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First-Fit coloring of graphs

Colors = positive integers

First-Fit coloring of G:
» pick an ordering of the vertices, and

» color each vertex in order with the smallest available color

Remark: First-Fit coloring < coloring in which every vertex
colored i has neighbors colored 1,2,...,i —1

FF(G) := max. number of colors in a First-Fit coloring



First-Fit on interval graphs

Interval graphs:
= S

Much studied question: FF(G) vs w(G) when G interval graph

FF(G) < | Authors
40w(G) | Kierstead

25.8w(G) | Kierstead & Qin

8w(G) Pemmaraju, Raman and Varadarajan (*)

Current record for lower bounds:

Ve > 03G s.t. FF(G) > (5 —e)w(G)  (Smith, 2010)



First-Fit chain partitioning of posets

First-Fit chain partitioning of P:
» pick an ordering of the elements, and

» color each element in order with the smallest available color,
ensuring each color class is a chain in P

Same as First-Fit coloring of incomparability graph G of P
Note: w(G) = width of P
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First-Fit chain partitioning of P:
» pick an ordering of the elements, and

» color each element in order with the smallest available color,
ensuring each color class is a chain in P

Same as First-Fit coloring of incomparability graph G of P
Note: w(G) = width of P

— K

G interval graph < G incomparability graph of an interval order

Interval orders:



Posets without k + k
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[ [ K forbidden as induced subposet

Interval orders = posets without 2 + 2 (Fishburn)
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Posets without k + k

| |
[ [ K forbidden as induced subposet

Interval orders = posets without 2 + 2 (Fishburn)

Let P be a poset of width w without k + k

First-Fit uses at most
» 3kw? chains (Bosek, Krawczyk, and Szczypka)
> 8(k — 1)?w chains (J. and Milans)

» 16kw chains (this talk)



Pathwidth

» Path decomposition of a graph G: sequence By, ..., B, of
subsets of V/(G) (called bags) s.t.

» for every edge uv there exists a bag containing both v and v

> every vertex appears in a non-empty set of consecutive bags
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» Pathwidth pw(G) := min. width of a path decomposition of G



Pathwidth

» Path decomposition of a graph G: sequence By, ..., B, of
subsets of V/(G) (called bags) s.t.

» for every edge uv there exists a bag containing both v and v

> every vertex appears in a non-empty set of consecutive bags
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» Width of decomposition: max{|Bj| —1:1<i < q}

» Pathwidth pw(G) := min. width of a path decomposition of G

Equivalently,

pw(G) < t < G C H for some interval graph H with w(H) < t+1



homomorphism from G to H: function f : V(G) — V(H) that
maps edges of G to edges of H

Theorem (Dujmovi¢, J., Wood)

Every graph G with pw(G) < p is homomorphic to an interval
graph H with w(H) < p+1 and FF(G) < FF(H).



homomorphism from G to H: function f : V(G) — V(H) that
maps edges of G to edges of H

Theorem (Dujmovi¢, J., Wood)

Every graph G with pw(G) < p is homomorphic to an interval
graph H with w(H) < p+1 and FF(G) < FF(H).

Remark: implicitly shown by Kierstead and Saoub (First-Fit coloring of
bounded tolerance graphs. Discrete Applied Mathematics, 2011)

Corollary
FF(G) < 8(pw(G) + 1) for every graph G



Theorem (DJW)

Every graph G with pw(G) < p is homomorphic to an interval
graph H with w(H) < p+1 and FF(G) < FF(H).

Proof:

K := spanning interval supergraph of G with w(K) < p+1
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Pathwidth of incomparability graphs

P poset of width w without k + k

G incomparability graph of P

Theorem (Dujmovi¢, J., Wood)
pw(G) < 2kw — 1



Pathwidth of incomparability graphs

P poset of width w without k + k

G incomparability graph of P

Theorem (Dujmovi¢, J., Wood)
pw(G) < 2kw — 1

Remarks:

» upper bound can be improved to (2k — 3)w — 1

» 3P such that pw(G) > (k — 1)(w — 1)



Sketch of proof

Dilworth chain decomposition C,..., C, of P
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Sketch of proof

Dilworth chain decomposition Cy,...,C, of P

I k=3
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X block if X N C; consists of min{2k,|C;|} consecutive elements of C; Vi

up(X) chain C; alive or dead



Sketch of proof

ue XN¢ good if
» C; alive,
» u minimal in XN G;,

»u<v VYveup(X)



Claim: X always has a good element (unless all chains are dead)
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Claim: X always has a good element (unless all chains are dead)

Suppose the claim is true.

— sequence Xi, ..., Xq of blocks is a path decomposition of width

max [ Xi| —1<2k-w—1
1<ikq
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Theorem (DJW)

First-Fit partitions every poset of width w without k + k into at
most 16kw chains



Theorem (DJW)

First-Fit partitions every poset of width w without k + k into at
most 16kw chains

First-Fit can be forced to use (k — 1)(w — 1) chains:




Thank You!



