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chain partitioning
I P = (X ,6)

I antichain, w(P)
I chain
I a chain partition of P = (X ,6) isa family of disjoint chains C1, . . . ,Ckso that C1 ∪ . . . ∪ Ck = XTheorem (Dilworth 1950)Every poset P can be partitioned into w(P)chains.

Example



on-line chain partitioning
I two players: Spoiler and Algorithm,
I the game is played in rounds,during each round:

I Spoiler introduces a new pointwith his comparability statusto already presented points,
I Algorithm assigns this newpoint to a chain.

I Algorithm tries to use as smallnumber of colors as possible,
I Spoiler tries to force Algorithm to useas many colors as possible.
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on-line chain partitioning

I on-line result = 3 colors
I two players: Spoiler and Algorithm,
I the game is played in rounds,during each round:

I Spoiler introduces a new pointwith his comparability statusto already presented points,
I Algorithm assigns this newpoint to a chain.
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on-line chain partitioning

I on-line result = 3 colors
I o�-line result = 2 colors

I two players: Spoiler and Algorithm,
I the game is played in rounds,during each round:

I Spoiler introduces a new pointwith his comparability statusto already presented points,
I Algorithm assigns this newpoint to a chain.

I Algorithm tries to use as smallnumber of colors as possible,
I Spoiler tries to force Algorithm to useas many colors as possible.



on-line chain partitioningEstimate:ocp(w) � the minimum n such that Algorithm has a strategyto partition any poset of width w into at most n chains
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on-line chain partitioningEstimate:ocp(w) � the minimum n such that Algorithm has a strategyto partition any poset of width w into at most n chainsTheorem (Szemerédi 1981; Kierstead 1981)
(w + 12 )

6 ocp(w) 6
5w − 14ocp(w) 6 poly(w)?



�rst-�t�rst-�t � on-line algorithm that alwaysuses the lowest possible number



�rst-�t�rst-�t � on-line algorithm that alwaysuses the lowest possible numberTheorem (Kierstead 1986)There exists a strategy for Spoiler thatforces First-Fit to use in�nitely manycolors even if the game is played onorders of width 2.



�rst-�t�rst-�t � on-line algorithm that alwaysuses the lowest possible numberTheorem (Kierstead 1986)There exists a strategy for Spoiler thatforces First-Fit to use in�nitely manycolors even if the game is played onorders of width 2.
1



�rst-�t�rst-�t � on-line algorithm that alwaysuses the lowest possible numberTheorem (Kierstead 1986)There exists a strategy for Spoiler thatforces First-Fit to use in�nitely manycolors even if the game is played onorders of width 2.
21



�rst-�t�rst-�t � on-line algorithm that alwaysuses the lowest possible numberTheorem (Kierstead 1986)There exists a strategy for Spoiler thatforces First-Fit to use in�nitely manycolors even if the game is played onorders of width 2.
211



�rst-�t�rst-�t � on-line algorithm that alwaysuses the lowest possible numberTheorem (Kierstead 1986)There exists a strategy for Spoiler thatforces First-Fit to use in�nitely manycolors even if the game is played onorders of width 2.
2113



�rst-�t�rst-�t � on-line algorithm that alwaysuses the lowest possible numberTheorem (Kierstead 1986)There exists a strategy for Spoiler thatforces First-Fit to use in�nitely manycolors even if the game is played onorders of width 2.
21132



�rst-�t�rst-�t � on-line algorithm that alwaysuses the lowest possible numberTheorem (Kierstead 1986)There exists a strategy for Spoiler thatforces First-Fit to use in�nitely manycolors even if the game is played onorders of width 2.
211321



�rst-�t�rst-�t � on-line algorithm that alwaysuses the lowest possible numberTheorem (Kierstead 1986)There exists a strategy for Spoiler thatforces First-Fit to use in�nitely manycolors even if the game is played onorders of width 2.
2141321



�rst-�t�rst-�t � on-line algorithm that alwaysuses the lowest possible numberTheorem (Kierstead 1986)There exists a strategy for Spoiler thatforces First-Fit to use in�nitely manycolors even if the game is played onorders of width 2.
21431321



�rst-�t�rst-�t � on-line algorithm that alwaysuses the lowest possible numberTheorem (Kierstead 1986)There exists a strategy for Spoiler thatforces First-Fit to use in�nitely manycolors even if the game is played onorders of width 2.
2143
2

1321



�rst-�t�rst-�t � on-line algorithm that alwaysuses the lowest possible numberTheorem (Kierstead 1986)There exists a strategy for Spoiler thatforces First-Fit to use in�nitely manycolors even if the game is played onorders of width 2.
2143
21

1321



�rst-�t�rst-�t � on-line algorithm that alwaysuses the lowest possible numberTheorem (Kierstead 1986)There exists a strategy for Spoiler thatforces First-Fit to use in�nitely manycolors even if the game is played onorders of width 2.
2143
21

1321
5



�rst-�t�rst-�t � on-line algorithm that alwaysuses the lowest possible numberTheorem (Kierstead 1986)There exists a strategy for Spoiler thatforces First-Fit to use in�nitely manycolors even if the game is played onorders of width 2.
2143
21

1321
54



�rst-�t�rst-�t � on-line algorithm that alwaysuses the lowest possible numberTheorem (Kierstead 1986)There exists a strategy for Spoiler thatforces First-Fit to use in�nitely manycolors even if the game is played onorders of width 2.
2143
21

1321
543



�rst-�t�rst-�t � on-line algorithm that alwaysuses the lowest possible numberTheorem (Kierstead 1986)There exists a strategy for Spoiler thatforces First-Fit to use in�nitely manycolors even if the game is played onorders of width 2.
2143
21

1321
5432



�rst-�t�rst-�t � on-line algorithm that alwaysuses the lowest possible numberTheorem (Kierstead 1986)There exists a strategy for Spoiler thatforces First-Fit to use in�nitely manycolors even if the game is played onorders of width 2.
2143
21

1321
5432
1



�rst-�t�rst-�t � on-line algorithm that alwaysuses the lowest possible numberTheorem (Kierstead 1986)There exists a strategy for Spoiler thatforces First-Fit to use in�nitely manycolors even if the game is played onorders of width 2.
2143
216

1321
5432
1
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�rst-�t�rst-�t � on-line algorithm that alwaysuses the lowest possible numberTheorem (Kierstead 1986)There exists a strategy for Spoiler thatforces First-Fit to use in�nitely manycolors even if the game is played onorders of width 2.Remarks
I First-Fit works well for some classesof posets (e.g. interval posets)
I is used as a subroutine in on-linealgorithms that give subexponentialbounds on ocp(w). 2143
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�rst-�t
fQ(w) � the maximum number of chains used by �rst-�ton Q−free posets of width w
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on-line chain partitioningTheorem (Bosek, Krawczyk 2009)ocp(w) 6 w13 logw
Remarks

I First-Fit on 2w+2w−free posets isused as a subroutine
I First-Fit works e�ciently onk+k−free posets! k+k



First-Fit for k+k-free posetsUpper bounds on fk+k (w):
I 3kw2, Bosek, Krawczyk, Szczypka 2008
I 8k2w , Joret, Milans 2010
I 16kw , Dujmovi¢, Joret, Wood 2011 (G. Joret talk).Lower bounds on fk+k(w):
I (k − 1)(w − 1), Dujmovi¢, Joret, Wood 2011.
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on-line chain partitioningTheorem (2011) ocp(w) 6 w3+6.5 logwRemarkFirst-Fit on L(2, 2w2)−free posets is used as asubroutineProof:
I ocp(w) 6 w · fL(2,2w2)(w),Bosek, Krawczyk 2009
I fL(2,m)(w) 6 w2.5 logw+2 logm,Kierstead, M.Smith 2011 (M. Smith talk)
I subexponential bound on ocp(w) is best possiblein this approach, Bosek, Matecki 2012 L(2, 6)
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questionQuestion (Joret, Milans 2010)For which posets Q there is a function fQ such that First-Fitpartitions Q−free posets of width w into at most fQ(w) chains.Remarks
I Q must be a poset of width 2,
I fQ exists for:

I k+k: fk+k(w) 6 16kw,
I L(2,m): fL(2,m) 6 w2.5 logw+2 logm,
I L(2, 2): fL(2,2)(w) = w2 (tight result: Matecki 2011;Kierstead, M.Smith 2011)



main result
Theorem (Bosek, Matecki, Krawczyk 2010)Let Q be a poset. There exists a function fQ such that First-Fitpartitions Q-free posets of width w into at most fQ(w) chains i� Qis a poset of width 2.



main result
Theorem (Bosek, Matecki, Krawczyk 2010)Let Q be a poset. There exists a function fQ such that First-Fitpartitions Q-free posets of width w into at most fQ(w) chains i� Qis a poset of width 2.RemarkIf First-Fit uses unlimited number of chains on a (countable) posetP of width w then P contains all width 2 posets.
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idea of the proof - ladders (2)
LemmaFor any poset Q of width 2 thereexist su�ciently large s, t suchthat Q is contained in L(s, t).

L(4, 4)
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idea of the proof - wallDe�nitionLet (P ,6) be a poset. An ordered chainpartition C1,C2, . . . ,Ck of (P ,6) is a wallof size k if for any x ∈ Ci and for any chainCj , j < i , there is a point in Cj that isincomparable to x. C1 C2 C3 C4
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idea of the proof - wallDe�nitionLet (P ,6) be a poset. An ordered chainpartition C1,C2, . . . ,Ck of (P ,6) is a wallof size k if for any x ∈ Ci and for any chainCj , j < i , there is a point in Cj that isincomparable to x. C1 C2 C3 C4xRemarkThe maximum number of colors used by First-Fit on (P ,6) is equal tothe maximum size of a wall in (P ,6).
I First-Fit coloring of (P ,6) in the order C1 < C2 < . . . < Ck uses kcolors,
I a partition C1, . . . ,Ck produced by �rst-�t is a wall in (P ,6).
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I any wall of width w ≥ 2 and `su�ciently large' size (i.e.�rst-�t uses a lot of colors) contains an (s, t)−ladder.
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idea of the proofFirst part:
I every `su�ciently large' wall ofwidth w ≥ 2 contains L(2, t)ladder (M. Smith talk)Second part:
I for every s, if L(2, t) is largeenough, then we may attachanother level to L(2, t) to getL(3, s)We focus on L(3, 4).
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I x , y - two points from A3,x is to the left of y :x ||y or x ≥ y
I there is a large decreasingchain C in A3
I choose the chains from thewall that have some elementsin C
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idea of the proof
I x ∈ A3, y ∈ A1, x is `far' tothe left of y :x ||y
I choose every 4−th chain ofthe wall
I chosen points from A1 andA3 form L(2, ∗)
I choose the set A4
I each element in A4 is belowsome element in A2
I we construct the setsA3,A4,A5,A6, e.t.c.

A3A1A2A4
zxy
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idea of the proof
I consider L(2, ∗) formed by A1and A6
I x is incomparable to z
I x is incomparable to y⇑ ∩ z⇓
I y⇑ ∩ z⇓ induces a subwall ofwidth w − 1
I by induction, if the wally⇑ ∩ z⇓ is large enough thenit contains L(3, 4) ladder A3A1A2A5A4A6

xyz
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open problemsWe have:
I a subexponential bound on fL(2,m), M. Smith, Kierstead 2011
I a bound on fL(s,m), Bosek, Krawczyk, Matecki 2010
I there is no constant c such that fQ(w) 6 w c for every posetQ of width 2, Bosek, Matecki 2012Open problems:
I �nd posets Q for which fQ(w) 6 poly(w)

I prove a subexponential bound on fL(3,m) and then for fL(s,m)(and hence for every Q of width 2)



Thank You!
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