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Poset Containment

I P is a subposet of Q if there is an injection f : P → Q such
that

∀x , y ∈ P x ≤P y =⇒ f (x) ≤Q f (y).

I P is an induced subposet of Q if there is an injection
f : P → Q such that

∀x , y ∈ P x ≤P y ⇐⇒ f (x) ≤Q f (y).
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The Turán Problem

I Let [n] = {1, . . . , n}.

I Let 2A be the inclusion order on subsets of A.

I The n-dimensional Boolean lattice is 2[n].

I When F ⊆ 2[n], we view F as a poset ordered by inclusion.

I Let La(n,P) be the maximum size of a family F such that
F ⊆ 2[n] and P is not a subposet of F .

Theorem (Sperner (1928); Erdős (1945))

La(n,Pk) equals the sum of the k − 1 largest binomial coefficients
in {

(n
0
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The Turán Threshold

I The Turán threshold of P, denoted π(P), is given by

π(P) = lim sup
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I The height of P is the size of a longest chain in P.

Theorem (Bukh (2010))

If the Hasse diagram of P is a tree, then π(P) = h(P)− 1.
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I [Sperner (1928); Erdős (1945)] π(Pk) = k − 1

I Always π(P) ≤ |P| − 1.

I The height of P is the size of a longest chain in P.

Theorem (Bukh (2010))

If the Hasse diagram of P is a tree, then π(P) = h(P)− 1.



The Turán Threshold

I The Turán threshold of P, denoted π(P), is given by

π(P) = lim sup
n→∞

La(n,P)( n
bn/2c

) .
I [Sperner (1928); Erdős (1945)] π(Pk) = k − 1
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I [Sperner (1928); Erdős (1945)] π(Pk) = k − 1

I Always π(P) ≤ |P| − 1.

I The height of P is the size of a longest chain in P.

Theorem (Bukh (2010))

If the Hasse diagram of P is a tree, then π(P) = h(P)− 1.



The Turán Threshold

I The Turán threshold of P, denoted π(P), is given by

π(P) = lim sup
n→∞

La(n,P)( n
bn/2c

) .
I [Sperner (1928); Erdős (1945)] π(Pk) = k − 1
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implying π∗( ) = 1.
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Observation (Boehnlein–Jiang (2011))

π∗(P) may be much larger than π(P).



The Induced Turán Threshold

I Let La∗(n,P) be the maximum size of a family F such that
F ⊆ 2[n] and P is not an induced subposet of F .

I The induced Turán threshold of P, denoted π∗(P), is given by

π∗(P) = lim sup
n→∞

La∗(n,P)( n
bn/2c

) .

I Fact: La(n,P) ≤ La∗(n,P) and π(P) ≤ π∗(P).
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Theorem
If P is a series-parallel poset, then π∗(P) is finite.

Definition
The standard example on 2r elements, denoted Sr , is the poset
consisting of antichains {a1, . . . , ar} and {b1, . . . , br} and the
relations ai ≤ bj where i 6= j .

Theorem
r − 2 ≤ π∗(Sr ) ≤ 4r + O(

√
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Corollary

π∗(2[3]) ≤ 23.55.
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[n]

I Given F ⊆ 2[n] and A ⊆ B, define
`(F ; [A,B]) to be the expected
number of times that a random full
(A,B)-chain meets F .

I `+A (F) = `(F ; [A, [n]]).

I `−A (F) = `(F ; [∅,A]).

I `(F) = `(F ; [∅, [n]]).

I Linearity of Expectation:

`(F) =
∑
A∈F

1( n
|A|
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The Induced Lubell Threshold

I The induced Lubell threshold, denoted λ∗(P), is given by

λ∗(P) = sup{`(F) : F does not contain an induced copy of P}.

I `(F) > λ∗(P) =⇒ F contains an induced copy of P.

I π∗(P) ≤ λ∗(P).

Conjecture

Always λ∗(P) is finite.
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I F is balanced if, for each A,B ∈ 2[n] with A ⊆ B, we have
`(F ; [A,B]) ≤ `(F).

I Given disjoint sets A and B, let RB
A = [A, [n]− B]; this is the

sublattice consisting of all sets that contain A and are disjoint
from B.

Lemma (Four Sublattices)
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i
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Lemma (Parallel Construction)
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The Standard Example and Flexible Sets

Theorem

S4

λ∗(Sr ) ≤ 4r + 4
√

2 ln 2 · r + 2 ln 2

Definition

A

t

B

We say that A ∈ F is γ-flexible if

there are
more than γ|A| indices t ∈ A such that
A− B = {t} for some B ∈ F with |B| = |A|.

Lemma (Flexible Sets)

Let F be a family of subsets of [n] such that |A| ≤ n/2 for each
A ∈ F and suppose that 0 ≤ γ < 1.

If F does not contain a
γ-flexible set, then `(F) ≤ 1 + ln 2/(1− γ).
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Projection Lemma

Lemma (Projection)

I Let F be a family of sets in 2[n].
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