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Background

Let[n] = {1,2,...,n} andQ, = (2", C) be a poset
of all the subsets df:| along with the subset relation.
This is refered to as the Boolean lattice.
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Let[n] = {1,2,...,n} andQ, = (2", C) be a poset
of all the subsets df:| along with the subset relation.
This is refered to as the Boolean lattice.

Let P be a subposet. A family of subsetsof n] is
P-free if there Is no subposet & of the form”P. Let
ex(P) to be the maximum sizeB-free family.

In 1928, Sperner [5] proved that the largest family of
subsets ofn| for which no one set contains another

has size(Ln%J)
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Background

We denote the largest middidayers ofQ,, whose
size correspond to the largest binomial coefficients of

the form(7) asy_(n, k).
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Theorem [Erdos, 1945][2]
Forn>k—1>1,ex(n,Pr) =D (n,k—1).
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Background

We denote the largest middidayers ofQ,, whose
size correspond to the largest binomial coefficients of

the form(7) asy_(n, k).

Theorem [Erdos, 1945][2]
Forn>k—1>1,ex(n,Pr) =D (n,k—1).

Conjecture

For every finite poseP the limit
def ;. n \—1
exists and is an integer.
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Background

Denote the Hasse Diagram of a pofeas H (P) and
the height of the poset &3 P).
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Background

Denote the Hasse Diagram of a pofeas H (P) and
the height of the poset &3 P).

Theorem[Buhk,2009][1]
Let P be a poset. I (P) is a tree then

ex(P) = (h(P) = 1)( 1)) (1 + o(1)
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Background

Question: Will the height of the poset always give us
our answer?
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D.=1{A,By,....,B.,,C: ACBy,...,B, C C}

the k-diamond poset.
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Background

Question: Will the height of the poset always give us
our answer?

We call the poset
D.=1{A,By,....,B.,,C: ACBy,...,B, C C}

the k-diamond poset. Note the height of this poset is
3. Letr be an integer anél = 2" — 1.

Observe that even if we take ther- 1 middle layers
with an element in the top and bottom layers we have
2" — 2 elements in the layers between and hence no
D). regardless of what is.
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Main Results

Observe that the posél; Is also the poseb,, which
we denote the diamond poset.
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Main Results

Observe that the posél; Is also the poseb,, which
we denote the diamond poset.

If the limit exists the lowerbound is fairly trivial at 2
but for the upperbound the value has slowly dropped
from 3 to 2.273 in several steps. The last entry being

do to Griggs, Li, and Lu [3].
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Main Results

Observe that the posél; Is also the poseb,, which
we denote the diamond poset.

If the limit exists the lowerbound is fairly trivial at 2
but for the upperbound the value has slowly dropped
from 3 to 2.273 in several steps. The last entry being

do to Griggs, Li, and Lu [3].

Theorem If F Is aQ,-free subposet op,, then

F| < (2.25 + o(1)) (Ln7;2j>'
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Sketch of Proof

f F 1s a family of sets in the-dimensional Boolean
attice, theL ubéell function of that family is defined to

def n \ —1
peLu(n, F) = > per (\F\) -
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Sketch of Proof

f F 1s a family of sets in the-dimensional Boolean
attice, theL ubéell function of that family is defined to

def n \ —1
peLu(n, F) = ) per (\F\) '

Let maxLu(n,P) be the maximum of.u(n, F) over
all families F that are botlP-free and contain the
empty set. Furthermore, set

maxLu(P) X Jim sup {maxLu(n,P)}.

n—o0
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Sketch of Proof

Lemma 1l Let O, denote the diamond and let
maxLu(Q,) be defined as above. Then

|F| < (maxLu(9s) + 0(1))(Ln7}2J)' That is,
ex(n, Qs) < (maxLu(Qs) + 0(1))(@7%).
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Sketch of Proof

Lemma 1l Let O, denote the diamond and let
maxLu(Qs) be defined as above. Then

|F| < (maxLu(9s) + 0(1))(Ln7}2J)' That is,
ex(n, Qs) < (maxLu(Qs) + 0(1))(@7%).

Proven by seperating our sétinto 3 antichains and
seperating all the chains into those that hit the
minimal elements ofF and those that do not. We
make use of the YBML inequality for the chains that
miss the minimal elements and then, using a counting
arguement, compare the rest to lower order Lubell
functions.

O - -Free Families in the Boolean Lattice — p. 8/18



Sketch of Proof

For a graph, leta; = «;(G) denote the number of
triples that induce exacthyedges for = 0,1, 2, 3 and
let 3, = 3;(G) induce the number of quadruples that
induce exactly) edges for; =0,...,6. If (X,Y) s

an ordered bipartition of (G), then lete( X ) denote
the number of nonedges in the subgraph induced by
X ande(Y) denote the number of nonedges in the
subgraph induced by .
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Sketch of Proof

For a graph, leta; = «;(G) denote the number of
triples that induce exacthyedges for = 0,1, 2, 3 and
let 3, = 3;(G) induce the number of quadruples that
induce exactly) edges for; =0,...,6. If (X,Y) s

an ordered bipartition of (G), then lete( X ) denote
the number of nonedges in the subgraph induced by
X ande(Y) denote the number of nonedges in the
subgraph induced by .

This allows us to sample and keep track of edges and
non-edges which we will need later.
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Sketch of Proof

Lemma 2 For everyQ,-free family 7 in Q,, with () € F, there exist
the following:

a graphG = (V, F) onv < n vertices and

asetlW = {wyy1,...,w,} such that, for eachy € W,
(Xw, Yy) is an ordered bipartition of’;

for whichLu(n, F) <2+ f(n,G, W), where, with the notation as
above,

L s e
4 Z [’Xw’ — Y| n de(Yy) — 2e(Xy)

= ()2 (n)3
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Sketch of Proof

The graph= Is constructed using the singletons from
Q,, that are not InF or

V(G)={{z} € Q,: {z} ¢ F} and the edge set to
be the doubletons i that have both end points in
V(G) or

E(G) = {{z,y} {z,y} € F,z,y € V(G)}.
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Sketch of Proof

The graph= Is constructed using the singletons from
Q,, that are not InF or

V(G)={{z} € Q,: {z} ¢ F} and the edge set to
be the doubletons i that have both end points in
V(G) or

E(G) = {{z,y} {z,y} € F,z,y € V(G)}.

By letting ¥; be the number of full chains containing
exactly: elements ofF we have that

Lu(n,f) — 9 Vs |—| V|

n!
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Sketch of Proof

We then proceed by counting full chains that hit
various members oF and use these to place bounds

on ‘Epl‘ and]%].
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Sketch of Proof

We then proceed by counting full chains that hit
various members oF and use these to place bounds
on ‘Epl‘ and]%].

In doing this we make several connections to the
graphG described before and our bound becomes the

graph invariant equation noted in the statement of the
Lemma.
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Sketch of Proof

L emma 3 For any integer, graphG = (V, E) on
v < n vertices and a sét/, of n — v bipartitions of
V(G),

f(n,G,W) §i+0<l>.

n
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Sketch of Proof

L emma 3 For any integer, graphG = (V, E) on
v < n vertices and a sét/, of n — v bipartitions of
V(G)l
1 1
fncwy <405,

n

This Is the best we can do with the current approach
because we use the graph invarient from Lemma 3

which is bounded below by.
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Sketch of Proof

Let F contain no singletons. So the vertices of our
graph is|n|.
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Sketch of Proof

Let F contain no singletons. So the vertices of our
graph is|n|.

We then make the doubletons.nhall the doubletons
of 1 <1,5 < |n/2]| and all the doubletons

In/2| <1i,5 <n.HenceG is the collection of evenly
balanced disjoint cliques.
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Sketch of Proof

Let F contain no singletons. So the vertices of our
graph is|n|.

We then make the doubletons.nhall the doubletons
of 1 <1,5 < |n/2]| and all the doubletons

In/2| <1i,5 <n.HenceG is the collection of evenly
balanced disjoint cliques.

Then we have thuf)‘l(G()_)%‘?(G) | 6?()()@

our maximum value can be at me}lst

— i Hence
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Sketch of Proof

To prove this bound is tight we sample the gra@pby
taking subsets of orddr We then look at all the
densities of these sample graphs withirand then

add a set of constants whos some is zero in such a
way so that all the densities are less than or equal to
1/4 which then implies that the value of the function
is less than or equal tb/4.
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Sketch of Proof

To prove this bound is tight we sample the gra@pby
taking subsets of orddr We then look at all the
densities of these sample graphs withirand then

add a set of constants whos some is zero in such a
way so that all the densities are less than or equal to

1/4 which then implies that the value of the function
is less than or equal tb/4. This method of finding

these constants whos sum is nonnegative (zero) to add

to our densities was found using Razborov’s Flag
Algebra method.
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Sketch of Proof

To prove this bound is tight we sample the gra@pby
taking subsets of orddr We then look at all the
densities of these sample graphs withirand then

add a set of constants whos some is zero in such a
way so that all the densities are less than or equal to
1/4 which then implies that the value of the function

is less than or equal tb/4. This method of finding

these constants whos sum is nonnegative (zero) to add
to our densities was found using Razborov’s Flag
Algebra method.

Then all three of the previous lemmas together imply
our theorem giving us a value 925.
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Further work

To further progress to reaching the conjectured value
of the limit to being2 we must develop a new
approach.
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of the limit to being2 we must develop a new
approach.

There are many more subposets with cycles in the

Hasse Diagrams that have not been researched as of
yet.
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The End

THANK YOU.
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