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Background
Let [n] = {1, 2, . . . , n} andQn = (2[n],⊆) be a poset
of all the subsets of[n] along with the subset relation.
This is refered to as the Boolean lattice.
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Background
Let [n] = {1, 2, . . . , n} andQn = (2[n],⊆) be a poset
of all the subsets of[n] along with the subset relation.
This is refered to as the Boolean lattice.

LetP be a subposet. A family of subsetsF of [n] is
P-free if there is no subposet ofF of the formP. Let
ex(P) to be the maximum sizedP-free family.

In 1928, Sperner [5] proved that the largest family of
subsets of[n] for which no one set contains another
has size

(

n
⌊n/2⌋

)
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Background

We denote the largest middlek layers ofQn whose
size correspond to the largest binomial coefficients of
the form

(

n
l

)

as
∑

(n, k).
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We denote the largest middlek layers ofQn whose
size correspond to the largest binomial coefficients of
the form

(
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as
∑

(n, k).

Theorem [Erdős, 1945][2]
Forn ≥ k − 1 ≥ 1, ex(n,Pk) =

∑

(n, k − 1).
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Background

We denote the largest middlek layers ofQn whose
size correspond to the largest binomial coefficients of
the form

(

n
l

)

as
∑

(n, k).

Theorem [Erdős, 1945][2]
Forn ≥ k − 1 ≥ 1, ex(n,Pk) =

∑

(n, k − 1).

Conjecture
For every finite posetP the limit

π(P)
def
= limn→∞ ex(P)

(

n
⌊n/2⌋

)−1

exists and is an integer.
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Background

Denote the Hasse Diagram of a posetP asH(P) and
the height of the poset ash(P).
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Background

Denote the Hasse Diagram of a posetP asH(P) and
the height of the poset ash(P).

Theorem[Buhk,2009][1]
LetP be a poset. IfH(P) is a tree then
ex(P) = (h(P)− 1)

(

n
⌊n/2⌋

)

(1 + o(1)).
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Background

Question: Will the height of the poset always give us
our answer?

Q2 -Free Families in the Boolean Lattice – p. 5/18



Background

Question: Will the height of the poset always give us
our answer?

We call the poset

Dk = {A,B1, . . . , Bk, C : A ⊂ B1, . . . , Bk ⊂ C}

thek-diamond poset.
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Dk = {A,B1, . . . , Bk, C : A ⊂ B1, . . . , Bk ⊂ C}

thek-diamond poset. Note the height of this poset is
3. Let r be an integer andk = 2r − 1.
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Background

Question: Will the height of the poset always give us
our answer?

We call the poset

Dk = {A,B1, . . . , Bk, C : A ⊂ B1, . . . , Bk ⊂ C}

thek-diamond poset. Note the height of this poset is
3. Let r be an integer andk = 2r − 1.

Observe that even if we take ther + 1 middle layers
with an element in the top and bottom layers we have
2r − 2 elements in the layers between and hence no
Dk regardless of whatn is.
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Main Results

Observe that the posetQ2 is also the posetD2, which
we denote the diamond poset.
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Main Results

Observe that the posetQ2 is also the posetD2, which
we denote the diamond poset.

If the limit exists the lowerbound is fairly trivial at 2
but for the upperbound the value has slowly dropped
from 3 to 2.273 in several steps. The last entry being
do to Griggs, Li, and Lu [3].
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Main Results

Observe that the posetQ2 is also the posetD2, which
we denote the diamond poset.

If the limit exists the lowerbound is fairly trivial at 2
but for the upperbound the value has slowly dropped
from 3 to 2.273 in several steps. The last entry being
do to Griggs, Li, and Lu [3].

Theorem If F is aQ2-free subposet ofQn then

|F| ≤ (2.25 + o(1))

(

n

⌊n/2⌋

)

.
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Sketch of Proof

If F is a family of sets in then-dimensional Boolean
lattice, theLubell function of that family is defined to

beLu(n,F)
def
=

∑

F∈F

(

n
|F |

)−1
.
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Sketch of Proof

If F is a family of sets in then-dimensional Boolean
lattice, theLubell function of that family is defined to

beLu(n,F)
def
=

∑

F∈F

(

n
|F |

)−1
.

LetmaxLu(n,P) be the maximum ofLu(n,F) over
all familiesF that are bothP-free and contain the
empty set. Furthermore, set

maxLu(P)
def
= lim sup

n→∞
{maxLu(n,P)}.
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Sketch of Proof

Lemma 1 LetQ2 denote the diamond and let
maxLu(Q2) be defined as above. Then
|F| ≤ (maxLu(Q2) + o(1))

(

n
⌊n/2⌋

)

. That is,

ex(n,Q2) ≤ (maxLu(Q2) + o(1))
(

n
⌊n/2⌋

)

.
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Sketch of Proof

Lemma 1 LetQ2 denote the diamond and let
maxLu(Q2) be defined as above. Then
|F| ≤ (maxLu(Q2) + o(1))

(

n
⌊n/2⌋

)

. That is,

ex(n,Q2) ≤ (maxLu(Q2) + o(1))
(

n
⌊n/2⌋

)

.

Proven by seperating our setF into 3 antichains and
seperating all the chains into those that hit the
minimal elements ofF and those that do not. We
make use of the YBML inequality for the chains that
miss the minimal elements and then, using a counting
arguement, compare the rest to lower order Lubell
functions.
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Sketch of Proof

For a graphG, letαi = αi(G) denote the number of
triples that induce exactlyi edges fori = 0, 1, 2, 3 and
let βj = βj(G) induce the number of quadruples that
induce exactlyj edges forj = 0, . . . , 6. If (X, Y ) is
an ordered bipartition ofV (G), then lete(X) denote
the number of nonedges in the subgraph induced by
X ande(Y ) denote the number of nonedges in the
subgraph induced byY .
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Sketch of Proof

For a graphG, letαi = αi(G) denote the number of
triples that induce exactlyi edges fori = 0, 1, 2, 3 and
let βj = βj(G) induce the number of quadruples that
induce exactlyj edges forj = 0, . . . , 6. If (X, Y ) is
an ordered bipartition ofV (G), then lete(X) denote
the number of nonedges in the subgraph induced by
X ande(Y ) denote the number of nonedges in the
subgraph induced byY .

This allows us to sample and keep track of edges and
non-edges which we will need later.
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Sketch of Proof

Lemma 2 For everyQ2-free familyF in Qn with ∅ ∈ F , there exist

the following:

• a graphG = (V,E) onv ≤ n vertices and

• a setW = {wv+1, . . . , wn} such that, for eachw ∈ W ,

(Xw, Yw) is an ordered bipartition ofV ;

for whichLu(n,F) ≤ 2 + f(n,G,W ), where, with the notation as

above,

f(n,G,W ) =
2α1(G)− 2α2(G)

(n)3
+

6β0(G)

(n)4

+
∑

w∈W

[

|Xw| − |Yw|

(n)2
+

4e(Yw)− 2e(Xw)

(n)3

]

.
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Sketch of Proof

The graphG is constructed using the singletons from
Qn that are not inF or
V (G) = {{x} ∈ Qn : {x} /∈ F} and the edge set to
be the doubletons inF that have both end points in
V (G) or
E(G) = {{x, y} : {x, y} ∈ F , x, y ∈ V (G)}.
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Sketch of Proof

The graphG is constructed using the singletons from
Qn that are not inF or
V (G) = {{x} ∈ Qn : {x} /∈ F} and the edge set to
be the doubletons inF that have both end points in
V (G) or
E(G) = {{x, y} : {x, y} ∈ F , x, y ∈ V (G)}.

By lettingΨi be the number of full chains containing
exactlyi elements ofF we have that
Lu(n,F) = 2 + |Ψ3|−|Ψ1|

n!
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Sketch of Proof

We then proceed by counting full chains that hit
various members ofF and use these to place bounds
on |Ψ1| and|Ψ3|.
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Sketch of Proof

We then proceed by counting full chains that hit
various members ofF and use these to place bounds
on |Ψ1| and|Ψ3|.

In doing this we make several connections to the
graphG described before and our bound becomes the
graph invariant equation noted in the statement of the
Lemma.
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Sketch of Proof

Lemma 3 For any integern, graphG = (V,E) on
v ≤ n vertices and a setW , of n− v bipartitions of
V (G),

f(n,G,W ) ≤
1

4
+O

(

1

n

)

.
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Sketch of Proof

Lemma 3 For any integern, graphG = (V,E) on
v ≤ n vertices and a setW , of n− v bipartitions of
V (G),

f(n,G,W ) ≤
1

4
+O

(

1

n

)

.

This is the best we can do with the current approach
because we use the graph invarient from Lemma 3
which is bounded below by14.
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Sketch of Proof

LetF contain no singletons. So the vertices of our
graph is[n].
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Sketch of Proof

LetF contain no singletons. So the vertices of our
graph is[n].

We then make the doubletons inF all the doubletons
of 1 ≤ i, j ≤ ⌊n/2⌋ and all the doubletons
⌊n/2⌋ ≤ i, j ≤ n. HenceG is the collection of evenly
balanced disjoint cliques.
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Sketch of Proof

LetF contain no singletons. So the vertices of our
graph is[n].

We then make the doubletons inF all the doubletons
of 1 ≤ i, j ≤ ⌊n/2⌋ and all the doubletons
⌊n/2⌋ ≤ i, j ≤ n. HenceG is the collection of evenly
balanced disjoint cliques.

Then we have that2α1(G)−2α2(G)
(n)3

+ 6β0(G)
(n)4

= 1
4 . Hence

our maximum value can be at most1
4 .
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Sketch of Proof

To prove this bound is tight we sample the graphG by
taking subsets of order4. We then look at all the
densities of these sample graphs withinG and then
add a set of constants whos some is zero in such a
way so that all the densities are less than or equal to
1/4 which then implies that the value of the function
is less than or equal to1/4.
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Sketch of Proof

To prove this bound is tight we sample the graphG by
taking subsets of order4. We then look at all the
densities of these sample graphs withinG and then
add a set of constants whos some is zero in such a
way so that all the densities are less than or equal to
1/4 which then implies that the value of the function
is less than or equal to1/4. This method of finding

these constants whos sum is nonnegative (zero) to add
to our densities was found using Razborov’s Flag
Algebra method.
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Sketch of Proof

To prove this bound is tight we sample the graphG by
taking subsets of order4. We then look at all the
densities of these sample graphs withinG and then
add a set of constants whos some is zero in such a
way so that all the densities are less than or equal to
1/4 which then implies that the value of the function
is less than or equal to1/4. This method of finding

these constants whos sum is nonnegative (zero) to add
to our densities was found using Razborov’s Flag
Algebra method.

Then all three of the previous lemmas together imply
our theorem giving us a value of2.25.
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Further work

To further progress to reaching the conjectured value
of the limit to being2 we must develop a new
approach.
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To further progress to reaching the conjectured value
of the limit to being2 we must develop a new
approach.

There are many more subposets with cycles in the
Hasse Diagrams that have not been researched as of
yet.
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The End

THANK YOU.
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