Forbidden Induced Posets in the Boolean Lattice

Kevin G. Milans (milans@math.sc.edu) Joint with L. Lu

University of South Carolina; West Virginia University

SIAM Conference on Discrete Mathematics Dalhousie University Halifax, Nova Scotia, Canada 18 June 2012

▶ *P* is a subposet of *Q* if there is an injection $f: P \rightarrow Q$ such that

$$\forall x, y \in P \quad x \leq_P y \implies f(x) \leq_Q f(y).$$

► P is a subposet of Q if there is an injection f: P → Q such that

$$\forall x, y \in P \quad x \leq_P y \implies f(x) \leq_Q f(y).$$

P is an induced subposet of Q if there is an injection
 f: P → Q such that

$$\forall x, y \in P \quad x \leq_P y \iff f(x) \leq_Q f(y).$$

► P is a subposet of Q if there is an injection f: P → Q such that

$$\forall x, y \in P \quad x \leq_P y \implies f(x) \leq_Q f(y).$$

P is an induced subposet of *Q* if there is an injection
 f: *P* → *Q* such that

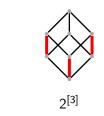
$$\forall x, y \in P \quad x \leq_P y \iff f(x) \leq_Q f(y).$$

Example

 $3 \cdot \mathcal{P}_2$

ΙΙΙ

▶ *P* is a subposet of *Q* if there is an injection $f: P \rightarrow Q$ such that


$$\forall x, y \in P \quad x \leq_P y \implies f(x) \leq_Q f(y).$$

P is an induced subposet of Q if there is an injection
 f: P → Q such that

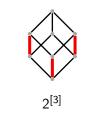
$$\forall x, y \in P \quad x \leq_P y \iff f(x) \leq_Q f(y).$$

Example

 $3 \cdot \mathcal{P}_2$

 3 · P₂ is a subposet of 2^[3], but

▶ *P* is a subposet of *Q* if there is an injection $f: P \rightarrow Q$ such that


$$\forall x, y \in P \quad x \leq_P y \implies f(x) \leq_Q f(y).$$

P is an induced subposet of Q if there is an injection
 f: P → Q such that

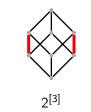
$$\forall x, y \in P \quad x \leq_P y \iff f(x) \leq_Q f(y).$$

Example

 $3 \cdot \mathcal{P}_2$

- 3 · P₂ is a subposet of 2^[3], but
- not an induced subset.

► P is a subposet of Q if there is an injection f: P → Q such that


$$\forall x, y \in P \quad x \leq_P y \implies f(x) \leq_Q f(y).$$

P is an induced subposet of Q if there is an injection
 f: P → Q such that

$$\forall x, y \in P \quad x \leq_P y \iff f(x) \leq_Q f(y).$$

Example

 $2 \cdot \mathcal{P}_2$

- ► 3 · P₂ is a subposet of 2^[3], but
- not an induced subset.
- ► 2 · P₂ is an induced subposet of 2^[3].

• Let
$$[n] = \{1, \ldots, n\}.$$

• Let
$$[n] = \{1, \ldots, n\}.$$

• Let 2^A be the inclusion order on subsets of A.

- Let $[n] = \{1, \ldots, n\}.$
- Let 2^A be the inclusion order on subsets of A.
- The *n*-dimensional Boolean lattice is $2^{[n]}$.

- Let $[n] = \{1, \ldots, n\}.$
- Let 2^A be the inclusion order on subsets of A.
- The *n*-dimensional Boolean lattice is $2^{[n]}$.
- When $\mathcal{F} \subseteq 2^{[n]}$, we view \mathcal{F} as a poset ordered by inclusion.

- Let $[n] = \{1, \ldots, n\}.$
- Let 2^A be the inclusion order on subsets of A.
- The *n*-dimensional Boolean lattice is $2^{[n]}$.
- When $\mathcal{F} \subseteq 2^{[n]}$, we view \mathcal{F} as a poset ordered by inclusion.
- ▶ Let La(n, P) be the maximum size of a family \mathcal{F} such that $\mathcal{F} \subseteq 2^{[n]}$ and P is not a subposet of \mathcal{F} .

- Let $[n] = \{1, \ldots, n\}.$
- Let 2^A be the inclusion order on subsets of A.
- The *n*-dimensional Boolean lattice is $2^{[n]}$.
- When $\mathcal{F} \subseteq 2^{[n]}$, we view \mathcal{F} as a poset ordered by inclusion.
- ▶ Let La(n, P) be the maximum size of a family \mathcal{F} such that $\mathcal{F} \subseteq 2^{[n]}$ and P is not a subposet of \mathcal{F} .

Theorem (Sperner (1928); Erdős (1945))

La (n, \mathcal{P}_k) equals the sum of the k - 1 largest binomial coefficients in $\{\binom{n}{0}, \binom{n}{1}, \ldots, \binom{n}{n}\}$. For fixed k and $n \to \infty$,

$$\operatorname{La}(n,\mathcal{P}_k)=(k-1+o(1))\binom{n}{\lfloor n/2\rfloor}.$$

• The Turán threshold of P, denoted $\pi(P)$, is given by

$$\pi(P) = \limsup_{n \to \infty} \frac{\operatorname{La}(n, P)}{\binom{n}{\lfloor n/2 \rfloor}}.$$

• The Turán threshold of P, denoted $\pi(P)$, is given by

$$\pi(P) = \limsup_{n \to \infty} \frac{\operatorname{La}(n, P)}{\binom{n}{\lfloor n/2 \rfloor}}.$$

► [Sperner (1928); Erdős (1945)] π(P_k) = k − 1

• The Turán threshold of P, denoted $\pi(P)$, is given by

$$\pi(P) = \limsup_{n \to \infty} \frac{\operatorname{La}(n, P)}{\binom{n}{\lfloor n/2 \rfloor}}.$$

- ► [Sperner (1928); Erdős (1945)] π(P_k) = k − 1
- Always $\pi(P) \leq |P| 1$.

• The Turán threshold of P, denoted $\pi(P)$, is given by

$$\pi(P) = \limsup_{n \to \infty} \frac{\operatorname{La}(n, P)}{\binom{n}{\lfloor n/2 \rfloor}}.$$

- ► [Sperner (1928); Erdős (1945)] π(P_k) = k − 1
- Always $\pi(P) \leq |P| 1$.
- The height of *P* is the size of a longest chain in *P*.

• The Turán threshold of P, denoted $\pi(P)$, is given by

$$\pi(P) = \limsup_{n \to \infty} \frac{\operatorname{La}(n, P)}{\binom{n}{\lfloor n/2 \rfloor}}.$$

- ► [Sperner (1928); Erdős (1945)] π(P_k) = k − 1
- Always $\pi(P) \leq |P| 1$.
- The height of *P* is the size of a longest chain in *P*.

Theorem (Bukh (2010))

If the Hasse diagram of P is a tree, then $\pi(P) = h(P) - 1$.

▶ Let $\operatorname{La}^*(n, P)$ be the maximum size of a family \mathcal{F} such that $\mathcal{F} \subseteq 2^{[n]}$ and P is not an *induced* subposet of \mathcal{F} .

- ▶ Let $\operatorname{La}^*(n, P)$ be the maximum size of a family \mathcal{F} such that $\mathcal{F} \subseteq 2^{[n]}$ and P is not an *induced* subposet of \mathcal{F} .
- The induced Turán threshold of P, denoted $\pi^*(P)$, is given by

$$\pi^*(P) = \limsup_{n \to \infty} \frac{\operatorname{La}^*(n, P)}{\binom{n}{\lfloor n/2 \rfloor}}.$$

- ▶ Let $\operatorname{La}^*(n, P)$ be the maximum size of a family \mathcal{F} such that $\mathcal{F} \subseteq 2^{[n]}$ and P is not an *induced* subposet of \mathcal{F} .
- The induced Turán threshold of P, denoted $\pi^*(P)$, is given by

$$\pi^*(P) = \limsup_{n \to \infty} \frac{\operatorname{La}^*(n, P)}{\binom{n}{\lfloor n/2 \rfloor}}.$$

► Fact:
$$La(n, P) \le La^*(n, P)$$
 and $\pi(P) \le \pi^*(P)$.

- ▶ Let $\operatorname{La}^*(n, P)$ be the maximum size of a family \mathcal{F} such that $\mathcal{F} \subseteq 2^{[n]}$ and P is not an *induced* subposet of \mathcal{F} .
- The induced Turán threshold of P, denoted $\pi^*(P)$, is given by

$$\pi^*(P) = \limsup_{n \to \infty} \frac{\operatorname{La}^*(n, P)}{\binom{n}{\lfloor n/2 \rfloor}}.$$

▶ Fact: La $(n, P) \leq La^*(n, P)$ and $\pi(P) \leq \pi^*(P)$.

► [Sperner (1928); Erdős (1945)] π^{*}(P_k) = k − 1.

- ▶ Let $\operatorname{La}^*(n, P)$ be the maximum size of a family \mathcal{F} such that $\mathcal{F} \subseteq 2^{[n]}$ and P is not an *induced* subposet of \mathcal{F} .
- The induced Turán threshold of P, denoted $\pi^*(P)$, is given by

$$\pi^*(P) = \limsup_{n \to \infty} \frac{\operatorname{La}^*(n, P)}{\binom{n}{\lfloor n/2 \rfloor}}.$$

- ► Fact: $La(n, P) \leq La^*(n, P)$ and $\pi(P) \leq \pi^*(P)$.
- [Sperner (1928); Erdős (1945)] $\pi^*(\mathcal{P}_k) = k 1$.
- ► [Carroll-Katona (2008)]: sharp bounds on La*(n, *), implying π*(*) = 1.

- ▶ Let $\operatorname{La}^*(n, P)$ be the maximum size of a family \mathcal{F} such that $\mathcal{F} \subseteq 2^{[n]}$ and P is not an *induced* subposet of \mathcal{F} .
- The induced Turán threshold of P, denoted $\pi^*(P)$, is given by

$$\pi^*(P) = \limsup_{n \to \infty} \frac{\operatorname{La}^*(n, P)}{\binom{n}{\lfloor n/2 \rfloor}}.$$

- ► Fact: $La(n, P) \leq La^*(n, P)$ and $\pi(P) \leq \pi^*(P)$.
- ► [Sperner (1928); Erdős (1945)] π*(P_k) = k − 1.
- ► [Carroll-Katona (2008)]: sharp bounds on La*(n, ♥), implying π*(♥) = 1.

Theorem (Boehnlein–Jiang (2011))

If the Hasse diagram of P is a tree, then $\pi^*(P) = h(P) - 1$.

- ▶ Let $\operatorname{La}^*(n, P)$ be the maximum size of a family \mathcal{F} such that $\mathcal{F} \subseteq 2^{[n]}$ and P is not an *induced* subposet of \mathcal{F} .
- The induced Turán threshold of P, denoted $\pi^*(P)$, is given by

$$\pi^*(P) = \limsup_{n \to \infty} \frac{\operatorname{La}^*(n, P)}{\binom{n}{\lfloor n/2 \rfloor}}.$$

- ► Fact: $La(n, P) \leq La^*(n, P)$ and $\pi(P) \leq \pi^*(P)$.
- ► [Sperner (1928); Erdős (1945)] π*(P_k) = k − 1.
- ► [Carroll-Katona (2008)]: sharp bounds on La*(n, ♥), implying π*(♥) = 1.

Theorem (Boehnlein–Jiang (2011))

If the Hasse diagram of P is a tree, then $\pi^*(P) = h(P) - 1$.

Observation (Boehnlein–Jiang (2011)) $\pi^*(P)$ may be much larger than $\pi(P)$.

Theorem


If P is a series-parallel poset, then $\pi^*(P)$ is finite.

Theorem

If P is a series-parallel poset, then $\pi^*(P)$ is finite.

Definition

The standard example on 2r elements, denoted S_r , is the poset consisting of antichains $\{a_1, \ldots, a_r\}$ and $\{b_1, \ldots, b_r\}$ and the relations $a_i \leq b_j$ where $i \neq j$.



Theorem

If P is a series-parallel poset, then $\pi^*(P)$ is finite.

Definition

The standard example on 2r elements, denoted S_r , is the poset consisting of antichains $\{a_1, \ldots, a_r\}$ and $\{b_1, \ldots, b_r\}$ and the relations $a_i \leq b_j$ where $i \neq j$.

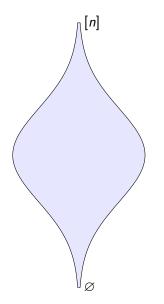
Theorem

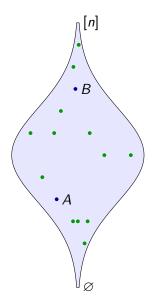

 $r-2 \leq \pi^*(\mathcal{S}_r) \leq 4r + O(\sqrt{r})$

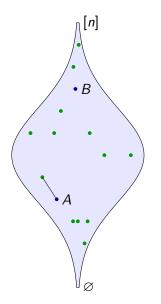
Theorem

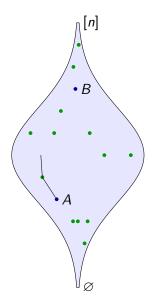
If P is a series-parallel poset, then $\pi^*(P)$ is finite.

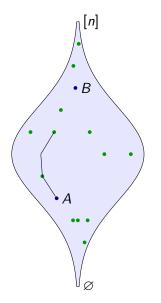
Definition

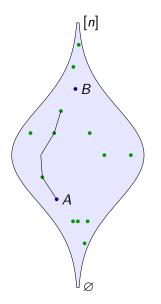

The standard example on 2r elements, denoted S_r , is the poset consisting of antichains $\{a_1, \ldots, a_r\}$ and $\{b_1, \ldots, b_r\}$ and the relations $a_i \leq b_j$ where $i \neq j$.

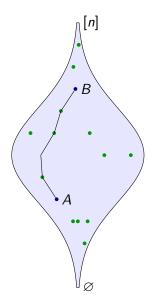


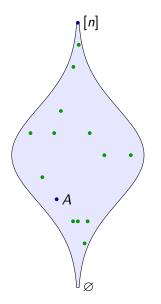

Theorem

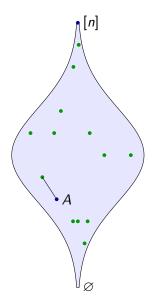

 $r-2 \leq \pi^*(\mathcal{S}_r) \leq 4r + O(\sqrt{r})$

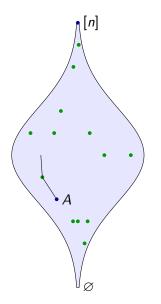

Corollary $\pi^*(2^{[3]}) \le 23.55.$

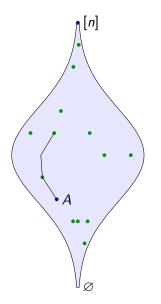


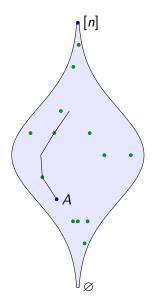


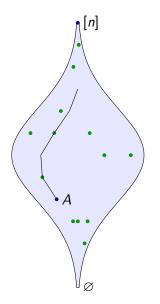


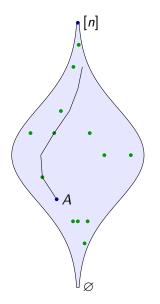


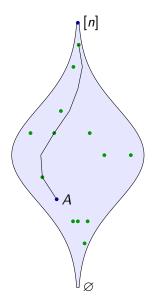


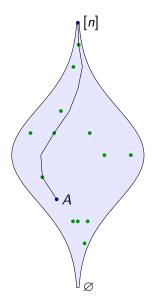

$$\blacktriangleright \ \ell_A^+(\mathcal{F}) = \ell(\mathcal{F}; [A, [n]]).$$

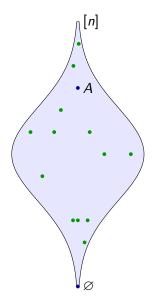

$$\blacktriangleright \ \ell_A^+(\mathcal{F}) = \ell(\mathcal{F}; [A, [n]]).$$


$$\blacktriangleright \ \ell_A^+(\mathcal{F}) = \ell(\mathcal{F}; [A, [n]]).$$

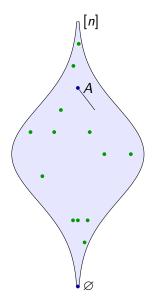

$$\blacktriangleright \ \ell_A^+(\mathcal{F}) = \ell(\mathcal{F}; [A, [n]]).$$


$$\blacktriangleright \ \ell_A^+(\mathcal{F}) = \ell(\mathcal{F}; [A, [n]]).$$

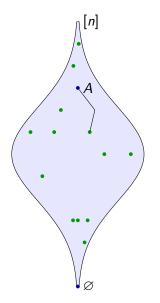

$$\ell_A^+(\mathcal{F}) = \ell(\mathcal{F}; [A, [n]]).$$


$$\blacktriangleright \ \ell_A^+(\mathcal{F}) = \ell(\mathcal{F}; [A, [n]]).$$

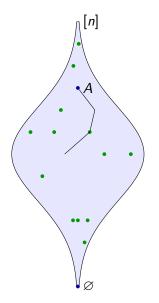
$$\blacktriangleright \ \ell_A^+(\mathcal{F}) = \ell(\mathcal{F}; [A, [n]]).$$



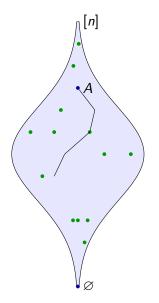
$$\blacktriangleright \ \ell_A^+(\mathcal{F}) = \ell(\mathcal{F}; [A, [n]]).$$


$$\blacktriangleright \ \ell_A^+(\mathcal{F}) = \ell(\mathcal{F}; [A, [n]]).$$

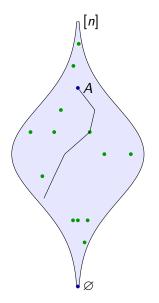
$$\ell_{A}^{-}(\mathcal{F}) = \ell(\mathcal{F}; [\emptyset, A]).$$


$$\ell_{A}^{+}(\mathcal{F}) = \ell(\mathcal{F}; [A, [n]]).$$

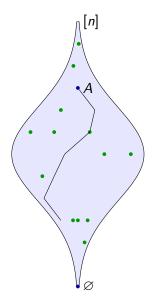
$$\ell_{\mathcal{A}}^{-}(\mathcal{F}) = \ell(\mathcal{F}; [\emptyset, A]).$$


$$\ell_{A}^{+}(\mathcal{F}) = \ell(\mathcal{F}; [A, [n]]).$$

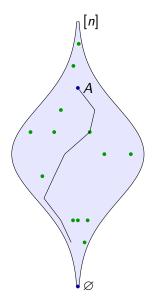
$$\ell_{\mathcal{A}}^{-}(\mathcal{F}) = \ell(\mathcal{F}; [\emptyset, A]).$$


$$\ell_{A}^{+}(\mathcal{F}) = \ell(\mathcal{F}; [A, [n]]).$$

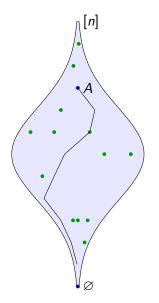
$$\ell_{\mathcal{A}}^{-}(\mathcal{F}) = \ell(\mathcal{F}; [\emptyset, A]).$$


$$\ell_A^+(\mathcal{F}) = \ell(\mathcal{F}; [A, [n]]).$$

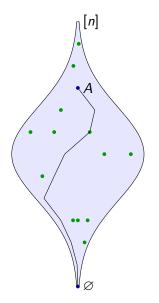
$$\ell_{\mathcal{A}}^{-}(\mathcal{F}) = \ell(\mathcal{F}; [\emptyset, A]).$$


$$\ell_{A}^{+}(\mathcal{F}) = \ell(\mathcal{F}; [A, [n]]).$$

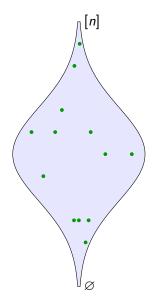
$$\ell_{\mathcal{A}}^{-}(\mathcal{F}) = \ell(\mathcal{F}; [\emptyset, A]).$$


$$\ell_{A}^{+}(\mathcal{F}) = \ell(\mathcal{F}; [A, [n]]).$$

$$\ell_{A}^{-}(\mathcal{F}) = \ell(\mathcal{F}; [\emptyset, A]).$$

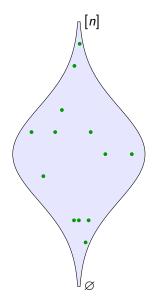

$$\ell_{A}^{+}(\mathcal{F}) = \ell(\mathcal{F}; [A, [n]]).$$

$$\ell_{A}^{-}(\mathcal{F}) = \ell(\mathcal{F}; [\emptyset, A]).$$


$$\ell_A^+(\mathcal{F}) = \ell(\mathcal{F}; [A, [n]]).$$

$$\ell_{A}^{-}(\mathcal{F}) = \ell(\mathcal{F}; [\emptyset, A]).$$

$$\ell_A^+(\mathcal{F}) = \ell(\mathcal{F}; [A, [n]]).$$


$$\ell_{\mathcal{A}}^{-}(\mathcal{F}) = \ell(\mathcal{F}; [\emptyset, A]).$$

$$\ell_A^+(\mathcal{F}) = \ell(\mathcal{F}; [A, [n]]).$$

$$\ell_{A}^{-}(\mathcal{F}) = \ell(\mathcal{F}; [\emptyset, A]).$$

$$\blacktriangleright \ \ell(\mathcal{F}) = \ell(\mathcal{F}; [\emptyset, [n]]).$$

- Given *F* ⊆ 2^[n] and *A* ⊆ *B*, define ℓ(*F*; [*A*, *B*]) to be the expected number of times that a random full (*A*, *B*)-chain meets *F*.
- $\ell_{A}^{+}(\mathcal{F}) = \ell(\mathcal{F}; [A, [n]]).$
- $\ell_{A}^{-}(\mathcal{F}) = \ell(\mathcal{F}; [\emptyset, A]).$

$$\blacktriangleright \ \ell(\mathcal{F}) = \ell(\mathcal{F}; [\emptyset, [n]]).$$

Linearity of Expectation:

$$\ell(\mathcal{F}) = \sum_{A \in \mathcal{F}} rac{1}{\binom{n}{|A|}}$$

• The induced Lubell threshold, denoted $\lambda^*(P)$, is given by

 $\lambda^*(P) = \sup\{\ell(\mathcal{F}): \mathcal{F} \text{ does not contain an induced copy of } P\}.$

• The induced Lubell threshold, denoted $\lambda^*(P)$, is given by

 $\lambda^*(P) = \sup\{\ell(\mathcal{F}): \mathcal{F} \text{ does not contain an induced copy of } P\}.$

• $\ell(\mathcal{F}) > \lambda^*(P) \implies \mathcal{F}$ contains an induced copy of P.

• The induced Lubell threshold, denoted $\lambda^*(P)$, is given by

 $\lambda^*(P) = \sup\{\ell(\mathcal{F}): \mathcal{F} \text{ does not contain an induced copy of } P\}.$

ℓ(F) > λ*(P) ⇒ F contains an induced copy of P.
 π*(P) ≤ λ*(P).

• The induced Lubell threshold, denoted $\lambda^*(P)$, is given by

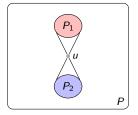
 $\lambda^*(P) = \sup\{\ell(\mathcal{F}): \mathcal{F} \text{ does not contain an induced copy of } P\}.$

•
$$\ell(\mathcal{F}) > \lambda^*(P) \implies \mathcal{F}$$
 contains an induced copy of P .
• $\pi^*(P) \le \lambda^*(P)$.

Conjecture Always $\lambda^*(P)$ is finite.

Series-Parallel Posets

Theorem

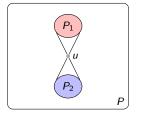

If P is a series-parallel poset, then $\lambda^*(P)$ is finite.

Series-Parallel Posets

Theorem

If P is a series-parallel poset, then $\lambda^*(P)$ is finite.

Lemma (Series Construction)


$$\lambda^*(P) \leq \lambda^*(P_1) + \lambda^*(P_2) + 2$$

Series-Parallel Posets

Theorem

If P is a series-parallel poset, then $\lambda^*(P)$ is finite.

Lemma (Series Construction)

$$\lambda^*(P) \leq \lambda^*(P_1) + \lambda^*(P_2) + 2$$

Lemma (Parallel Construction)

$$\lambda^*(P) \leq \max\{\lambda^*(P_1), \lambda^*(P_2)\} + 8$$

Lemma (Shallow Sets)

Lemma (Shallow Sets) A set $A \in \mathcal{F}$ is α -shallow if $\ell_A^+(\mathcal{F}) \leq \alpha$. If every element in \mathcal{F} is α -shallow, then $\ell(\mathcal{F}) \leq \alpha$. Proof.

• Let X be the # of times a random full chain meets \mathcal{F} .

- Let X be the # of times a random full chain meets \mathcal{F} .
- When $X \ge 1$, let Y be the first element in \mathcal{F} .

- Let X be the # of times a random full chain meets \mathcal{F} .
- When $X \ge 1$, let Y be the first element in \mathcal{F} .

$$\ell(\mathcal{F}) = \mathbf{E}[X] = \sum_{A \in \mathcal{F}} \mathbf{E}[X|Y = A] \cdot \Pr[Y = A]$$

- Let X be the # of times a random full chain meets \mathcal{F} .
- When $X \ge 1$, let Y be the first element in \mathcal{F} .

$$\ell(\mathcal{F}) = \mathbf{E}[X] = \sum_{A \in \mathcal{F}} \mathbf{E}[X|Y = A] \cdot \Pr[Y = A]$$
$$= \sum_{A \in \mathcal{F}} \ell_A^+(\mathcal{F}) \cdot \Pr[Y = A]$$

- Let X be the # of times a random full chain meets \mathcal{F} .
- When $X \ge 1$, let Y be the first element in \mathcal{F} .

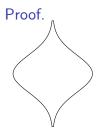
$$\ell(\mathcal{F}) = \mathbf{E}[X] = \sum_{A \in \mathcal{F}} \mathbf{E}[X|Y = A] \cdot \Pr[Y = A]$$
$$= \sum_{A \in \mathcal{F}} \ell_A^+(\mathcal{F}) \cdot \Pr[Y = A]$$
$$\leq \sum_{A \in \mathcal{F}} \alpha \cdot \Pr[Y = A]$$

- Let X be the # of times a random full chain meets \mathcal{F} .
- When $X \ge 1$, let Y be the first element in \mathcal{F} .

$$\ell(\mathcal{F}) = \mathbf{E}[X] = \sum_{A \in \mathcal{F}} \mathbf{E}[X|Y = A] \cdot \Pr[Y = A]$$
$$= \sum_{A \in \mathcal{F}} \ell_A^+(\mathcal{F}) \cdot \Pr[Y = A]$$
$$\leq \sum_{A \in \mathcal{F}} \alpha \cdot \Pr[Y = A]$$
$$\leq \alpha$$

Lemma (Shallow Sets) A set $A \in \mathcal{F}$ is α -shallow if $\ell_A^+(\mathcal{F}) \leq \alpha$. If every element in \mathcal{F} is α -shallow, then $\ell(\mathcal{F}) \leq \alpha$.

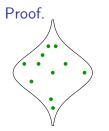
Lemma (Series Construction)


$$\lambda^*(P) \leq \lambda^*(P_1) + \lambda^*(P_2) + 2$$

Lemma (Shallow Sets) A set $A \in \mathcal{F}$ is α -shallow if $\ell_A^+(\mathcal{F}) \leq \alpha$. If every element in \mathcal{F} is α -shallow, then $\ell(\mathcal{F}) \leq \alpha$.

Lemma (Series Construction)

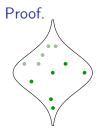
$$\lambda^*(P) \leq \lambda^*(P_1) + \lambda^*(P_2) + 2$$



• Let $\alpha_1 = \lambda^*(P_1)$ and $\alpha_2 = \lambda^*(P_2)$.

Lemma (Shallow Sets) A set $A \in \mathcal{F}$ is α -shallow if $\ell_A^+(\mathcal{F}) \leq \alpha$. If every element in \mathcal{F} is α -shallow, then $\ell(\mathcal{F}) \leq \alpha$.

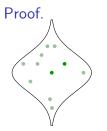
$$\lambda^*(P) \leq \lambda^*(P_1) + \lambda^*(P_2) + 2$$



- Let $\alpha_1 = \lambda^*(P_1)$ and $\alpha_2 = \lambda^*(P_2)$.
- Consider \mathcal{F} with $\ell(\mathcal{F}) > \alpha_1 + \alpha_2 + 2$.

Lemma (Shallow Sets) A set $A \in \mathcal{F}$ is α -shallow if $\ell_A^+(\mathcal{F}) \leq \alpha$. If every element in \mathcal{F} is α -shallow, then $\ell(\mathcal{F}) \leq \alpha$.

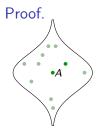
$$\lambda^*(P) \leq \lambda^*(P_1) + \lambda^*(P_2) + 2$$



- Let $\alpha_1 = \lambda^*(P_1)$ and $\alpha_2 = \lambda^*(P_2)$.
- Consider \mathcal{F} with $\ell(\mathcal{F}) > \alpha_1 + \alpha_2 + 2$.
- Discard $(\alpha_1 + 1)$ -shallow points.

Lemma (Shallow Sets) A set $A \in \mathcal{F}$ is α -shallow if $\ell_A^+(\mathcal{F}) \leq \alpha$. If every element in \mathcal{F} is α -shallow, then $\ell(\mathcal{F}) \leq \alpha$.

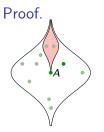
$$\lambda^*(P) \leq \lambda^*(P_1) + \lambda^*(P_2) + 2$$



- Let $\alpha_1 = \lambda^*(P_1)$ and $\alpha_2 = \lambda^*(P_2)$.
- Consider \mathcal{F} with $\ell(\mathcal{F}) > \alpha_1 + \alpha_2 + 2$.
- Discard $(\alpha_1 + 1)$ -shallow points.
- Discard "dually" ($\alpha_2 + 1$)-shallow points.

Lemma (Shallow Sets) A set $A \in \mathcal{F}$ is α -shallow if $\ell_A^+(\mathcal{F}) \leq \alpha$. If every element in \mathcal{F} is α -shallow, then $\ell(\mathcal{F}) \leq \alpha$.

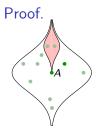
$$\lambda^*(P) \leq \lambda^*(P_1) + \lambda^*(P_2) + 2$$


- Let $\alpha_1 = \lambda^*(P_1)$ and $\alpha_2 = \lambda^*(P_2)$.
- Consider \mathcal{F} with $\ell(\mathcal{F}) > \alpha_1 + \alpha_2 + 2$.
- Discard $(\alpha_1 + 1)$ -shallow points.
- Discard "dually" ($\alpha_2 + 1$)-shallow points.
- Choose a surviving set A.

Lemma (Shallow Sets) A set $A \in \mathcal{F}$ is α -shallow if $\ell_A^+(\mathcal{F}) \leq \alpha$. If every element in \mathcal{F} is α -shallow, then $\ell(\mathcal{F}) \leq \alpha$.

Lemma (Series Construction)

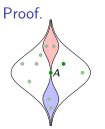
$$\lambda^*(P) \leq \lambda^*(P_1) + \lambda^*(P_2) + 2$$


► $\ell_A^+(\mathcal{F}) > \alpha_1 + 1$

Lemma (Shallow Sets) A set $A \in \mathcal{F}$ is α -shallow if $\ell_A^+(\mathcal{F}) \leq \alpha$. If every element in \mathcal{F} is α -shallow, then $\ell(\mathcal{F}) \leq \alpha$.

Lemma (Series Construction)

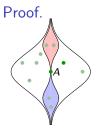
$$\lambda^*(P) \leq \lambda^*(P_1) + \lambda^*(P_2) + 2$$



► $\ell_A^+(\mathcal{F}) > \alpha_1 + 1$ ► Find P_1 in $(\mathcal{F} - \{A\}) \cap [A, [n]]$.

Lemma (Shallow Sets) A set $A \in \mathcal{F}$ is α -shallow if $\ell_A^+(\mathcal{F}) \leq \alpha$. If every element in \mathcal{F} is α -shallow, then $\ell(\mathcal{F}) \leq \alpha$.

$$\lambda^*(P) \leq \lambda^*(P_1) + \lambda^*(P_2) + 2$$



- ► $\ell_A^+(\mathcal{F}) > \alpha_1 + 1$
- ▶ Find P_1 in $(F \{A\}) \cap [A, [n]]$.
- $\blacktriangleright \ \ell_{\mathcal{A}}^{-}(\mathcal{F}) > \alpha_{2} + 1$

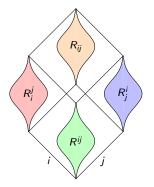
Lemma (Shallow Sets) A set $A \in \mathcal{F}$ is α -shallow if $\ell_A^+(\mathcal{F}) \leq \alpha$. If every element in \mathcal{F} is α -shallow, then $\ell(\mathcal{F}) \leq \alpha$.

$$\lambda^*(P) \leq \lambda^*(P_1) + \lambda^*(P_2) + 2$$

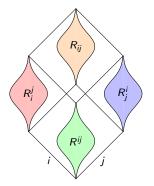
- ► $\ell_A^+(\mathcal{F}) > \alpha_1 + 1$
- ▶ Find P_1 in $(F \{A\}) \cap [A, [n]]$.
- ► $\ell_A^-(\mathcal{F}) > \alpha_2 + 1$
- Find P_2 in $(\mathcal{F} \{A\}) \cap [\emptyset, A)$.

▶ \mathcal{F} is balanced if, for each $A, B \in 2^{[n]}$ with $A \subseteq B$, we have $\ell(\mathcal{F}; [A, B]) \leq \ell(\mathcal{F})$.

- ▶ \mathcal{F} is balanced if, for each $A, B \in 2^{[n]}$ with $A \subseteq B$, we have $\ell(\mathcal{F}; [A, B]) \leq \ell(\mathcal{F})$.
- ▶ Given disjoint sets A and B, let R^B_A = [A, [n] B]; this is the sublattice consisting of all sets that contain A and are disjoint from B.


- ▶ \mathcal{F} is balanced if, for each $A, B \in 2^{[n]}$ with $A \subseteq B$, we have $\ell(\mathcal{F}; [A, B]) \leq \ell(\mathcal{F})$.
- ► Given disjoint sets A and B, let R^B_A = [A, [n] B]; this is the sublattice consisting of all sets that contain A and are disjoint from B.

Lemma (Four Sublattices)

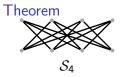

If \mathcal{F} is balanced, then there exist $i, j \in [n]$ such that the Lubell Function in each of the sublattices $R^{ij}, R^j_i, R^i_j, R^i_j$ is at least $\ell(\mathcal{F}) - 8$.

Lemma (Four Sublattices)

If \mathcal{F} is balanced, then there exist $i, j \in [n]$ such that the Lubell Function in each of the sublattices $R^{ij}, R^j_i, R^j_j, R_{ij}$ is at least $\ell(\mathcal{F}) - 8$.

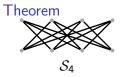
Lemma (Four Sublattices)

If \mathcal{F} is balanced, then there exist $i, j \in [n]$ such that the Lubell Function in each of the sublattices $R^{ij}, R^j_i, R^j_j, R_{ij}$ is at least $\ell(\mathcal{F}) - 8$.


Lemma (Parallel Construction)

$$\lambda^*(P) \leq \max\{\lambda^*(P_1), \lambda^*(P_2)\} + 8$$

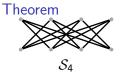
 $\lambda^*(\mathcal{S}_r) \le 4r + 4\sqrt{2\ln 2 \cdot r} + 2\ln 2$



$$\lambda^*(\mathcal{S}_r) \le 4r + 4\sqrt{2\ln 2 \cdot r} + 2\ln 2$$

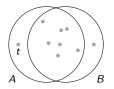
Definition

We say that $A \in \mathcal{F}$ is γ -flexible if

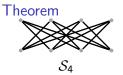


$$\lambda^*(\mathcal{S}_r) \leq 4r + 4\sqrt{2\ln 2 \cdot r} + 2\ln 2$$

Definition

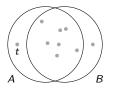


We say that $A \in \mathcal{F}$ is γ -flexible if there are more than $\gamma|A|$ indices $t \in A$



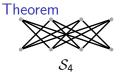
$$\lambda^*(\mathcal{S}_r) \le 4r + 4\sqrt{2\ln 2 \cdot r} + 2\ln 2$$

Definition

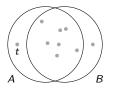


We say that $A \in \mathcal{F}$ is γ -flexible if there are more than $\gamma |A|$ indices $t \in A$ such that $A - B = \{t\}$ for some $B \in \mathcal{F}$ with |B| = |A|.

$$\lambda^*(\mathcal{S}_r) \leq 4r + 4\sqrt{2\ln 2 \cdot r} + 2\ln 2$$

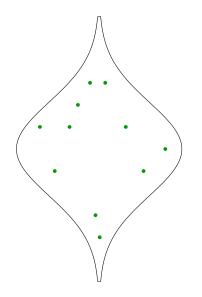

Definition

We say that $A \in \mathcal{F}$ is γ -flexible if there are more than $\gamma |A|$ indices $t \in A$ such that $A - B = \{t\}$ for some $B \in \mathcal{F}$ with |B| = |A|.

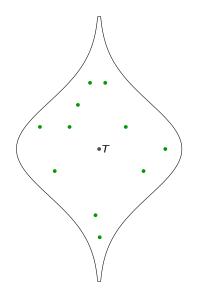

Lemma (Flexible Sets)

Let \mathcal{F} be a family of subsets of [n] such that $|A| \leq n/2$ for each $A \in \mathcal{F}$ and suppose that $0 \leq \gamma < 1$.

$$\lambda^*(\mathcal{S}_r) \le 4r + 4\sqrt{2\ln 2 \cdot r} + 2\ln 2$$

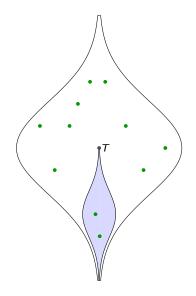

Definition

We say that $A \in \mathcal{F}$ is γ -flexible if there are more than $\gamma |A|$ indices $t \in A$ such that $A - B = \{t\}$ for some $B \in \mathcal{F}$ with |B| = |A|.


Lemma (Flexible Sets)

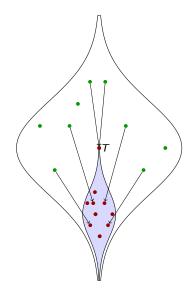
Let \mathcal{F} be a family of subsets of [n] such that $|A| \leq n/2$ for each $A \in \mathcal{F}$ and suppose that $0 \leq \gamma < 1$. If \mathcal{F} does not contain a γ -flexible set, then $\ell(\mathcal{F}) \leq 1 + \ln 2/(1 - \gamma)$.

Lemma (Projection)


• Let \mathcal{F} be a family of sets in $2^{[n]}$.

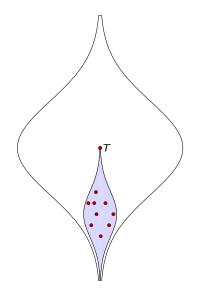
Lemma (Projection)

• Let \mathcal{F} be a family of sets in $2^{[n]}$.


• Let
$$T \subseteq [n]$$
 and let $t = |T|$.

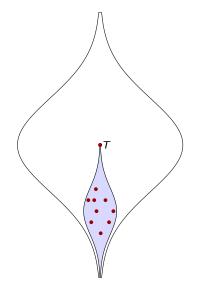
Lemma (Projection)

- Let \mathcal{F} be a family of sets in $2^{[n]}$.
- Let $T \subseteq [n]$ and let t = |T|.
- Let \$\mathcal{F}'\$ be the projection of \$\mathcal{F}\$ onto \$\mathcal{T}\$:


$$\mathcal{F}' = \{A \cap T \colon A \in \mathcal{F}\}$$

Lemma (Projection)

- Let \mathcal{F} be a family of sets in $2^{[n]}$.
- Let $T \subseteq [n]$ and let t = |T|.
- Let \$\mathcal{F}'\$ be the projection of \$\mathcal{F}\$ onto \$\T\$:


$$\mathcal{F}' = \{A \cap T \colon A \in \mathcal{F}\}$$

Lemma (Projection)

- Let \mathcal{F} be a family of sets in $2^{[n]}$.
- Let $T \subseteq [n]$ and let t = |T|.
- Let \$\mathcal{F}'\$ be the projection of \$\mathcal{F}\$ onto \$\T\$:

$$\mathcal{F}' = \{A \cap T \colon A \in \mathcal{F}\}$$

Lemma (Projection)

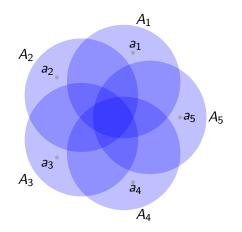
- Let \mathcal{F} be a family of sets in $2^{[n]}$.
- Let $T \subseteq [n]$ and let t = |T|.
- Let \$\mathcal{F}'\$ be the projection of \$\mathcal{F}\$ onto \$\mathcal{T}\$:

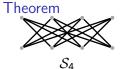
$$\mathcal{F}' = \{A \cap T \colon A \in \mathcal{F}\}$$

We have that

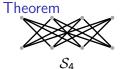
$$\ell^-_{\mathcal{T}}(\mathcal{F}') \geq rac{t+1}{n+1} \cdot \ell(\mathcal{F}).$$

Private Elements Lemma

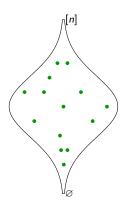

Lemma (Private Elements)


Let r be an integer and suppose that $\mathcal{F} \subseteq 2^{[n]}$ with $\ell(\mathcal{F}) > 2r - 1$.

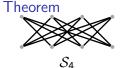
Private Elements Lemma


Lemma (Private Elements)

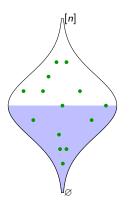
Let r be an integer and suppose that $\mathcal{F} \subseteq 2^{[n]}$ with $\ell(\mathcal{F}) > 2r - 1$. There exist $A_1, \ldots, A_r \in \mathcal{F}$ and $a_1, \ldots, a_r \in [n]$ such that $a_i \in A_j$ if and only if $i \neq j$.

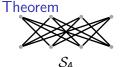


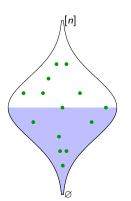
 $\lambda^*(\mathcal{S}_r) \leq 4r + 4\sqrt{2\ln 2 \cdot r} + 2\ln 2$

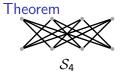


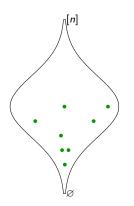
$$\lambda^*(\mathcal{S}_r) \le 4r + 4\sqrt{2\ln 2 \cdot r} + 2\ln 2$$


Proof (sketch).

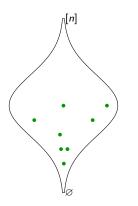

• Consider \mathcal{F} with $\ell(\mathcal{F}) > 4r + \Omega(\sqrt{r})$.


$$\lambda^*(\mathcal{S}_r) \le 4r + 4\sqrt{2\ln 2 \cdot r} + 2\ln 2$$

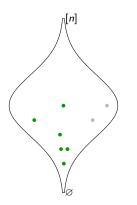

- Consider \mathcal{F} with $\ell(\mathcal{F}) > 4r + \Omega(\sqrt{r})$.
- Let $\mathcal{F}_1 = \{A \in \mathcal{F} : |A| \le n/2\}.$

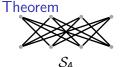

$$\lambda^*(\mathcal{S}_r) \le 4r + 4\sqrt{2\ln 2 \cdot r} + 2\ln 2$$

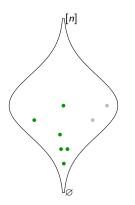
- Consider \mathcal{F} with $\ell(\mathcal{F}) > 4r + \Omega(\sqrt{r})$.
- Let $\mathcal{F}_1 = \{A \in \mathcal{F} : |A| \le n/2\}.$
- By symmetry, we may assume that $\ell(\mathcal{F}_1) > 2r + \Omega(\sqrt{r}).$

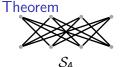

$$\lambda^*(\mathcal{S}_r) \leq 4r + 4\sqrt{2\ln 2 \cdot r} + 2\ln 2$$

• Set
$$\gamma = 1 - \frac{c}{\sqrt{r}}$$
.

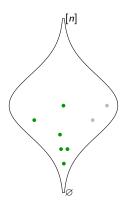

$$\lambda^*(\mathcal{S}_r) \le 4r + 4\sqrt{2\ln 2 \cdot r} + 2\ln 2$$


- Set $\gamma = 1 \frac{c}{\sqrt{r}}$.
- ► Discard the set B₁ of all points in F₁ that are not γ-flexible. Set F₂ = F₁ − B₁.

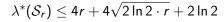

$$\lambda^*(\mathcal{S}_r) \le 4r + 4\sqrt{2\ln 2 \cdot r} + 2\ln 2$$


- Set $\gamma = 1 \frac{c}{\sqrt{r}}$.
- ► Discard the set B₁ of all points in F₁ that are not γ-flexible. Set F₂ = F₁ − B₁.

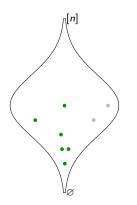
$$\lambda^*(\mathcal{S}_r) \leq 4r + 4\sqrt{2\ln 2 \cdot r} + 2\ln 2$$



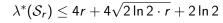
- Set $\gamma = 1 \frac{c}{\sqrt{r}}$.
- ► Discard the set B₁ of all points in F₁ that are not γ-flexible. Set F₂ = F₁ − B₁.
- By the Flexible Sets Lemma, ℓ(B₁) < O(√r).</p>

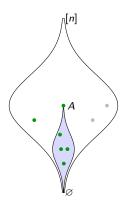

$$\lambda^*(\mathcal{S}_r) \le 4r + 4\sqrt{2\ln 2 \cdot r} + 2\ln 2$$

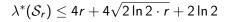
Proof (sketch).

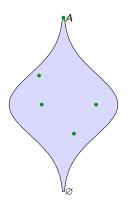


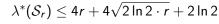
- Set $\gamma = 1 \frac{c}{\sqrt{r}}$.
- ► Discard the set B₁ of all points in F₁ that are not γ-flexible. Set F₂ = F₁ − B₁.
- ▶ By the Flexible Sets Lemma, $\ell(\mathcal{B}_1) < O(\sqrt{r}).$
- We have $\ell(\mathcal{F}_2) > (2r-1)/\gamma$.

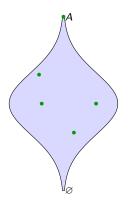


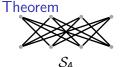

Proof (sketch).

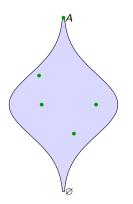



Proof (sketch).

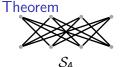


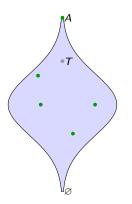

Proof (sketch).




Proof (sketch).

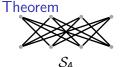
• Let
$$\mathcal{F}_3 = \{ A' \in \mathcal{F}_2 \colon A' \subseteq A \}.$$

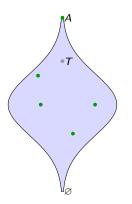




$$\lambda^*(\mathcal{S}_r) \leq 4r + 4\sqrt{2\ln 2 \cdot r} + 2\ln 2$$

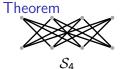
- By the Shallow Sets Lemma, find A ∈ F₂ with ℓ[−]_A(F₂) > (2r − 1)/γ.
- Let $\mathcal{F}_3 = \{ A' \in \mathcal{F}_2 \colon A' \subseteq A \}.$
- Let T be the set of all indices $t \in A$ such that $A B = \{t\}$ for some $B \in \mathcal{F}_1$ with |B| = |A|.



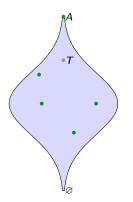


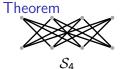
$$\lambda^*(\mathcal{S}_r) \leq 4r + 4\sqrt{2\ln 2 \cdot r} + 2\ln 2$$

- By the Shallow Sets Lemma, find A ∈ F₂ with ℓ[−]_A(F₂) > (2r − 1)/γ.
- Let $\mathcal{F}_3 = \{ A' \in \mathcal{F}_2 \colon A' \subseteq A \}.$
- Let T be the set of all indices $t \in A$ such that $A B = \{t\}$ for some $B \in \mathcal{F}_1$ with |B| = |A|.



$$\lambda^*(\mathcal{S}_r) \leq 4r + 4\sqrt{2\ln 2 \cdot r} + 2\ln 2$$

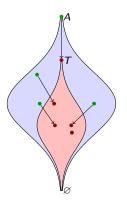

- By the Shallow Sets Lemma, find A ∈ F₂ with ℓ[−]_A(F₂) > (2r − 1)/γ.
- Let $\mathcal{F}_3 = \{ A' \in \mathcal{F}_2 \colon A' \subseteq A \}.$
- Let T be the set of all indices t ∈ A such that A − B = {t} for some B ∈ F₁ with |B| = |A|.
- Since A is γ -flexible, $|T| \ge \gamma |A|$.

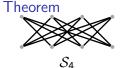


Proof (sketch).

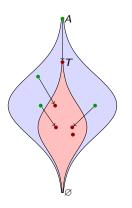
$$\lambda^*(\mathcal{S}_r) \le 4r + 4\sqrt{2\ln 2 \cdot r} + 2\ln 2$$

• Let \mathcal{F}_4 be the projection of \mathcal{F}_3 onto T.

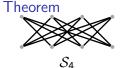


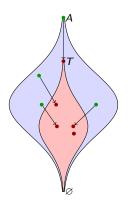


Proof (sketch).


$$\lambda^*(\mathcal{S}_r) \le 4r + 4\sqrt{2\ln 2 \cdot r} + 2\ln 2$$

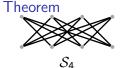
• Let \mathcal{F}_4 be the projection of \mathcal{F}_3 onto T.

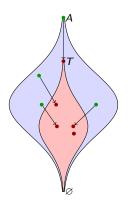

Proof (sketch).


$$\lambda^*(\mathcal{S}_r) \le 4r + 4\sqrt{2\ln 2 \cdot r} + 2\ln 2$$

Let \$\mathcal{F}_4\$ be the projection of \$\mathcal{F}_3\$ onto \$\mathcal{T}\$.
By the Projection Lemma,

$$\ell^-_{\mathcal{T}}(\mathcal{F}_4) \geq rac{|\mathcal{T}|+1}{|\mathcal{A}|+1} \cdot \ell^-_{\mathcal{A}}(\mathcal{F}_3)$$


Proof (sketch).

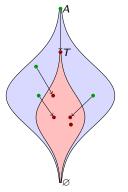

$$\lambda^*(\mathcal{S}_r) \le 4r + 4\sqrt{2\ln 2 \cdot r} + 2\ln 2$$

Let \$\mathcal{F}_4\$ be the projection of \$\mathcal{F}_3\$ onto \$\mathcal{T}\$.
By the Projection Lemma,

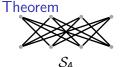
$$\ell_T^-(\mathcal{F}_4) \ge rac{|\mathcal{T}|+1}{|\mathcal{A}|+1} \cdot \ell_\mathcal{A}^-(\mathcal{F}_3)
onumber \ > \gamma \cdot rac{2r-1}{\gamma}$$

Proof (sketch).

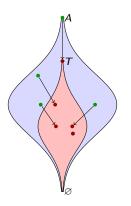
$$\lambda^*(\mathcal{S}_r) \leq 4r + 4\sqrt{2\ln 2 \cdot r} + 2\ln 2$$


Let \$\mathcal{F}_4\$ be the projection of \$\mathcal{F}_3\$ onto \$\mathcal{T}\$.
By the Projection Lemma,

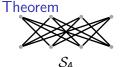
$$\ell_T^-(\mathcal{F}_4) \ge rac{|T|+1}{|A|+1} \cdot \ell_A^-(\mathcal{F}_3)
onumber \ > \gamma \cdot rac{2r-1}{\gamma}
onumber \ > 2r-1$$



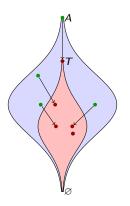
$$\lambda^*(\mathcal{S}_r) \le 4r + 4\sqrt{2\ln 2 \cdot r} + 2\ln 2$$


Proof (sketch).

▶ By the Private Elements Lemma, find sets $T_1, \ldots, T_r \in \mathcal{F}_4$ and elements $t_1, \ldots, t_r \in T$ with $t_i \in T_j$ if and only if $i \neq j$.

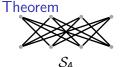


Proof (sketch).

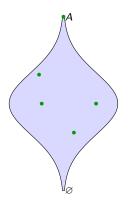


$$\lambda^*(\mathcal{S}_r) \leq 4r + 4\sqrt{2\ln 2 \cdot r} + 2\ln 2$$

- ▶ By the Private Elements Lemma, find sets $T_1, \ldots, T_r \in \mathcal{F}_4$ and elements $t_1, \ldots, t_r \in T$ with $t_i \in T_j$ if and only if $i \neq j$.
- Each T_i extends to a set $A_i \in \mathcal{F}_3$ with $A_i \subseteq A$.

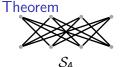


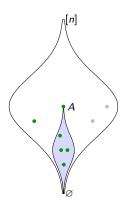
Proof (sketch).



$$\lambda^*(\mathcal{S}_r) \leq 4r + 4\sqrt{2\ln 2 \cdot r} + 2\ln 2$$

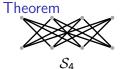
- ▶ By the Private Elements Lemma, find sets $T_1, \ldots, T_r \in \mathcal{F}_4$ and elements $t_1, \ldots, t_r \in T$ with $t_i \in T_j$ if and only if $i \neq j$.
- Each T_i extends to a set $A_i \in \mathcal{F}_3$ with $A_i \subseteq A$.
- Still, $t_i \in A_j$ if and only if $i \neq j$.



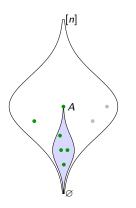


$$\lambda^*(\mathcal{S}_r) \leq 4r + 4\sqrt{2\ln 2 \cdot r} + 2\ln 2$$

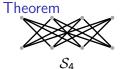
- ▶ By the Private Elements Lemma, find sets $T_1, \ldots, T_r \in \mathcal{F}_4$ and elements $t_1, \ldots, t_r \in T$ with $t_i \in T_j$ if and only if $i \neq j$.
- Each T_i extends to a set $A_i \in \mathcal{F}_3$ with $A_i \subseteq A$.
- Still, $t_i \in A_j$ if and only if $i \neq j$.



Proof (sketch).

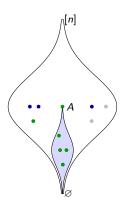

$$\lambda^*(\mathcal{S}_r) \leq 4r + 4\sqrt{2\ln 2 \cdot r} + 2\ln 2$$

- ▶ By the Private Elements Lemma, find sets $T_1, \ldots, T_r \in \mathcal{F}_4$ and elements $t_1, \ldots, t_r \in T$ with $t_i \in T_j$ if and only if $i \neq j$.
- Each T_i extends to a set $A_i \in \mathcal{F}_3$ with $A_i \subseteq A$.
- Still, $t_i \in A_j$ if and only if $i \neq j$.



$$\lambda^*(\mathcal{S}_r) \le 4r + 4\sqrt{2\ln 2 \cdot r} + 2\ln 2$$

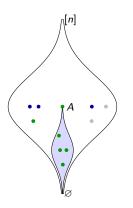
Proof (sketch).



• Choose $B_j \in \mathcal{F}_1$ so that $A_j - B_j = \{t_j\}$.

$$\lambda^*(\mathcal{S}_r) \le 4r + 4\sqrt{2\ln 2 \cdot r} + 2\ln 2$$

Proof (sketch).



• Choose $B_j \in \mathcal{F}_1$ so that $A_j - B_j = \{t_j\}$.

$$\lambda^*(\mathcal{S}_r) \le 4r + 4\sqrt{2\ln 2 \cdot r} + 2\ln 2$$

Proof (sketch).

- Choose $B_j \in \mathcal{F}_1$ so that $A_j B_j = \{t_j\}$.
- $\{A_1, \ldots, A_r\}$ and $\{B_1, \ldots, B_r\}$ form S_r .

Conjecture Always $\lambda^*(P)$ is finite.

Conjecture

Always $\lambda^*(P)$ is finite.

 Every poset is an induced subposet of a sufficiently large boolean lattice.

Conjecture

Always $\lambda^*(P)$ is finite.

- Every poset is an induced subposet of a sufficiently large boolean lattice.
- $\lambda^*(2^{[3]}) \le \lambda^*(\mathcal{S}_3) + 2 \le 23.55.$

Conjecture

Always $\lambda^*(P)$ is finite.

- Every poset is an induced subposet of a sufficiently large boolean lattice.
- $\lambda^*(2^{[3]}) \le \lambda^*(\mathcal{S}_3) + 2 \le 23.55.$

Problem Find a bound on $\lambda^*(2^{[4]})$.

Conjecture

Always $\lambda^*(P)$ is finite.

- Every poset is an induced subposet of a sufficiently large boolean lattice.
- $\lambda^*(2^{[3]}) \le \lambda^*(\mathcal{S}_3) + 2 \le 23.55.$

Problem Find a bound on $\lambda^*(2^{[4]})$.

Thank You.