Forbidden structures for efficient First-Fit chain partitioning

Bartłomiej Bosek Tomasz Krawczyk (speaker) and Grzegorz Matecki

{bosek, krawczyk, matecki}@tcs.uj.edu.pl

2012 SIAM Conference on Discrete Mathematics Halifax, 18-21 June, 2012

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

chain partitioning

- $P = (X, \leq)$
- ▶ antichain, w(P)
- chain
- a chain partition of P = (X, ≤) is a family of disjoint chains C₁,..., C_k so that C₁ ∪ ... ∪ C_k = X

Theorem (Dilworth 1950)

Every poset P can be partitioned into w(P) chains.

Example

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

- two players: Spoiler and Algorithm,
- the game is played in rounds,

during each round:

- Spoiler introduces a new point with his comparability status to already presented points,
- Algorithm assigns this new point to a chain.
- Algorithm tries to use as small number of colors as possible,
- Spoiler tries to force Algorithm to use as many colors as possible.

(日) (中) (日) (日) (日) (日) (日)

- two players: Spoiler and Algorithm,
- the game is played in rounds,

during each round:

- Spoiler introduces a new point with his comparability status to already presented points,
- Algorithm assigns this new point to a chain.
- Algorithm tries to use as small number of colors as possible,
- Spoiler tries to force Algorithm to use as many colors as possible.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

- two players: Spoiler and Algorithm,
- the game is played in rounds,

during each round:

- Spoiler introduces a new point with his comparability status to already presented points,
- Algorithm assigns this new point to a chain.
- Algorithm tries to use as small number of colors as possible,
- Spoiler tries to force Algorithm to use as many colors as possible.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うらつ

the game is played in rounds,

during each round:

- Spoiler introduces a new point with his comparability status to already presented points,
- Algorithm assigns this new point to a chain.
- Algorithm tries to use as small number of colors as possible,
- Spoiler tries to force Algorithm to use as many colors as possible.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

- two players: Spoiler and Algorithm,
- the game is played in rounds,

during each round:

- Spoiler introduces a new point with his comparability status to already presented points,
- Algorithm assigns this new point to a chain.
- Algorithm tries to use as small number of colors as possible,
- Spoiler tries to force Algorithm to use as many colors as possible.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

- two players: Spoiler and Algorithm,
- the game is played in rounds,

during each round:

- Spoiler introduces a new point with his comparability status to already presented points,
- Algorithm assigns this new point to a chain.
- Algorithm tries to use as small number of colors as possible,
- Spoiler tries to force Algorithm to use as many colors as possible.

- two players: Spoiler and Algorithm,
- the game is played in rounds,

during each round:

- Spoiler introduces a new point with his comparability status to already presented points,
- Algorithm assigns this new point to a chain.
- Algorithm tries to use as small number of colors as possible,
- Spoiler tries to force Algorithm to use as many colors as possible.

- two players: Spoiler and Algorithm,
- the game is played in rounds,

during each round:

- Spoiler introduces a new point with his comparability status to already presented points,
- Algorithm assigns this new point to a chain.
- Algorithm tries to use as small number of colors as possible,
- Spoiler tries to force Algorithm to use as many colors as possible.

- two players: Spoiler and Algorithm,
- the game is played in rounds,

during each round:

- Spoiler introduces a new point with his comparability status to already presented points,
- Algorithm assigns this new point to a chain.
- Algorithm tries to use as small number of colors as possible,
- Spoiler tries to force Algorithm to use as many colors as possible.

- two players: Spoiler and Algorithm,
- the game is played in rounds,

during each round:

- Spoiler introduces a new point with his comparability status to already presented points,
- Algorithm assigns this new point to a chain.
- Algorithm tries to use as small number of colors as possible,
- Spoiler tries to force Algorithm to use as many colors as possible.

- two players: Spoiler and Algorithm,
- the game is played in rounds,

during each round:

- Spoiler introduces a new point with his comparability status to already presented points,
- Algorithm assigns this new point to a chain.
- Algorithm tries to use as small number of colors as possible,
- Spoiler tries to force Algorithm to use as many colors as possible.

on-line result = 3 colors

- two players: Spoiler and Algorithm,
- the game is played in rounds,

during each round:

- Spoiler introduces a new point with his comparability status to already presented points,
- Algorithm assigns this new point to a chain.
- Algorithm tries to use as small number of colors as possible,
- Spoiler tries to force Algorithm to use as many colors as possible.

- on-line result = 3 colors
- off-line result = 2 colors

- two players: Spoiler and Algorithm,
- the game is played in rounds,

during each round:

- Spoiler introduces a new point with his comparability status to already presented points,
- Algorithm assigns this new point to a chain.
- Algorithm tries to use as small number of colors as possible,
- Spoiler tries to force Algorithm to use as many colors as possible.

Estimate: ocp(w) - the minimum *n* such that Algorithm has a strategy to partition any poset of width *w* into at most *n* chains

▲□▶ ▲課▶ ▲理▶ ★理▶ = 目 - の��

Estimate: ocp(w) - the minimum *n* such that Algorithm has a strategy to partition any poset of width *w* into at most *n* chains

Theorem (Szemerédi 1981; Kierstead 1981)

$$\binom{w+1}{2} \leqslant \operatorname{ocp}(w) \leqslant \frac{5^w - 1}{4}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Estimate: ocp(w) - the minimum n such that Algorithm has a strategy to partition any poset of width w into at most n chains

Theorem (Szemerédi 1981; Kierstead 1981)

$$\binom{w+1}{2} \leqslant \operatorname{ocp}(w) \leqslant \frac{5^w - 1}{4}$$

 $ocp(w) \leq poly(w)?$

first-fit – on-line algorithm that always uses the lowest possible number

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

 $\ensuremath{\textit{first-fit}}$ – on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

first-fit – on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2.

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のQ@

 $\ensuremath{\textit{first-fit}}$ – on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2.

• 2

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ うらつ

 $\ensuremath{\textit{first-fit}}$ – on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2.

 $\ensuremath{\textit{first-fit}}$ – on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2.

 $\ensuremath{\textit{first-fit}}$ – on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2.

 $\ensuremath{\textit{first-fit}}$ – on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2.

э

 $\ensuremath{\textit{first-fit}}$ – on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2.

 $\ensuremath{\textit{first-fit}}$ – on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2.

 $\ensuremath{\textit{first-fit}}$ – on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2.

・ロッ ・雪 ・ ・ ヨ ・

 $\ensuremath{\textit{first-fit}}$ – on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2.

 $\ensuremath{\textit{first-fit}}$ – on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2.

 $\ensuremath{\textit{first-fit}}$ – on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2.

 $\ensuremath{\textit{first-fit}}$ – on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2.

 $\ensuremath{\textit{first-fit}}$ – on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2.

 $\ensuremath{\textit{first-fit}}$ – on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2.

 $\ensuremath{\textit{first-fit}}$ – on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2.

$\ensuremath{\textit{first-fit}}$ – on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2.

(ロ) (部) (注) (注) (注)

 $\ensuremath{\textit{first-fit}}$ – on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2.

(ロ) (部) (注) (注) (注)

 $\ensuremath{\textit{first-fit}}$ – on-line algorithm that always uses the lowest possible number

Theorem (Kierstead 1986)

There exists a strategy for Spoiler that forces First-Fit to use infinitely many colors even if the game is played on orders of width 2.

Remarks

- First-Fit works well for some classes of posets (e.g. interval posets)
- is used as a subroutine in on-line algorithms that give subexponential bounds on ocp(w).

・ロト ・四ト ・ヨト ・ヨト ・ヨ

$f_Q(w)$ - the maximum number of chains used by first-fit on Q-free posets of width w

◆□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Bosek, Krawczyk 2009)

 $\operatorname{ocp}(w) \leqslant w^{13 \log w}$

▲□▶ ▲課▶ ▲理▶ ★理▶ = 目 - の��

Theorem (Bosek, Krawczyk 2009)

 $ocp(w) \leqslant w^{13 \log w}$

Remarks

- First-Fit on <u>2w+2w</u>-free posets is used as a subroutine
- First-Fit works efficiently on <u>k+k</u>-free posets!

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ

First-Fit for k + k-free posets

Upper bounds on $f_{\underline{k+k}}(w)$:

- 3kw², Bosek, Krawczyk, Szczypka 2008
- ▶ 8k²w, Joret, Milans 2010
- ▶ 16kw, Dujmović, Joret, Wood 2011 (G. Joret talk).

Lower bounds on $f_{\underline{k+k}}(w)$:

▶ (*k* − 1)(*w* − 1), Dujmović, Joret, Wood 2011.

・ロト ・ 日 ・ モー・ モー・ うへぐ

```
Theorem (2011)
```

 $ocp(w) \leqslant w^{3+6.5 \log w}$

◆□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (2011)

$$\mathsf{ocp}(w) \leqslant w^{3+6.5 \log w}$$

Remark First-Fit on $L(2, 2w^2)$ -free posets is used as a subroutine

æ

Theorem (2011)

$$ocp(w) \leqslant w^{3+6.5 \log w}$$

Remark

First-Fit on $L(2, 2w^2)$ -free posets is used as a subroutine

Proof:

- $ocp(w) \leq w \cdot f_{L(2,2w^2)}(w)$, Bosek, Krawczyk 2009
- *f*_{L(2,m)}(w) ≤ w^{2.5 log w+2 log m}, Kierstead, M.Smith 2011 (M. Smith talk)
- subexponential bound on ocp(w) is best possible in this approach, Bosek, Matecki 2012

Question (Joret, Milans 2010)

For which posets Q there is a function f_Q such that First-Fit partitions Q-free posets of width w into at most $f_Q(w)$ chains.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Question (Joret, Milans 2010)

For which posets Q there is a function f_Q such that First-Fit partitions Q-free posets of width w into at most $f_Q(w)$ chains.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Remarks

▶ Q must be a poset of width 2,

Question (Joret, Milans 2010)

For which posets Q there is a function f_Q such that First-Fit partitions Q-free posets of width w into at most $f_Q(w)$ chains.

(日) (中) (日) (日) (日) (日) (日)

Remarks

- ▶ Q must be a poset of width 2,
- ► f_Q exists for:

Question (Joret, Milans 2010)

For which posets Q there is a function f_Q such that First-Fit partitions Q-free posets of width w into at most $f_Q(w)$ chains.

(日) (中) (日) (日) (日) (日) (日)

Remarks

- ▶ Q must be a poset of width 2,
- ► f_Q exists for:

•
$$\underline{k+k}$$
: $f_{\underline{k+k}}(w) \leq 16 kw$,

Question (Joret, Milans 2010)

For which posets Q there is a function f_Q such that First-Fit partitions Q-free posets of width w into at most $f_Q(w)$ chains.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ

Remarks

- ▶ Q must be a poset of width 2,
- ► f_Q exists for:

•
$$\underline{k+k}$$
: $f_{\underline{k+k}}(w) \leq 16 kw$,

• $L(2,m): f_{L(2,m)} \leq w^{2.5 \log w + 2 \log m}$

Question (Joret, Milans 2010)

For which posets Q there is a function f_Q such that First-Fit partitions Q-free posets of width w into at most $f_Q(w)$ chains.

Remarks

- Q must be a poset of width 2,
- ► f_Q exists for:

•
$$\underline{k+k}$$
: $f_{\underline{k+k}}(w) \leq 16 kw$,

- L(2,m): $f_{L(2,m)} \leq w^{2.5 \log w + 2 \log m}$,
- L(2,2): f_{L(2,2)}(w) = w² (tight result: Matecki 2011; Kierstead, M.Smith 2011)

(日) (中) (日) (日) (日) (日) (日)

main result

Theorem (Bosek, Matecki, Krawczyk 2010)

Let Q be a poset. There exists a function f_Q such that First-Fit partitions Q-free posets of width w into at most $f_Q(w)$ chains iff Q is a poset of width 2.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

main result

Theorem (Bosek, Matecki, Krawczyk 2010)

Let Q be a poset. There exists a function f_Q such that First-Fit partitions Q-free posets of width w into at most $f_Q(w)$ chains iff Q is a poset of width 2.

Remark

If First-Fit uses unlimited number of chains on a (countable) poset *P* of width *w* then *P* contains all width 2 posets.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ

idea of the proof - ladders (1)

Ladders:

 universal posets of width 2, parameterized by two variables

▲□▶ ▲録▶ ▲臣▶ ★臣▶ ―臣 …の�?

idea of the proof - ladders (1)

Ladders:

 universal posets of width 2, parameterized by two variables

Lemma

For any poset Q of width 2 there exist sufficiently large s, t such that Q is contained in L(s, t).

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ つ へ つ

idea of the proof - ladders (2)

Lemma

For any poset Q of width 2 there exist sufficiently large s, t such that Q is contained in L(s, t).

idea of the proof - ladders (2)

Lemma

For any poset Q of width 2 there exist sufficiently large s, t such that Q is contained in L(s, t).

the Kierstead's example

Remark

The poset from the Kierstead's example must contain all posets of width 2.

the Kierstead's example

Remark

The poset from the Kierstead's example must contain all posets of width 2.

・ロト ・四ト ・ヨト ・ヨト

the Kierstead's example

Remark

The poset from the Kierstead's example must contain all posets of width 2.

・ロト ・四ト ・ヨト ・ヨト

æ

Definition

Let (P, \leq) be a poset. An ordered chain partition C_1, C_2, \ldots, C_k of (P, \leq) is a **wall** of size k if for any $x \in C_i$ and for any chain $C_j, j < i$, there is a point in C_j that is incomparable to x.

Definition

Let (P, \leq) be a poset. An ordered chain partition C_1, C_2, \ldots, C_k of (P, \leq) is a **wall** of size k if for any $x \in C_i$ and for any chain $C_j, j < i$, there is a point in C_j that is incomparable to x.

Definition

Let (P, \leq) be a poset. An ordered chain partition C_1, C_2, \ldots, C_k of (P, \leq) is a **wall** of size k if for any $x \in C_i$ and for any chain $C_j, j < i$, there is a point in C_j that is incomparable to x.

Definition

Let (P, \leq) be a poset. An ordered chain partition C_1, C_2, \ldots, C_k of (P, \leq) is a **wall** of size k if for any $x \in C_i$ and for any chain $C_j, j < i$, there is a point in C_j that is incomparable to x.

Definition

Let (P, \leq) be a poset. An ordered chain partition C_1, C_2, \ldots, C_k of (P, \leq) is a **wall** of size k if for any $x \in C_i$ and for any chain $C_j, j < i$, there is a point in C_j that is incomparable to x.

Definition

Let (P, \leq) be a poset. An ordered chain partition C_1, C_2, \ldots, C_k of (P, \leq) is a **wall** of size k if for any $x \in C_i$ and for any chain $C_j, j < i$, there is a point in C_j that is incomparable to x.

◆□> ◆□> ◆豆> ◆豆> □目

Remark

The maximum number of colors used by First-Fit on (P, \leq) is equal to the maximum size of a wall in (P, \leq) .

- ▶ First-Fit coloring of (P, \leq) in the order $C_1 < C_2 < ... < C_k$ uses k colors,
- ▶ a partition C_1, \ldots, C_k produced by first-fit is a wall in (P, \leq) .

We show that for every s, t > 1 the following holds:

▶ any wall of width w ≥ 2 and 'sufficiently large' size (i.e. first-fit uses a lot of colors) contains an (s, t)-ladder.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

We show that for every s, t > 1 the following holds:

▶ any wall of width w ≥ 2 and 'sufficiently large' size (i.e. first-fit uses a lot of colors) contains an (s, t)-ladder.

 we 'are looking' for the 'wall-style' ladders

We show that for every s, t > 1 the following holds:

▶ any wall of width w ≥ 2 and 'sufficiently large' size (i.e. first-fit uses a lot of colors) contains an (s, t)-ladder.

First part:

▲□▶
▲□▶
■▶
■▶
■▶
■▶

First part:

► every 'sufficiently large' wall of width w ≥ 2 contains L(2, t) ladder (M. Smith talk)

First part:

 every 'sufficiently large' wall of width w ≥ 2 contains L(2, t) ladder (M. Smith talk)

Second part:

< ロ > < 同 > < 回 > < 回 >

First part:

 every 'sufficiently large' wall of width w ≥ 2 contains L(2, t) ladder (M. Smith talk)

Second part:

for every s, if L(2, t) is large enough, then we may attach another level to L(2, t) to get L(3, s)

< ロ > < 同 > < 回 > < 回 >

First part:

► every 'sufficiently large' wall of width w ≥ 2 contains L(2, t) ladder (M. Smith talk)

Second part:

for every s, if L(2, t) is large enough, then we may attach another level to L(2, t) to get L(3, s)

We focus on L(3, 4).

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

э

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ = ヨ = のへで

▲□▶ ▲圖▶ ▲厘▶

∍⊳

x, y - two points from A₃, x is to the left of y:

 $x || y \text{ or } x \ge y$

(日)

x, y - two points from A₃, x is to the left of y:

 $x || y \text{ or } x \ge y$

x, y - two points from A₃, x is to the left of y:

 $x || y \text{ or } x \ge y$

► there is a large decreasing chain C in A₃

x, y - two points from A₃, x is to the left of y:

 $x || y \text{ or } x \ge y$

- ► there is a large decreasing chain C in A₃
- choose the chains from the wall that have some elements in C

< ロ > < 同 > < 回 > < 回 >

э

x, y - two points from A₃, x is to the left of y:

 $x || y \text{ or } x \ge y$

- ► there is a large decreasing chain C in A₃
- choose the chains from the wall that have some elements in C
- C can be arbitrarily large!

< ロ > < 同 > < 回 > < 回 >

• $x \in A_3$, $y \in A_1$, x is 'far' to the left of y:

・ロト ・日 ・ ・ ヨ ・ ・

• $x \in A_3$, $y \in A_1$, x is 'far' to the left of y:

・ロト ・日下・ ・ ヨト・

∍⊳

• $x \in A_3$, $y \in A_1$, x is 'far' to the left of y:

x||y

・ロト ・ 日 ・ ・ 目 ・ ・

• $x \in A_3$, $y \in A_1$, x is 'far' to the left of y:

x||y

・ロト ・ 日 ・ ・ 目 ・ ・

• $x \in A_3$, $y \in A_1$, x is 'far' to the left of y:

x||y

・ロト ・ 日 ・ ・ 目 ・ ・

• $x \in A_3$, $y \in A_1$, x is 'far' to the left of y:

・ロト ・ 日 ・ ・ 目 ・ ・

• $x \in A_3$, $y \in A_1$, x is 'far' to the left of y:

x||y|

 choose every 4—th chain of the wall

3. 3

• $x \in A_3$, $y \in A_1$, x is 'far' to the left of y:

x || y

- choose every 4—th chain of the wall
- chosen points from A₁ and A₃ form L(2,*)

(日) (同) (三)

• $x \in A_3$, $y \in A_1$, x is 'far' to the left of y:

x || y

- choose every 4—th chain of the wall
- chosen points from A₁ and
 A₃ form L(2,*)
- choose the set A₄

(日) (同) (三)

• $x \in A_3$, $y \in A_1$, x is 'far' to the left of y:

x || y

- choose every 4—th chain of the wall
- chosen points from A₁ and
 A₃ form L(2,*)
- choose the set A₄
- each element in A₄ is below some element in A₂

< ロ > < 同 > < 回 > < 回 >

• $x \in A_3$, $y \in A_1$, x is 'far' to the left of y:

x || y

- choose every 4—th chain of the wall
- chosen points from A₁ and
 A₃ form L(2,*)
- choose the set A₄
- each element in A₄ is below some element in A₂
- ▶ we construct the sets A₃, A₄, A₅, A₆, e.t.c.

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

 consider L(2,*) formed by A₁ and A₆

(日) (四) (日)

æ

- consider L(2,*) formed by A₁ and A₆
- ► x is incomparable to z

(日) (四) (日)

э

- consider L(2,*) formed by A₁ and A₆
- ► x is incomparable to z
- x is incomparable to $y \Uparrow \cap z \Downarrow$

A 日 > A 同 > A 回 >

- consider L(2,*) formed by A₁ and A₆
- ► x is incomparable to z
- x is incomparable to $y \Uparrow \cap z \Downarrow$
- y↑∩ z↓ induces a subwall of width w - 1

(日) (四) (日)

- consider L(2,*) formed by A₁ and A₆
- x is incomparable to z
- x is incomparable to $y \Uparrow \cap z \Downarrow$
- y ↑ ∩ z ↓ induces a subwall of width w - 1
- by induction, if the wall y↑∩ z↓ is large enough then it contains L(3, 4) ladder

(日) (四) (日)

We have:

We have:

▶ a subexponential bound on $f_{L(2,m)}$, M. Smith, Kierstead 2011

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We have:

▶ a subexponential bound on $f_{L(2,m)}$, M. Smith, Kierstead 2011

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

▶ a bound on $f_{L(s,m)}$, Bosek, Krawczyk, Matecki 2010

We have:

- ▶ a subexponential bound on $f_{L(2,m)}$, M. Smith, Kierstead 2011
- ▶ a bound on $f_{L(s,m)}$, Bosek, Krawczyk, Matecki 2010
- ► there is no constant c such that f_Q(w) ≤ w^c for every poset Q of width 2, Bosek, Matecki 2012

Open problems:

We have:

- ▶ a subexponential bound on $f_{L(2,m)}$, M. Smith, Kierstead 2011
- ► a bound on *f_{L(s,m)}*, Bosek, Krawczyk, Matecki 2010
- ► there is no constant c such that f_Q(w) ≤ w^c for every poset Q of width 2, Bosek, Matecki 2012

Open problems:

• find posets Q for which $f_Q(w) \leq poly(w)$

We have:

- ▶ a subexponential bound on $f_{L(2,m)}$, M. Smith, Kierstead 2011
- ▶ a bound on $f_{L(s,m)}$, Bosek, Krawczyk, Matecki 2010
- ► there is no constant c such that f_Q(w) ≤ w^c for every poset Q of width 2, Bosek, Matecki 2012

Open problems:

- find posets Q for which $f_Q(w) \leq poly(w)$
- prove a subexponential bound on f_{L(3,m)} and then for f_{L(s,m)} (and hence for every Q of width 2)

Thank You!

◆□ → ◆□ → ◆三 → ◆三 → ● ● ● ● ●