3kw² chains (Bosek, Krawczyk, and Szczypka)

▶
$$8(k-1)^2 w$$
 chains (J. and Milans)

Posets without ${\bf k} + {\bf k}$

forbidden as induced subposet

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Interval orders = posets without $\mathbf{2} + \mathbf{2}$ (Fishburn)

Let *P* be a poset of width *w* without $\mathbf{k} + \mathbf{k}$

First-Fit uses at most

▶ 3kw² chains (Bosek, Krawczyk, and Szczypka)

16kw chains (this talk)

Pathwidth

- ▶ Path decomposition of a graph G: sequence B₁,..., B_q of subsets of V(G) (called bags) s.t.
 - for every edge uv there exists a bag containing both u and v
 - every vertex appears in a non-empty set of consecutive bags

Pathwidth

- ▶ Path decomposition of a graph G: sequence B₁,..., B_q of subsets of V(G) (called bags) s.t.
 - for every edge uv there exists a bag containing both u and v
 - every vertex appears in a non-empty set of consecutive bags

- Width of decomposition: $\max\{|B_i| 1 : 1 \leq i \leq q\}$
- Pathwidth pw(G) := min. width of a path decomposition of G

Pathwidth

- ▶ Path decomposition of a graph G: sequence B₁,..., B_q of subsets of V(G) (called bags) s.t.
 - for every edge uv there exists a bag containing both u and v
 - every vertex appears in a non-empty set of consecutive bags

- Width of decomposition: $\max\{|B_i| 1 : 1 \leq i \leq q\}$
- Pathwidth pw(G) := min. width of a path decomposition of G

Equivalently,

 $pw(G) \leq t \Leftrightarrow G \subseteq H$ for some interval graph H with $\omega(H) \leq t+1$

homomorphism from G to H: function $f : V(G) \rightarrow V(H)$ that maps edges of G to edges of H

Theorem (Dujmović, J., Wood)

Every graph G with $pw(G) \leq p$ is homomorphic to an interval graph H with $\omega(H) \leq p+1$ and $FF(G) \leq FF(H)$.

homomorphism from G to H: function $f : V(G) \rightarrow V(H)$ that maps edges of G to edges of H

Theorem (Dujmović, J., Wood)

Every graph G with $pw(G) \leq p$ is homomorphic to an interval graph H with $\omega(H) \leq p+1$ and $FF(G) \leq FF(H)$.

Remark: implicitly shown by Kierstead and Saoub (*First-Fit coloring of bounded tolerance graphs*. Discrete Applied Mathematics, 2011)

Corollary $FF(G) \leq 8(pw(G) + 1)$ for every graph G

Every graph G with $pw(G) \leq p$ is homomorphic to an interval graph H with $\omega(H) \leq p + 1$ and $FF(G) \leq FF(H)$.

Proof:

 ${\mathcal K}:=$ spanning interval supergraph of ${\mathcal G}$ with $\omega({\mathcal K})\leqslant p+1$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Every graph G with $pw(G) \leq p$ is homomorphic to an interval graph H with $\omega(H) \leq p+1$ and $FF(G) \leq FF(H)$.

Proof:

K := spanning interval supergraph of G with $\omega(K) \leq p + 1$ Consider a First-Fit coloring of G in the graph K:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ □ のへで

Every graph G with $pw(G) \leq p$ is homomorphic to an interval graph H with $\omega(H) \leq p+1$ and $FF(G) \leq FF(H)$.

Proof:

K := spanning interval supergraph of G with $\omega(K) \leq p + 1$ Consider a First-Fit coloring of G in the graph K:

 \rightarrow graph H

Pathwidth of incomparability graphs

P poset of width *w* without $\mathbf{k} + \mathbf{k}$

G incomparability graph of P

Theorem (Dujmović, J., Wood) $pw(G) \leq 2kw - 1$

Pathwidth of incomparability graphs

P poset of width *w* without $\mathbf{k} + \mathbf{k}$

G incomparability graph of P

Theorem (Dujmović, J., Wood) $pw(G) \leq 2kw - 1$

Remarks:

• upper bound can be improved to (2k-3)w-1

▶
$$\exists P$$
 such that $pw(G) \ge (k-1)(w-1)$

Dilworth chain decomposition C_1, \ldots, C_w of P

Dilworth chain decomposition C_1, \ldots, C_w of P

X block if $X \cap C_i$ consists of min $\{2k, |C_i|\}$ consecutive elements of $C_i \forall i$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Dilworth chain decomposition C_1, \ldots, C_w of P

X block if $X \cap C_i$ consists of min $\{2k, |C_i|\}$ consecutive elements of $C_i \forall i$ up(X)chain C_i alive or dead

イロト イポト イヨト イヨト

æ

- $u \in X \cap C_i$ good if
 - \blacktriangleright C_i alive,
 - *u* minimal in $X \cap C_i$,
 - ▶ u < v $\forall v \in up(X)$

イロト イポト イヨト イヨト

(日)、

(日)、

(日)、

(日)、

ж

イロト イポト イヨト イヨト

ж

イロト イポト イヨト イヨト

ж

イロト イポト イヨト イヨト

Suppose the claim is true.

• • •

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

 \rightarrow sequence X_1, \ldots, X_q of blocks is a path decomposition of width $\max_{1\leqslant i\leqslant q} |X_i| - 1 \leqslant 2k \cdot w - 1$

Proof:

・ロト ・聞ト ・ヨト ・ヨト

æ

Proof:

(日)、

æ

Proof:

(日)、

Proof:

Proof:

▲□▶▲圖▶▲圖▶▲圖▶ = ● のへの

Proof:

First-Fit partitions every poset of width w without ${\bf k}+{\bf k}$ into at most 16kw chains

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ● のへで

First-Fit partitions every poset of width w without ${\bf k}+{\bf k}$ into at most 16kw chains

First-Fit can be forced to use (k-1)(w-1) chains:

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Thank You!

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>