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chain partitioning

v

P=(X,<) Example
antichain, w(P)

v

» chain

v

a chain partition of P = (X, <) is
a family of disjoint chains Cy,..., Cx
sothat GU...UC =X

Theorem (Dilworth 1950)

Every poset P can be partitioned into w(P)
chains.
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> the game is played in rounds,
during each round:

» Spoiler introduces a new point
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to already presented points,

» Algorithm assigns this new
point to a chain.

» Algorithm tries to use as small
number of colors as possible,

> Spoiler tries to force Algorithm to use
as many colors as possible.
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on-line chain partitioning

> two players: Spoiler and Algorithm,
> the game is played in rounds,
during each round:

» Spoiler introduces a new point
with his comparability status
to already presented points,

» Algorithm assigns this new
point to a chain.

» on-line result = 3 colors > Algorithm tries to use as small

. number of colors as possible,
» off-line result = 2 colors

> Spoiler tries to force Algorithm to use
as many colors as possible.
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on-line chain partitioning

Estimate:
ocp(w) — the minimum n such that Algorithm has a strategy
to partition any poset of width w into at most n chains

Theorem (Szemerédi 1981; Kierstead 1981)

w—+1 5w —1
< <
< ) > ocp(w) 2

ocp(w) < poly(w)?
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first-fit
first-fit — on-line algorithm that always
uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that
forces First-Fit to use infinitely many
colors even if the game is played on
orders of width 2.

Remarks

> First-Fit works well for some classes
of posets (e.g. interval posets)

> is used as a subroutine in on-line
algorithms that give subexponential
bounds on ocp(w).

= W N R, 1w N

= o o1 b

~ w N



first-fit

fo(w) — the maximum number of chains used by first-fit
on Q—free posets of width w
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on-line chain partitioning
Theorem (Bosek, Krawczyk 2009)

OCp(W) < W13Iogw

Remarks

> First-Fit on 2w+2w—free posets is
used as a subroutine k+k

» First-Fit works efficiently on
k+ k—free posets!



First-Fit for k4 k-free posets

Upper bounds on f; | 4 (w):

> 3kw?, Bosek, Krawczyk, Szczypka 2008
> 8k’w, Joret, Milans 2010
> 16kw, Dujmovi¢, Joret, Wood 2011 (G. Joret talk).

Lower bounds on f , 4 (w):

> (k —1)(w — 1), Dujmovi¢, Joret, Wood 2011.



on-line chain partitioning
Theorem (2011)

OCp(W) < W3+6.5 log w



on-line chain partitioning

Theorem (2011)

OCp(W) < W3+6.5 log w

Remark
First-Fit on L(2,2w?)—free posets is used as a
subroutine

L(2,6)



on-line chain partitioning

Theorem (2011)

OCp(W) < W3+6.5 log w

Remark
First-Fit on L(2,2w?)—free posets is used as a
subroutine

Proof:

> ocp(w) < w - froowe)(w),
Bosek, Krawczyk 2009

> fie.m)(w) < w2-8log w+2logm.
Kierstead, M.Smith 2011 (M. Smith talk)

> subexponential bound on ocp(w) is best possible
in this approach, Bosek, Matecki 2012

L(2,6)
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question

Question (Joret, Milans 2010)

For which posets Q there is a function fg such that First-Fit
partitions Q—free posets of width w into at most fg(w) chains.

Remarks

» @ must be a poset of width 2,
> fo exists for:

> ktki fi g (w) < 16kw,
> L(Q,m) fL(2,m) < w25 log w+2log m

> L(2,2): fip2)(w) = w? (tight result: Matecki 2011;
Kierstead, M.Smith 2011)
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Theorem (Bosek, Matecki, Krawczyk 2010)

Let Q be a poset. There exists a function fg such that First-Fit

partitions Q-free posets of width w into at most fg(w) chains iff Q
is a poset of width 2.



main result

Theorem (Bosek, Matecki, Krawczyk 2010)

Let Q be a poset. There exists a function fg such that First-Fit
partitions Q-free posets of width w into at most fg(w) chains iff Q
is a poset of width 2.

Remark
If First-Fit uses unlimited number of chains on a (countable) poset
P of width w then P contains all width 2 posets.
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Ladders:

» universal posets of width 2,
parameterized by two
variables

Lemma

For any poset Q of width 2 there
exist sufficiently large s, t such
that Q is contained in L(s,t).

L(4,3)




idea of the proof - ladders (2)

Lemma

For any poset Q of width 2 there
exist sufficiently large s, t such
that Q is contained in L(s,t).

1

3+3

ANNNNN




idea of the proof - ladders (2)

N—o—a—

Lemma

For any poset Q of width 2 there
exist sufficiently large s, t such
that Q is contained in L(s,t).

AN N
QLY

\__AN__AN__ N




the Kierstead's example

Remark

The poset from the Kierstead’s
example must contain all
posets of width 2.

= W N P, 1w DN

= o o1 B

~ w N



the Kierstead's example

Remark

The poset from the Kierstead’s
example must contain all
posets of width 2.

= W N P, 1w DN

= o o1 B

~ w N



the Kierstead's example

Remark

The poset from the Kierstead’s
example must contain all
posets of width 2.

= W N P, 1w DN

= o o1 B

~ w N



idea of the proof - wall

Definition

Let (P, <) be a poset. An ordered chain
partition Cy, Cp, ..., Cy of (P,<) is a wall
of size k if for any x € C; and for any chain
Cj, j <, there is a point in C; that is
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idea of the proof - wall

Definition

Let (P, <) be a poset. An ordered chain

partition Cy, Cp, ..., Cy of (P,<) is a wall \

of size k if for any x € C; and for any chain \\

Cj, j <, there is a point in C; that is

incomparable to x. G G G G
Remark

The maximum number of colors used by First-Fit on (P, <) is equal to
the maximum size of a wall in (P, <).

> First-Fit coloring of (P,<) in the order C; < Cy < ... < Cy uses k
colors,

> a partition Cy,. .., Cyx produced by first-fit is a wall in (P, <).
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idea of the proof

First part:
» every ‘sufficiently large” wall of
width w > 2 contains L(2, t)
ladder (M. Smith talk)

Second part:

» for every s, if L(2,t) is large
enough, then we may attach
another level to L(2,t) to get
L(3,s)

We focus on L(3,4).
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idea of the proof

v

X,y - two points from Ags,
x is to the left of y:

x|ly or x >y

there is a large decreasing
chain C in A;

choose the chains from the
wall that have some elements
in C

C can be arbitrarily large!
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idea of the proof

> x € A3, y € Ay, x is ‘far’ to
the left of y:

x||y

» choose every 4—th chain of
the wall

» chosen points from A; and
As form L(2,x)

» choose the set A,

» each element in Ay is below
some element in A

> we construct the sets
Az, Aa, As, Ag, e.t.c.
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idea of the proof

» consider L(2,x) formed by A;
and A6

» x is incomparable to z
> x is incomparable to y{t N z|

» yft Nzl induces a subwall of
width w — 1

» by induction, if the wall
yt N z| is large enough then
it contains L(3,4) ladder
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open problems

We have:
» a subexponential bound on f (5 ), M. Smith, Kierstead 2011
» a bound on fy(s ), Bosek, Krawczyk, Matecki 2010

» there is no constant ¢ such that fo(w) < w€ for every poset
Q of width 2, Bosek, Matecki 2012

Open problems:
» find posets Q for which fo(w) < poly(w)

> prove a subexponential bound on fj(3 ) and then for f; (s m
(and hence for every Q of width 2)



Thank You!
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