Forbidden structures for efficient First-Fit chain partitioning

Bartłomiej Bosek Tomasz Krawczyk (speaker) and Grzegorz Matecki

\{bosek, krawczyk, matecki\}@tcs.uj.edu.pl

2012 SIAM Conference on Discrete Mathematics Halifax, 18-21 June, 2012

chain partitioning

- $P=(X, \leqslant)$
- antichain, $\mathrm{w}(P)$
- chain
- a chain partition of $P=(X, \leqslant)$ is a family of disjoint chains C_{1}, \ldots, C_{k} so that $C_{1} \cup \ldots \cup C_{k}=X$

Theorem (Dilworth 1950)
Every poset P can be partitioned into w(P)

Example

 chains.

on-line chain partitioning

- two players: Spoiler and Algorithm,
- the game is played in rounds, during each round:
- Spoiler introduces a new point with his comparability status to already presented points,
- Algorithm assigns this new point to a chain.
- Algorithm tries to use as small number of colors as possible,
- Spoiler tries to force Algorithm to use as many colors as possible.

on-line chain partitioning

- two players: Spoiler and Algorithm,
- the game is played in rounds, during each round:
- Spoiler introduces a new point with his comparability status to already presented points,
- Algorithm assigns this new point to a chain.
- Algorithm tries to use as small number of colors as possible,
- Spoiler tries to force Algorithm to use as many colors as possible.

on-line chain partitioning

- two players: Spoiler and Algorithm,
- the game is played in rounds, during each round:
- Spoiler introduces a new point with his comparability status to already presented points,
- Algorithm assigns this new point to a chain.
- Algorithm tries to use as small number of colors as possible,
- Spoiler tries to force Algorithm to use as many colors as possible.

on-line chain partitioning

- two players: Spoiler and Algorithm,
- the game is played in rounds, during each round:
- Spoiler introduces a new point with his comparability status to already presented points,
- Algorithm assigns this new point to a chain.
- Algorithm tries to use as small number of colors as possible,
- Spoiler tries to force Algorithm to use as many colors as possible.

on-line chain partitioning

- two players: Spoiler and Algorithm,
- the game is played in rounds, during each round:
- Spoiler introduces a new point with his comparability status to already presented points,
- Algorithm assigns this new point to a chain.
- Algorithm tries to use as small number of colors as possible,
- Spoiler tries to force Algorithm to use as many colors as possible.

on-line chain partitioning

- two players: Spoiler and Algorithm,
- the game is played in rounds, during each round:
- Spoiler introduces a new point with his comparability status to already presented points,
- Algorithm assigns this new point to a chain.
- Algorithm tries to use as small number of colors as possible,
- Spoiler tries to force Algorithm to use as many colors as possible.

on-line chain partitioning

- two players: Spoiler and Algorithm,
- the game is played in rounds, during each round:
- Spoiler introduces a new point with his comparability status to already presented points,
- Algorithm assigns this new point to a chain.
- Algorithm tries to use as small number of colors as possible,
- Spoiler tries to force Algorithm to use as many colors as possible.

on-line chain partitioning

- two players: Spoiler and Algorithm,
- the game is played in rounds, during each round:
- Spoiler introduces a new point with his comparability status to already presented points,
- Algorithm assigns this new point to a chain.
- Algorithm tries to use as small number of colors as possible,
- Spoiler tries to force Algorithm to use as many colors as possible.

on-line chain partitioning

- two players: Spoiler and Algorithm,
- the game is played in rounds, during each round:
- Spoiler introduces a new point with his comparability status to already presented points,
- Algorithm assigns this new point to a chain.
- Algorithm tries to use as small number of colors as possible,
- Spoiler tries to force Algorithm to use as many colors as possible.

on-line chain partitioning

- two players: Spoiler and Algorithm,
- the game is played in rounds, during each round:
- Spoiler introduces a new point with his comparability status to already presented points,
- Algorithm assigns this new point to a chain.
- Algorithm tries to use as small number of colors as possible,
- Spoiler tries to force Algorithm to use as many colors as possible.

on-line chain partitioning

- two players: Spoiler and Algorithm,
- the game is played in rounds, during each round:
- Spoiler introduces a new point with his comparability status to already presented points,
- Algorithm assigns this new point to a chain.
- Algorithm tries to use as small number of colors as possible,
- Spoiler tries to force Algorithm to use as many colors as possible.

on-line chain partitioning

- on-line result $=3$ colors
- two players: Spoiler and Algorithm,
- the game is played in rounds, during each round:
- Spoiler introduces a new point with his comparability status to already presented points,
- Algorithm assigns this new point to a chain.
- Algorithm tries to use as small number of colors as possible,
- Spoiler tries to force Algorithm to use as many colors as possible.

on-line chain partitioning

- on-line result $=3$ colors
- off-line result $=2$ colors
- two players: Spoiler and Algorithm,
- the game is played in rounds, during each round:
- Spoiler introduces a new point with his comparability status to already presented points,
- Algorithm assigns this new point to a chain.
- Algorithm tries to use as small number of colors as possible,
- Spoiler tries to force Algorithm to use as many colors as possible.

on-line chain partitioning

Estimate:

$\operatorname{ocp}(w)$ - the minimum n such that Algorithm has a strategy to partition any poset of width w into at most n chains

on-line chain partitioning

Estimate:
$\operatorname{ocp}(w)$ - the minimum n such that Algorithm has a strategy to partition any poset of width w into at most n chains

Theorem (Szemerédi 1981; Kierstead 1981)

$$
\binom{w+1}{2} \leqslant \operatorname{ocp}(w) \leqslant \frac{5^{w}-1}{4}
$$

on-line chain partitioning

Estimate:
$\operatorname{ocp}(w)$ - the minimum n such that Algorithm has a strategy to partition any poset of width w into at most n chains

Theorem (Szemerédi 1981; Kierstead 1981)

$$
\begin{gathered}
\binom{w+1}{2} \leqslant \operatorname{ocp}(w) \leqslant \frac{5^{w}-1}{4} \\
\operatorname{ocp}(w) \leqslant \operatorname{poly}(w) ?
\end{gathered}
$$

first-fit

first-fit - on-line algorithm that always
uses the lowest possible number

first-fit

first-fit - on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)
There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2 .

first-fit

first-fit - on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)
There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2 .

first-fit

first-fit - on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)
There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2 .

first-fit

first-fit - on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)
There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2 .

first-fit

first-fit - on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2 .

first-fit

first-fit - on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2 .

first-fit

first-fit - on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2 .

first-fit

first-fit - on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2 .

first-fit

first-fit - on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2 .

first-fit

first-fit - on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2 .

first-fit

first-fit - on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2 .

first-fit

first-fit - on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2 .

first-fit

first-fit - on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2 .

first-fit

first-fit - on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2 .

first-fit

first-fit - on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)
There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2 .

first-fit

first-fit - on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)
There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2 .

first-fit

first-fit - on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)
There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2 .

first-fit

first-fit - on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)
There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2 .

first-fit

first-fit - on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2 .

first-fit

first-fit - on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2 .

Remarks

- First-Fit works well for some classes of posets (e.g. interval posets)
- is used as a subroutine in on-line algorithms that give subexponential
 bounds on ocp(w).

first-fit

$f_{Q}(w)$ - the maximum number of chains used by first-fit on Q-free posets of width w

on-line chain partitioning

Theorem (Bosek, Krawczyk 2009)

$$
\operatorname{ocp}(w) \leqslant w^{13 \log w}
$$

on-line chain partitioning

Theorem (Bosek, Krawczyk 2009)

$$
o c p(w) \leqslant w^{13 \log w}
$$

Remarks

- First-Fit on $2 w+2 w$-free posets is used as a subroutine
- First-Fit works efficiently on $k+k$-free posets!

First-Fit for $k+k$-free posets

Upper bounds on $f_{\underline{k+k}}(w)$:

- $3 k w^{2}$, Bosek, Krawczyk, Szczypka 2008
- $8 k^{2} w$, Joret, Milans 2010
- 16kw, Dujmović, Joret, Wood 2011 (G. Joret talk).

Lower bounds on $f_{k+k}(w)$:

- $(k-1)(w-1)$, Dujmović, Joret, Wood 2011.

on-line chain partitioning

Theorem (2011)

$$
\operatorname{ocp}(w) \leqslant w^{3+6.5 \log w}
$$

on-line chain partitioning

Theorem (2011)

$$
\operatorname{ocp}(w) \leqslant w^{3+6.5 \log w}
$$

Remark
First-Fit on $L\left(2,2 w^{2}\right)$-free posets is used as a subroutine

on-line chain partitioning

Theorem (2011)

$$
\operatorname{ocp}(w) \leqslant w^{3+6.5 \log w}
$$

Remark

First-Fit on $L\left(2,2 w^{2}\right)$-free posets is used as a subroutine

Proof:

- ocp $(w) \leqslant w \cdot f_{L\left(2,2 w^{2}\right)}(w)$, Bosek, Krawczyk 2009
- $f_{L(2, m)}(w) \leqslant w^{2.5 \log w+2 \log m}$, Kierstead, M.Smith 2011 (M. Smith talk)
- subexponential bound on $\operatorname{ocp}(w)$ is best possible in this approach, Bosek, Matecki 2012

question

Question (Joret, Milans 2010)
For which posets Q there is a function f_{Q} such that First-Fit partitions Q-free posets of width w into at most $f_{Q}(w)$ chains.

question

Question (Joret, Milans 2010)
For which posets Q there is a function f_{Q} such that First-Fit partitions Q-free posets of width w into at most $f_{Q}(w)$ chains.

Remarks

- Q must be a poset of width 2,

question

Question (Joret, Milans 2010)
For which posets Q there is a function f_{Q} such that First-Fit partitions Q-free posets of width w into at most $f_{Q}(w)$ chains.

Remarks

- Q must be a poset of width 2,
- f_{Q} exists for:

question

Question (Joret, Milans 2010)
For which posets Q there is a function f_{Q} such that First-Fit partitions Q-free posets of width w into at most $f_{Q}(w)$ chains.

Remarks

- Q must be a poset of width 2,
- f_{Q} exists for:
- $\underline{k+k}: f_{\underline{k+k}}(w) \leqslant 16 k w$,

question

Question (Joret, Milans 2010)
For which posets Q there is a function f_{Q} such that First-Fit partitions Q-free posets of width w into at most $f_{Q}(w)$ chains.

Remarks

- Q must be a poset of width 2,
- f_{Q} exists for:
- $\underline{k+k}: f_{\underline{k+k}}(w) \leqslant 16 k w$,
- $L(2, m): f_{L(2, m)} \leqslant w^{2.5 \log w+2 \log m}$,

question

Question (Joret, Milans 2010)
For which posets Q there is a function f_{Q} such that First-Fit partitions Q-free posets of width w into at most $f_{Q}(w)$ chains.

Remarks

- Q must be a poset of width 2,
- f_{Q} exists for:
- $\underline{k+k}: f_{k+k}(w) \leqslant 16 k w$,
- $L(2, m): f_{L(2, m)} \leqslant w^{2.5 \log w+2 \log m}$,
- L(2,2): $f_{L(2,2)}(w)=w^{2}$ (tight result: Matecki 2011; Kierstead, M.Smith 2011)

main result

Theorem (Bosek, Matecki, Krawczyk 2010)
Let Q be a poset. There exists a function f_{Q} such that First-Fit partitions Q-free posets of width w into at most $f_{Q}(w)$ chains iff Q is a poset of width 2 .

main result

Theorem (Bosek, Matecki, Krawczyk 2010)
Let Q be a poset. There exists a function f_{Q} such that First-Fit partitions Q-free posets of width w into at most $f_{Q}(w)$ chains iff Q is a poset of width 2 .

Remark
If First-Fit uses unlimited number of chains on a (countable) poset P of width w then P contains all width 2 posets.

idea of the proof - ladders (1)

Ladders:

- universal posets of width 2, parameterized by two
variables

idea of the proof - ladders (1)

Ladders:

- universal posets of width 2, parameterized by two variables

Lemma

For any poset Q of width 2 there exist sufficiently large s, t such that Q is contained in $L(s, t)$.

idea of the proof - ladders (2)

Lemma
For any poset Q of width 2 there exist sufficiently large s, t such that Q is contained in $L(s, t)$.

idea of the proof - ladders (2)

Lemma

For any poset Q of width 2 there exist sufficiently large s, t such that Q is contained in $L(s, t)$.

the Kierstead's example

Remark

The poset from the Kierstead's example must contain all posets of width 2 .

the Kierstead's example

Remark

The poset from the Kierstead's example must contain all posets of width 2 .

the Kierstead's example

Remark

The poset from the Kierstead's example must contain all posets of width 2 .

idea of the proof - wall

Definition

Let (P, \leqslant) be a poset. An ordered chain partition $C_{1}, C_{2}, \ldots, C_{k}$ of (P, \leqslant) is a wall of size k if for any $x \in C_{i}$ and for any chain $C_{j}, j<i$, there is a point in C_{j} that is incomparable to x.

idea of the proof - wall

Definition
Let (P, \leqslant) be a poset. An ordered chain partition $C_{1}, C_{2}, \ldots, C_{k}$ of (P, \leqslant) is a wall of size k if for any $x \in C_{i}$ and for any chain $C_{j}, j<i$, there is a point in C_{j} that is incomparable to x.

idea of the proof - wall

Definition
Let (P, \leqslant) be a poset. An ordered chain partition $C_{1}, C_{2}, \ldots, C_{k}$ of (P, \leqslant) is a wall of size k if for any $x \in C_{i}$ and for any chain $C_{j}, j<i$, there is a point in C_{j} that is incomparable to x.

idea of the proof - wall

Definition
Let (P, \leqslant) be a poset. An ordered chain partition $C_{1}, C_{2}, \ldots, C_{k}$ of (P, \leqslant) is a wall of size k if for any $x \in C_{i}$ and for any chain $C_{j}, j<i$, there is a point in C_{j} that is incomparable to x.

idea of the proof - wall

Definition
Let (P, \leqslant) be a poset. An ordered chain partition $C_{1}, C_{2}, \ldots, C_{k}$ of (P, \leqslant) is a wall of size k if for any $x \in C_{i}$ and for any chain $C_{j}, j<i$, there is a point in C_{j} that is incomparable to x.

idea of the proof - wall

Definition

Let (P, \leqslant) be a poset. An ordered chain partition $C_{1}, C_{2}, \ldots, C_{k}$ of (P, \leqslant) is a wall of size k if for any $x \in C_{i}$ and for any chain $C_{j}, j<i$, there is a point in C_{j} that is incomparable to x.

Remark

The maximum number of colors used by First-Fit on (P, \leqslant) is equal to the maximum size of a wall in (P, \leqslant).

- First-Fit coloring of (P, \leqslant) in the order $C_{1}<C_{2}<\ldots<C_{k}$ uses k colors,
- a partition C_{1}, \ldots, C_{k} produced by first-fit is a wall in (P, \leqslant).

idea of the proof

We show that for every $s, t>1$ the following holds:

- any wall of width $w \geq 2$ and 'sufficiently large' size (i.e. first-fit uses a lot of colors) contains an (s, t)-ladder.

idea of the proof

We show that for every $s, t>1$ the following holds:

- any wall of width $w \geq 2$ and 'sufficiently large' size (i.e. first-fit uses a lot of colors) contains an (s, t)-ladder.
- we 'are looking' for the 'wall-style' ladders

idea of the proof

We show that for every $s, t>1$ the following holds:

- any wall of width $w \geq 2$ and 'sufficiently large' size (i.e. first-fit uses a lot of colors) contains an (s, t)-ladder.
- we 'are looking' for the 'wall-style' ladders

idea of the proof

First part:

idea of the proof

First part:

- every 'sufficiently large' wall of width $w \geq 2$ contains $L(2, t)$ ladder (M. Smith talk)

idea of the proof

First part:

- every 'sufficiently large' wall of width $w \geq 2$ contains $L(2, t)$ ladder (M. Smith talk)

Second part:

idea of the proof

First part:

- every 'sufficiently large' wall of width $w \geq 2$ contains $L(2, t)$ ladder (M. Smith talk)

Second part:

- for every s, if $L(2, t)$ is large enough, then we may attach another level to $L(2, t)$ to get $L(3, s)$

idea of the proof

First part:

- every 'sufficiently large' wall of width $w \geq 2$ contains $L(2, t)$ ladder (M. Smith talk)

Second part:

- for every s, if $L(2, t)$ is large enough, then we may attach another level to $L(2, t)$ to get $L(3, s)$

We focus on $L(3,4)$.
idea of the proof

idea of the proof

idea of the proof

- x, y - two points from A_{3}, x is to the left of y :

$$
x \| y \text { or } x \geq y
$$

idea of the proof

- x, y - two points from A_{3}, x is to the left of y :

$$
x \| y \text { or } x \geq y
$$

idea of the proof

- x, y - two points from A_{3}, x is to the left of y :

$$
x \| y \text { or } x \geq y
$$

- there is a large decreasing chain C in A_{3}

idea of the proof

- x, y - two points from A_{3}, x is to the left of y :

$$
x \| y \text { or } x \geq y
$$

- there is a large decreasing chain C in A_{3}
- choose the chains from the wall that have some elements
 in C

idea of the proof

- x, y - two points from A_{3}, x is to the left of y :

$$
x \| y \text { or } x \geq y
$$

- there is a large decreasing chain C in A_{3}
- choose the chains from the wall that have some elements
 in C
- C can be arbitrarily large!
idea of the proof

idea of the proof

- $x \in A_{3}, y \in A_{1}, x$ is 'far' to the left of y :

$$
x \| y
$$

idea of the proof

- $x \in A_{3}, y \in A_{1}, x$ is 'far' to the left of y :

$$
x \| y
$$

idea of the proof

- $x \in A_{3}, y \in A_{1}, x$ is 'far' to the left of y :

$$
x \| y
$$

idea of the proof

- $x \in A_{3}, y \in A_{1}, x$ is 'far' to the left of y :

$$
x \| y
$$

idea of the proof

- $x \in A_{3}, y \in A_{1}, x$ is 'far' to the left of y :

$$
x \| y
$$

idea of the proof

- $x \in A_{3}, y \in A_{1}, x$ is 'far' to the left of y :

$$
x \| y
$$

idea of the proof

- $x \in A_{3}, y \in A_{1}, x$ is 'far' to the left of y :

$$
x \| y
$$

- choose every 4-th chain of the wall

idea of the proof

- $x \in A_{3}, y \in A_{1}, x$ is 'far' to the left of y :

$$
x \| y
$$

- choose every 4-th chain of the wall
- chosen points from A_{1} and A_{3} form $L(2, *)$

idea of the proof

- $x \in A_{3}, y \in A_{1}, x$ is 'far' to the left of y :

$$
x \| y
$$

- choose every 4-th chain of the wall
- chosen points from A_{1} and A_{3} form $L(2, *)$
- choose the set A_{4}

idea of the proof

- $x \in A_{3}, y \in A_{1}, x$ is 'far' to the left of y :

$$
x \| y
$$

- choose every 4-th chain of the wall
- chosen points from A_{1} and A_{3} form $L(2, *)$
- choose the set A_{4}
- each element in A_{4} is below
 some element in A_{2}

idea of the proof

- $x \in A_{3}, y \in A_{1}, x$ is 'far' to the left of y :

$$
x \| y
$$

- choose every 4-th chain of the wall
- chosen points from A_{1} and A_{3} form $L(2, *)$
- choose the set A_{4}
- each element in A_{4} is below
 some element in A_{2}
- we construct the sets $A_{3}, A_{4}, A_{5}, A_{6}$, e.t.c.

idea of the proof

- consider $L(2, *)$ formed by A_{1} and A_{6}

idea of the proof

- consider $L(2, *)$ formed by A_{1} and A_{6}
- x is incomparable to z

idea of the proof

- consider $L(2, *)$ formed by A_{1} and A_{6}
- x is incomparable to z
- x is incomparable to $y \Uparrow \cap z \Downarrow$

idea of the proof

- consider $L(2, *)$ formed by A_{1} and A_{6}
- x is incomparable to z
- x is incomparable to $y \Uparrow \cap z \Downarrow$
- $y \Uparrow \cap z \Downarrow$ induces a subwall of width $w-1$

idea of the proof

- consider $L(2, *)$ formed by A_{1} and A_{6}
- x is incomparable to z
- x is incomparable to $y \Uparrow \cap z \Downarrow$
- $y \Uparrow \cap z \Downarrow$ induces a subwall of width $w-1$
- by induction, if the wall $y \Uparrow \cap z \Downarrow$ is large enough then it contains $L(3,4)$ ladder

open problems

We have:

open problems

We have:

- a subexponential bound on $f_{L(2, m)}$, M. Smith, Kierstead 2011

open problems

We have:

- a subexponential bound on $f_{L(2, m)}$, M. Smith, Kierstead 2011
- a bound on $f_{L(s, m)}$, Bosek, Krawczyk, Matecki 2010

open problems

We have:

- a subexponential bound on $f_{L(2, m)}$, M. Smith, Kierstead 2011
- a bound on $f_{L(s, m)}$, Bosek, Krawczyk, Matecki 2010
- there is no constant c such that $f_{Q}(w) \leqslant w^{c}$ for every poset Q of width 2, Bosek, Matecki 2012

Open problems:

open problems

We have:

- a subexponential bound on $f_{L(2, m)}$, M. Smith, Kierstead 2011
- a bound on $f_{L(s, m)}$, Bosek, Krawczyk, Matecki 2010
- there is no constant c such that $f_{Q}(w) \leqslant w^{c}$ for every poset Q of width 2, Bosek, Matecki 2012

Open problems:

- find posets Q for which $f_{Q}(w) \leqslant \operatorname{poly}(w)$

open problems

We have:

- a subexponential bound on $f_{L(2, m)}$, M. Smith, Kierstead 2011
- a bound on $f_{L(s, m)}$, Bosek, Krawczyk, Matecki 2010
- there is no constant c such that $f_{Q}(w) \leqslant w^{c}$ for every poset Q of width 2, Bosek, Matecki 2012

Open problems:

- find posets Q for which $f_{Q}(w) \leqslant \operatorname{poly}(w)$
- prove a subexponential bound on $f_{L(3, m)}$ and then for $f_{L(s, m)}$ (and hence for every Q of width 2)

Thank You!

