Reversal Ratio and Linear Extension Diameter

Graham Brightwell and Mitchel T. Keller

Department of Mathematics London School of Economics and Political Science

SIAM Conference on Discrete Mathematics 18 June 2012

Let **P** be a finite poset. The *linear extension graph* $G(\mathbf{P}) = (V, E)$ of **P** is defined as follows:

- V is the set of all linear extensions of P and
- two linear extensions are adjacent if and only if they differ only in the transposition of a single (adjacent) pair of points.

Let **P** be a finite poset. The *linear extension graph* $G(\mathbf{P}) = (V, E)$ of **P** is defined as follows:

- V is the set of all linear extensions of P and
- two linear extensions are adjacent if and only if they differ only in the transposition of a single (adjacent) pair of points.

Definition (Felsner and Reuter 1999)

The *linear extension diameter* of a finite poset **P**, denoted led(P), is the diameter of its linear extension graph G(P).

Another Example

Felsner and Massow (2011)

Let **P** be a poset and L_1, L_2 linear extensions of **P**. We define the *reversal ratio of the pair* (L_1, L_2) as

$$RR(\mathbf{P}; L_1, L_2) = \frac{\operatorname{dist}(L_1, L_2)}{\operatorname{inc}(\mathbf{P})}.$$

The reversal ratio of P is

$$RR(\mathbf{P}) = rac{\mathsf{led}(\mathbf{P})}{\mathsf{inc}(\mathbf{P})} = \max_{L_1,L_2} RR(\mathbf{P}; L_1, L_2).$$

• $RR(\mathbf{P}) = 1$ if and only if dim $(\mathbf{P}) = 2$.

- $RR(\mathbf{P}) = 1$ if and only if dim $(\mathbf{P}) = 2$.
- If $dim(\mathbf{P}) = d$ and \mathcal{R} is a realizer of \mathbf{P} , then

$$\sum_{\substack{L_i, L_j \in \mathcal{R} \ i
eq j}} \mathsf{dist}(L_i, L_j)$$

- $RR(\mathbf{P}) = 1$ if and only if dim(\mathbf{P}) = 2.
- If $dim(\mathbf{P}) = d$ and \mathcal{R} is a realizer of \mathbf{P} , then

$$\sum_{\substack{L_i,L_j\in\mathcal{R}\ i
eq j}} ext{dist}(L_i,L_j) \leq \binom{d}{2} ext{led}(\mathbf{P}),$$

- $RR(\mathbf{P}) = 1$ if and only if dim $(\mathbf{P}) = 2$.
- If $dim(\mathbf{P}) = d$ and \mathcal{R} is a realizer of \mathbf{P} , then

$$(d-1)\operatorname{inc}(\mathbf{P}) \leq \sum_{\substack{L_i,L_j\in\mathcal{R}\i
eq j}}\operatorname{dist}(L_i,L_j) \leq \binom{d}{2}\operatorname{led}(\mathbf{P}),$$

• $RR(\mathbf{P}) = 1$ if and only if dim $(\mathbf{P}) = 2$.

• If $dim(\mathbf{P}) = d$ and \mathcal{R} is a realizer of \mathbf{P} , then

$$(d-1)\operatorname{inc}(\mathbf{P}) \leq \sum_{\substack{L_i,L_j \in \mathcal{R} \ i \neq j}} \operatorname{dist}(L_i,L_j) \leq \binom{d}{2} \operatorname{led}(\mathbf{P}),$$

so $RR(\mathbf{P}) \geq 2/d$.

• $RR(\mathbf{P}) = 1$ if and only if dim(\mathbf{P}) = 2.

• If $dim(\mathbf{P}) = d$ and \mathcal{R} is a realizer of \mathbf{P} , then

$$(d-1)\operatorname{inc}(\mathbf{P}) \leq \sum_{\substack{L_i,L_j\in\mathcal{R}\i
eq j}} \operatorname{dist}(L_i,L_j) \leq \binom{d}{2}\operatorname{led}(\mathbf{P}),$$

so $RR(\mathbf{P}) \geq 2/d$.

• width(\mathbf{P}) = $c|\mathbf{P}|$ for c > 0 implies $RR(\mathbf{P})$ is large.

• Is there a c > 0 such that $RR(\mathbf{P}) \ge c$ for all \mathbf{P} ?

- Is there a c > 0 such that $RR(\mathbf{P}) \ge c$ for all \mathbf{P} ?
 - ► n-dimensional Boolean lattice? led(2ⁿ) = 2²ⁿ⁻² (n + 1) · 2ⁿ⁻² (Felsner-Massow 2011)

- Is there a c > 0 such that $RR(\mathbf{P}) \ge c$ for all \mathbf{P} ?
 - ► n-dimensional Boolean lattice? led(2ⁿ) = 2²ⁿ⁻² (n + 1) · 2ⁿ⁻² (Felsner-Massow 2011)
 - ► No! Felsner-Reuter (1999) and Felsner-Massow (2011) cite personal communication from Brightwell.

- Is there a c > 0 such that $RR(\mathbf{P}) \ge c$ for all \mathbf{P} ?
 - ► n-dimensional Boolean lattice? led(2ⁿ) = 2²ⁿ⁻² (n + 1) · 2ⁿ⁻² (Felsner-Massow 2011)
 - ► No! Felsner-Reuter (1999) and Felsner-Massow (2011) cite personal communication from Brightwell.
 - Unpublished example difficult to analyze.

Theorem (BK)

For every sufficiently large positive integer k, there exists a poset \mathbf{P}_k of width k with $RR(\mathbf{P}_k) \leq C/\log k$.

Let $\mathbf{G} = (A \cup B, E)$ be a bipartite graph with |A| = |B| = k. We say that **G** has the doubling property if for every $Y \subset A$ with $|Y| \le k/3$, $|N(A)| \ge 2|A|$.

Let $\mathbf{G} = (A \cup B, E)$ be a bipartite graph with |A| = |B| = k. We say that **G** has the doubling property if for every $Y \subset A$ with $|Y| \le k/3$, $|N(A)| \ge 2|A|$.

Lemma

Let $G_d(A, B)$ be a random d-regular bipartite graph on vertex sets A and B of size k, chosen according to the configuration model. For each $d \ge 10$ and k sufficiently large, $G_d(A, B)$ has the doubling property with high probability.

Construction of \mathbf{P}_k

Proposition

For k sufficiently large and $\varepsilon \leq 1/\log d$, the number of incomparable pairs in \mathbf{P}_k is at least

$$\frac{r-2}{2(r-1)}\varepsilon^2k^2\log^2 k.$$

Proposition

For k sufficiently large and $\varepsilon \leq 1/\log d$, the number of incomparable pairs in \mathbf{P}_k is at least

$$\frac{r-2}{2(r-1)}\varepsilon^2k^2\log^2 k.$$

Proposition

For k a sufficiently large multiple of three and $0 < \varepsilon \le 1$,

$$\operatorname{led}(\mathbf{P}_k) \leq \frac{31}{6} \varepsilon k^2 \log k.$$

```
For d \ge 2, define DRR(d) = \inf\{RR(\mathbf{P}): \dim(\mathbf{P}) = d\}.
```

Bounding DRR(d)

• Standard example **S**_n?

For
$$d \ge 2$$
, define $DRR(d) = \inf\{RR(\mathbf{P}): \dim(\mathbf{P}) = d\}$.

Bounding DRR(d)

• Standard example S_n ? $RR(S_n) \rightarrow 1$

For
$$d \ge 2$$
, define $DRR(d) = \inf\{RR(\mathbf{P}): \dim(\mathbf{P}) = d\}$.

Bounding DRR(d)

- Standard example S_n ? $RR(S_n) \rightarrow 1$
- d-dimensional grid?

For $d \ge 2$, define $DRR(d) = \inf\{RR(\mathbf{P}): \dim(\mathbf{P}) = d\}$.

Bounding DRR(d)

- Standard example **S**_n?
- d-dimensional grid?

 $RR(\mathbf{S}_n) \rightarrow 1$ $RR(\mathbf{n}^d) \rightarrow 1/2$ (Felsner-Massow)

For $d \ge 2$, define $DRR(d) = \inf\{RR(\mathbf{P}): \dim(\mathbf{P}) = d\}$.

Bounding DRR(d)

- Standard example S_n ? $RR(S_n) \rightarrow 1$
- d-dimensional grid?

 $RR(\mathbf{n}^d) \rightarrow 1/2$ (Felsner-Massow)

- DRR(3) = 2/3 by considering n^3
- $1/2 \leq DRR(4) \leq 4/7$

Fact

The width of \mathbf{P}_k is k, so dim(\mathbf{P}_k) $\leq k$.

Fact

The width of \mathbf{P}_k is k, so dim $(\mathbf{P}_k) \leq k$.

Corollary

For d sufficiently large,

$$DRR(d) \leq RR(\mathbf{P}_d) \leq rac{27}{\log d}.$$

For $w \ge 2$, define $WRR(w) = \inf\{RR(\mathbf{P}): width(\mathbf{P}) = w\}$.

For $w \ge 2$, define $WRR(w) = \inf\{RR(\mathbf{P}): width(\mathbf{P}) = w\}$.

Observation

 $\textit{WRR}(3) \geq \textit{DRR}(3)$

For $w \ge 2$, define $WRR(w) = \inf\{RR(\mathbf{P}): width(\mathbf{P}) = w\}$.

Observation

 $\textit{WRR}(3) \geq \textit{DRR}(3)$

Proposition

$$WRR(3) \le 5/6$$

• Z_{t,k} has tk points per chain

• $Z_{t,k}$ has tk points per chain • $inc(Z_{t,k}) = (6t-3)\binom{k}{2}$

- $Z_{t,k}$ has tk points per chain • $inc(Z_{t,k}) = (6t-3)\binom{k}{2}$
- Can show

$$\operatorname{led}(\mathbf{Z}_{t,k}) \geq \left(3t - 1 + \left\lceil \frac{3t - 2}{2} \right\rceil\right) \binom{k}{2}$$

- $Z_{t,k}$ has tk points per chain • $inc(Z_{t,k}) = (6t-3)\binom{k}{2}$
- Can show

$$\mathsf{ed}(\mathbf{Z}_{t,k}) \geq \left(3t - 1 + \left\lceil rac{3t - 2}{2}
ight
ceil
ight) m{k} \ 2 \end{pmatrix} \ rac{L_1}{C_4} rac{L_2}{B_4/C_4} \ rac{G_3/A_4/B_4}{B_3} rac{A_3/B_3/C_3}{A_3/B_3/C_3} \ rac{B_2/C_2/A_3}{A_2} rac{C_2}{A_1/B_1/C_1} rac{B_1}{B_1} \ A_1$$

Find a family of posets with RR(P_n) < C/log n for n sufficiently large, n a "reasonable" parameter of P_n.

- Find a family of posets with $RR(\mathbf{P}_n) < C/\log n$ for *n* sufficiently large, *n* a "reasonable" parameter of \mathbf{P}_n .
- Does there exist f(n) so that RR(P) ≥ f(n) for all P with n a "reasonable" parameter of P?

- Find a family of posets with $RR(\mathbf{P}_n) < C/\log n$ for *n* sufficiently large, *n* a "reasonable" parameter of \mathbf{P}_n .
- Does there exist f(n) so that RR(P) ≥ f(n) for all P with n a "reasonable" parameter of P?

•
$$\frac{2}{d} \leq DRR(d) \leq \frac{C}{\log d}$$
 (open from $d = 4$)

- Find a family of posets with $RR(\mathbf{P}_n) < C/\log n$ for *n* sufficiently large, *n* a "reasonable" parameter of \mathbf{P}_n .
- Does there exist f(n) so that RR(P) ≥ f(n) for all P with n a "reasonable" parameter of P?

•
$$\frac{2}{d} \leq DRR(d) \leq \frac{C}{\log d}$$
 (open from $d = 4$)

• Bounds for WRR(w) in general.

- Find a family of posets with $RR(\mathbf{P}_n) < C/\log n$ for *n* sufficiently large, *n* a "reasonable" parameter of \mathbf{P}_n .
- Does there exist f(n) so that RR(P) ≥ f(n) for all P with n a "reasonable" parameter of P?

•
$$\frac{2}{d} \leq DRR(d) \leq \frac{C}{\log d}$$
 (open from $d = 4$)

• Bounds for *WRR*(*w*) in general.

Conjecture (BK)

$$WRR(3) = 3/4$$

Research and travel supported by a Marshall Sherfield Fellowship

Contact

Email: M.T.Keller@lse.ac.uk Web: http://rellek.net