Reversal Ratio and Linear Extension Diameter

Graham Brightwell and Mitchel T. Keller

Department of Mathematics
London School of Economics and Political Science

SIAM Conference on Discrete Mathematics 18 June 2012

Outline

(1) Linear Extension Diameter
(2) A Constant Bound?
(3) Posets of fixed dimension
(4) Posets of fixed width

Linear Extension Diameter

Definition

Let \mathbf{P} be a finite poset. The linear extension graph $G(\mathbf{P})=(V, E)$ of \mathbf{P} is defined as follows:

- V is the set of all linear extensions of \mathbf{P} and
- two linear extensions are adjacent if and only if they differ only in the transposition of a single (adjacent) pair of points.

Linear Extension Diameter

Definition

Let \mathbf{P} be a finite poset. The linear extension graph $G(\mathbf{P})=(V, E)$ of \mathbf{P} is defined as follows:

- V is the set of all linear extensions of \mathbf{P} and
- two linear extensions are adjacent if and only if they differ only in the transposition of a single (adjacent) pair of points.

Definition (Felsner and Reuter 1999)

The linear extension diameter of a finite poset \mathbf{P}, denoted $\operatorname{led}(\mathbf{P})$, is the diameter of its linear extension graph $G(\mathbf{P})$.

Example

Another Example

Felsner and Massow (2011)

Reversal Ratio

Definition

Let \mathbf{P} be a poset and L_{1}, L_{2} linear extensions of \mathbf{P}. We define the reversal ratio of the pair $\left(L_{1}, L_{2}\right)$ as

$$
R R\left(\mathbf{P} ; L_{1}, L_{2}\right)=\frac{\operatorname{dist}\left(L_{1}, L_{2}\right)}{\operatorname{inc}(\mathbf{P})} .
$$

The reversal ratio of \mathbf{P} is

$$
R R(\mathbf{P})=\frac{\operatorname{led}(\mathbf{P})}{\operatorname{inc}(\mathbf{P})}=\max _{L_{1}, L_{2}} R R\left(\mathbf{P} ; L_{1}, L_{2}\right) .
$$

Bounding Reversal Ratio

- $R R(\mathbf{P})=1$ if and only if $\operatorname{dim}(\mathbf{P})=2$.

Bounding Reversal Ratio

- $R R(\mathbf{P})=1$ if and only if $\operatorname{dim}(\mathbf{P})=2$.
- If $\operatorname{dim}(\mathbf{P})=d$ and \mathcal{R} is a realizer of \mathbf{P}, then

$$
\sum_{\substack{L_{i}, L_{j} \in \mathcal{R} \\ i \neq j}} \operatorname{dist}\left(L_{i}, L_{j}\right)
$$

Bounding Reversal Ratio

- $R R(\mathbf{P})=1$ if and only if $\operatorname{dim}(\mathbf{P})=2$.
- If $\operatorname{dim}(\mathbf{P})=d$ and \mathcal{R} is a realizer of \mathbf{P}, then

$$
\sum_{\substack{L_{i}, L_{j} \in \mathcal{R} \\ i \neq j}} \operatorname{dist}\left(L_{i}, L_{j}\right) \leq\binom{ d}{2} \operatorname{led}(\mathbf{P})
$$

Bounding Reversal Ratio

- $R R(\mathbf{P})=1$ if and only if $\operatorname{dim}(\mathbf{P})=2$.
- If $\operatorname{dim}(\mathbf{P})=d$ and \mathcal{R} is a realizer of \mathbf{P}, then

$$
(d-1) \operatorname{inc}(\mathbf{P}) \leq \sum_{\substack{L_{i}, L_{j} \in \mathcal{R} \\ i \neq j}} \operatorname{dist}\left(L_{i}, L_{j}\right) \leq\binom{ d}{2} \operatorname{led}(\mathbf{P})
$$

Bounding Reversal Ratio

- $R R(\mathbf{P})=1$ if and only if $\operatorname{dim}(\mathbf{P})=2$.
- If $\operatorname{dim}(\mathbf{P})=d$ and \mathcal{R} is a realizer of \mathbf{P}, then

$$
(d-1) \operatorname{inc}(\mathbf{P}) \leq \sum_{\substack{L_{i}, L_{j} \in \mathcal{R} \\ i \neq j}} \operatorname{dist}\left(L_{i}, L_{j}\right) \leq\binom{ d}{2} \operatorname{led}(\mathbf{P})
$$

so $R R(\mathbf{P}) \geq 2 / d$.

Bounding Reversal Ratio

- $R R(\mathbf{P})=1$ if and only if $\operatorname{dim}(\mathbf{P})=2$.
- If $\operatorname{dim}(\mathbf{P})=d$ and \mathcal{R} is a realizer of \mathbf{P}, then

$$
(d-1) \operatorname{inc}(\mathbf{P}) \leq \sum_{\substack{L_{i}, L_{j} \in \mathcal{R} \\ i \neq j}} \operatorname{dist}\left(L_{i}, L_{j}\right) \leq\binom{ d}{2} \operatorname{led}(\mathbf{P})
$$

so $R R(\mathbf{P}) \geq 2 / d$.

- width $(\mathbf{P})=c|\mathbf{P}|$ for $c>0$ implies $R R(\mathbf{P})$ is large.

Bounding Reversal Ratio

- Is there a $c>0$ such that $R R(\mathbf{P}) \geq c$ for all \mathbf{P} ?

Bounding Reversal Ratio

- Is there a $c>0$ such that $R R(\mathbf{P}) \geq c$ for all \mathbf{P} ?
- n-dimensional Boolean lattice? $\operatorname{led}\left(\mathbf{2}^{n}\right)=2^{2 n-2}-(n+1) \cdot 2^{n-2}$ (Felsner-Massow 2011)

Bounding Reversal Ratio

- Is there a $c>0$ such that $R R(\mathbf{P}) \geq c$ for all \mathbf{P} ?
- n-dimensional Boolean lattice? $\operatorname{led}\left(\mathbf{2}^{n}\right)=2^{2 n-2}-(n+1) \cdot 2^{n-2}$ (Felsner-Massow 2011)
- No! Felsner-Reuter (1999) and Felsner-Massow (2011) cite personal communication from Brightwell.

Bounding Reversal Ratio

- Is there a $c>0$ such that $R R(\mathbf{P}) \geq c$ for all \mathbf{P} ?
- n-dimensional Boolean lattice? $\operatorname{led}\left(\mathbf{2}^{n}\right)=2^{2 n-2}-(n+1) \cdot 2^{n-2}$ (Felsner-Massow 2011)
- No! Felsner-Reuter (1999) and Felsner-Massow (2011) cite personal communication from Brightwell.
- Unpublished example difficult to analyze.

How small can $R R(\mathbf{P})$ be?

Theorem (BK)

For every sufficiently large positive integer k, there exists a poset \mathbf{P}_{k} of width k with $R R\left(\mathbf{P}_{k}\right) \leq C / \log k$.

Doubling Property

Definition
 Let $\mathbf{G}=(A \cup B, E)$ be a bipartite graph with $|A|=|B|=k$. We say that \mathbf{G} has the doubling property if for every $Y \subset A$ with $|Y| \leq k / 3$, $|N(A)| \geq 2|A|$.

Doubling Property

Definition

Let $\mathbf{G}=(A \cup B, E)$ be a bipartite graph with $|A|=|B|=k$. We say that \mathbf{G} has the doubling property if for every $Y \subset A$ with $|Y| \leq k / 3$, $|N(A)| \geq 2|A|$.

Lemma

Let $G_{d}(A, B)$ be a random d-regular bipartite graph on vertex sets A and B of size k, chosen according to the configuration model. For each $d \geq 10$ and k sufficiently large, $G_{d}(A, B)$ has the doubling property with high probability.

Construction of \mathbf{P}_{k}

Analysis of \mathbf{P}_{k}

Proposition

For k sufficiently large and $\varepsilon \leq 1$ /logd, the number of incomparable pairs in \mathbf{P}_{k} is at least

$$
\frac{r-2}{2(r-1)} \varepsilon^{2} k^{2} \log ^{2} k .
$$

Analysis of \mathbf{P}_{k}

Proposition

For k sufficiently large and $\varepsilon \leq 1$ /logd, the number of incomparable pairs in \mathbf{P}_{k} is at least

$$
\frac{r-2}{2(r-1)} \varepsilon^{2} k^{2} \log ^{2} k .
$$

Proposition

For k a sufficiently large multiple of three and $0<\varepsilon \leq 1$,

$$
\operatorname{led}\left(\mathbf{P}_{k}\right) \leq \frac{31}{6} \varepsilon k^{2} \log k .
$$

Posets of fixed dimension

Definition

For $d \geq 2$, define $\operatorname{DRR}(d)=\inf \{R R(\mathbf{P}): \operatorname{dim}(\mathbf{P})=d\}$.

Bounding DRR(d)

- Standard example \mathbf{S}_{n} ?

Posets of fixed dimension

Definition

For $d \geq 2$, define $\operatorname{DRR}(d)=\inf \{R R(\mathbf{P}): \operatorname{dim}(\mathbf{P})=d\}$.

Bounding DRR(d)

- Standard example \mathbf{S}_{n} ? $\quad R R\left(\mathbf{S}_{n}\right) \rightarrow 1$

Posets of fixed dimension

Definition

For $d \geq 2$, define $\operatorname{DRR}(d)=\inf \{R R(\mathbf{P}): \operatorname{dim}(\mathbf{P})=d\}$.

Bounding DRR(d)

- Standard example \mathbf{S}_{n} ? $\quad R R\left(\mathbf{S}_{n}\right) \rightarrow 1$
- d-dimensional grid?

Posets of fixed dimension

Definition

For $d \geq 2$, define $\operatorname{DRR}(d)=\inf \{R R(\mathbf{P}): \operatorname{dim}(\mathbf{P})=d\}$.

Bounding DRR(d)

- Standard example \mathbf{S}_{n} ?
- d-dimensional grid?
$R R\left(\mathbf{S}_{n}\right) \rightarrow 1$
$R R\left(\mathbf{n}^{d}\right) \rightarrow 1 / 2$ (Felsner-Massow)

Posets of fixed dimension

Definition

For $d \geq 2$, define $\operatorname{DRR}(d)=\inf \{R R(\mathbf{P}): \operatorname{dim}(\mathbf{P})=d\}$.

Bounding DRR(d)

- Standard example \mathbf{S}_{n} ?
$R R\left(\mathbf{S}_{n}\right) \rightarrow 1$
- d-dimensional grid?
$R R\left(\mathbf{n}^{d}\right) \rightarrow 1 / 2$ (Felsner-Massow)
- $\operatorname{DRR}(3)=2 / 3$ by considering \mathbf{n}^{3}
- $1 / 2 \leq \operatorname{DRR}(4) \leq 4 / 7$

Dimension of \mathbf{P}_{k}

Fact

The width of \mathbf{P}_{k} is k, so $\operatorname{dim}\left(\mathbf{P}_{k}\right) \leq k$.

Dimension of \mathbf{P}_{k}

Fact

The width of \mathbf{P}_{k} is k, so $\operatorname{dim}\left(\mathbf{P}_{k}\right) \leq k$.

Corollary

For d sufficiently large,

$$
\operatorname{DRR}(d) \leq R R\left(\mathbf{P}_{d}\right) \leq \frac{27}{\log d} .
$$

Posets of fixed width

Definition
 For $w \geq 2$, define $\operatorname{WRR}(w)=\inf \{R R(\mathbf{P}): \operatorname{width}(\mathbf{P})=w\}$.

Posets of fixed width

Definition

For $w \geq 2$, define $\operatorname{WRR}(w)=\inf \{R R(\mathbf{P}): \operatorname{width}(\mathbf{P})=w\}$.

Observation

$W R R(3) \geq \operatorname{DRR}(3)$

Posets of fixed width

Definition
 For $w \geq 2$, define $\operatorname{WRR}(w)=\inf \{R R(\mathbf{P}): \operatorname{width}(\mathbf{P})=w\}$.

Observation

$$
W R R(3) \geq \operatorname{DRR}(3)
$$

Proposition
WRR $(3) \leq 5 / 6$

A vexing example

- $\mathbf{Z}_{t, k}$ has $t k$ points per chain

A vexing example

- $\mathbf{Z}_{t, k}$ has $t k$ points per chain
$-\operatorname{inc}\left(Z_{t, k}\right)=(6 t-3)\binom{k}{2}$

A vexing example

- $\mathbf{Z}_{t, k}$ has $t k$ points per chain
- $\operatorname{inc}\left(\mathbf{Z}_{t, k}\right)=(6 t-3)\binom{k}{2}$
- Can show

$$
\operatorname{led}\left(\mathbf{Z}_{t, k}\right) \geq\left(3 t-1+\left\lceil\frac{3 t-2}{2}\right\rceil\right)\binom{k}{2}
$$

A vexing example

- $\mathbf{Z}_{t, k}$ has $t k$ points per chain
- $\operatorname{inc}\left(\mathbf{Z}_{t, k}\right)=(6 t-3)\binom{k}{2}$
- Can show

$$
\begin{array}{cc}
\operatorname{led}\left(\mathbf{Z}_{t, k}\right) \geq\left(3 t-1+\left\lceil\frac{3 t-2}{2}\right\rceil\right)\binom{k}{2} \\
\hline L_{1} & L_{2} \\
\hline C_{4} & B_{4} / C_{4} \\
C_{3} / A_{4} / B_{4} & A_{4} \\
B_{3} & A_{3} / B_{3} / C_{3} \\
B_{2} / C_{2} / A_{3} & C_{2} \\
A_{2} & C_{1} / A_{2} / B_{2} \\
A_{1} / B_{1} / C_{1} & B_{1} \\
& A_{1}
\end{array}
$$

Open Problems

- Find a family of posets with $R R\left(\mathbf{P}_{n}\right)<C / \log n$ for n sufficiently large, n a "reasonable" parameter of \mathbf{P}_{n}.

Open Problems

- Find a family of posets with $R R\left(\mathbf{P}_{n}\right)<C / \log n$ for n sufficiently large, n a "reasonable" parameter of \mathbf{P}_{n}.
- Does there exist $f(n)$ so that $R R(\mathbf{P}) \geq f(n)$ for all \mathbf{P} with n a "reasonable" parameter of \mathbf{P} ?

Open Problems

- Find a family of posets with $R R\left(\mathbf{P}_{n}\right)<C / \log n$ for n sufficiently large, n a "reasonable" parameter of \mathbf{P}_{n}.
- Does there exist $f(n)$ so that $R R(\mathbf{P}) \geq f(n)$ for all \mathbf{P} with n a "reasonable" parameter of \mathbf{P} ?
- $\frac{2}{d} \leq D R R(d) \leq \frac{C}{\log d}$ (open from $\left.d=4\right)$

Open Problems

- Find a family of posets with $R R\left(\mathbf{P}_{n}\right)<C / \log n$ for n sufficiently large, n a "reasonable" parameter of \mathbf{P}_{n}.
- Does there exist $f(n)$ so that $R R(\mathbf{P}) \geq f(n)$ for all \mathbf{P} with n a "reasonable" parameter of \mathbf{P} ?
- $\frac{2}{d} \leq D R R(d) \leq \frac{C}{\log d}$ (open from $d=4$)
- Bounds for $W R R(w)$ in general.

Open Problems

- Find a family of posets with $R R\left(\mathbf{P}_{n}\right)<C / \log n$ for n sufficiently large, n a "reasonable" parameter of \mathbf{P}_{n}.
- Does there exist $f(n)$ so that $R R(\mathbf{P}) \geq f(n)$ for all \mathbf{P} with n a "reasonable" parameter of \mathbf{P} ?
- $\frac{2}{d} \leq D R R(d) \leq \frac{C}{\log d}$ (open from $d=4$)
- Bounds for $W R R(w)$ in general.

Conjecture (BK)

$$
W R R(3)=3 / 4
$$

Thank You

Research and travel supported by a Marshall Sherfield Fellowship

Contact

Email: M.T.Keller@lse.ac.uk
Web: http://rellek.net

