Forbidden Induced Posets in the Boolean Lattice

Kevin G. Milans (milans@math.sc.edu) Joint with L. Lu
University of South Carolina; West Virginia University
SIAM Conference on Discrete Mathematics
Dalhousie University Halifax, Nova Scotia, Canada
18 June 2012

Poset Containment

- P is a subposet of Q if there is an injection $f: P \rightarrow Q$ such that

$$
\forall x, y \in P \quad x \leq_{P} y \Longrightarrow f(x) \leq_{Q} f(y)
$$

Poset Containment

- P is a subposet of Q if there is an injection $f: P \rightarrow Q$ such that

$$
\forall x, y \in P \quad x \leq_{P} y \Longrightarrow f(x) \leq_{Q} f(y)
$$

- P is an induced subposet of Q if there is an injection $f: P \rightarrow Q$ such that

$$
\forall x, y \in P \quad x \leq_{P} y \Longleftrightarrow f(x) \leq_{Q} f(y)
$$

Poset Containment

- P is a subposet of Q if there is an injection $f: P \rightarrow Q$ such that

$$
\forall x, y \in P \quad x \leq P y \Longrightarrow f(x) \leq_{Q} f(y)
$$

- P is an induced subposet of Q if there is an injection $f: P \rightarrow Q$ such that

$$
\forall x, y \in P \quad x \leq_{P} y \Longleftrightarrow f(x) \leq_{Q} f(y)
$$

Example

$3 \cdot \mathcal{P}_{2}$
$2^{[3]}$

Poset Containment

- P is a subposet of Q if there is an injection $f: P \rightarrow Q$ such that

$$
\forall x, y \in P \quad x \leq P y \Longrightarrow f(x) \leq_{Q} f(y)
$$

- P is an induced subposet of Q if there is an injection $f: P \rightarrow Q$ such that

$$
\forall x, y \in P \quad x \leq_{P} y \Longleftrightarrow f(x) \leq_{Q} f(y)
$$

Example

Poset Containment

- P is a subposet of Q if there is an injection $f: P \rightarrow Q$ such that

$$
\forall x, y \in P \quad x \leq P y \Longrightarrow f(x) \leq_{Q} f(y)
$$

- P is an induced subposet of Q if there is an injection $f: P \rightarrow Q$ such that

$$
\forall x, y \in P \quad x \leq_{P} y \Longleftrightarrow f(x) \leq_{Q} f(y)
$$

Example

Poset Containment

- P is a subposet of Q if there is an injection $f: P \rightarrow Q$ such that

$$
\forall x, y \in P \quad x \leq P y \Longrightarrow f(x) \leq_{Q} f(y)
$$

- P is an induced subposet of Q if there is an injection $f: P \rightarrow Q$ such that

$$
\forall x, y \in P \quad x \leq_{P} y \Longleftrightarrow f(x) \leq_{Q} f(y)
$$

Example

The Turán Problem

- Let $[n]=\{1, \ldots, n\}$.

The Turán Problem

- Let $[n]=\{1, \ldots, n\}$.
- Let 2^{A} be the inclusion order on subsets of A.

The Turán Problem

- Let $[n]=\{1, \ldots, n\}$.
- Let 2^{A} be the inclusion order on subsets of A.
- The n-dimensional Boolean lattice is $2^{[n]}$.

The Turán Problem

- Let $[n]=\{1, \ldots, n\}$.
- Let 2^{A} be the inclusion order on subsets of A.
- The n-dimensional Boolean lattice is $2^{[n]}$.
- When $\mathcal{F} \subseteq 2^{[n]}$, we view \mathcal{F} as a poset ordered by inclusion.

The Turán Problem

- Let $[n]=\{1, \ldots, n\}$.
- Let 2^{A} be the inclusion order on subsets of A.
- The n-dimensional Boolean lattice is $2^{[n]}$.
- When $\mathcal{F} \subseteq 2^{[n]}$, we view \mathcal{F} as a poset ordered by inclusion.
- Let $\mathrm{La}(n, P)$ be the maximum size of a family \mathcal{F} such that $\mathcal{F} \subseteq 2^{[n]}$ and P is not a subposet of \mathcal{F}.

The Turán Problem

- Let $[n]=\{1, \ldots, n\}$.
- Let 2^{A} be the inclusion order on subsets of A.
- The n-dimensional Boolean lattice is $2^{[n]}$.
- When $\mathcal{F} \subseteq 2^{[n]}$, we view \mathcal{F} as a poset ordered by inclusion.
- Let $\mathrm{La}(n, P)$ be the maximum size of a family \mathcal{F} such that $\mathcal{F} \subseteq 2^{[n]}$ and P is not a subposet of \mathcal{F}.

Theorem (Sperner (1928); Erdős (1945))
$\mathrm{La}\left(n, \mathcal{P}_{k}\right)$ equals the sum of the $k-1$ largest binomial coefficients in $\left\{\binom{n}{0},\binom{n}{1}, \ldots,\binom{n}{n}\right\}$. For fixed k and $n \rightarrow \infty$,

$$
\mathrm{La}\left(n, \mathcal{P}_{k}\right)=(k-1+o(1))\binom{n}{\lfloor n / 2\rfloor} .
$$

The Turán Threshold

- The Turán threshold of P, denoted $\pi(P)$, is given by

$$
\pi(P)=\limsup _{n \rightarrow \infty} \frac{\mathrm{La}(n, P)}{\binom{n}{\lfloor n / 2\rfloor}} .
$$

The Turán Threshold

- The Turán threshold of P, denoted $\pi(P)$, is given by

$$
\pi(P)=\limsup _{n \rightarrow \infty} \frac{\operatorname{La}(n, P)}{\binom{n}{\lfloor n / 2\rfloor}} .
$$

- [Sperner (1928); Erdős (1945)] $\pi\left(\mathcal{P}_{k}\right)=k-1$

The Turán Threshold

- The Turán threshold of P, denoted $\pi(P)$, is given by

$$
\pi(P)=\limsup _{n \rightarrow \infty} \frac{\mathrm{La}(n, P)}{\binom{n}{\lfloor n / 2\rfloor}} .
$$

- [Sperner (1928); Erdős (1945)] $\pi\left(\mathcal{P}_{k}\right)=k-1$
- Always $\pi(P) \leq|P|-1$.

The Turán Threshold

- The Turán threshold of P, denoted $\pi(P)$, is given by

$$
\pi(P)=\limsup _{n \rightarrow \infty} \frac{\operatorname{La}(n, P)}{\binom{n}{\lfloor n / 2\rfloor}} .
$$

- [Sperner (1928); Erdős (1945)] $\pi\left(\mathcal{P}_{k}\right)=k-1$
- Always $\pi(P) \leq|P|-1$.
- The height of P is the size of a longest chain in P.

The Turán Threshold

- The Turán threshold of P, denoted $\pi(P)$, is given by

$$
\pi(P)=\limsup _{n \rightarrow \infty} \frac{\mathrm{La}(n, P)}{\binom{n}{\lfloor n / 2\rfloor}} .
$$

- [Sperner (1928); Erdős (1945)] $\pi\left(\mathcal{P}_{k}\right)=k-1$
- Always $\pi(P) \leq|P|-1$.
- The height of P is the size of a longest chain in P.

Theorem (Bukh (2010))
If the Hasse diagram of P is a tree, then $\pi(P)=h(P)-1$.

The Induced Turán Threshold

- Let $\mathrm{La}^{*}(n, P)$ be the maximum size of a family \mathcal{F} such that $\mathcal{F} \subseteq 2^{[n]}$ and P is not an induced subposet of \mathcal{F}.

The Induced Turán Threshold

- Let $\mathrm{La}^{*}(n, P)$ be the maximum size of a family \mathcal{F} such that $\mathcal{F} \subseteq 2^{[n]}$ and P is not an induced subposet of \mathcal{F}.
- The induced Turán threshold of P, denoted $\pi^{*}(P)$, is given by

$$
\pi^{*}(P)=\limsup _{n \rightarrow \infty} \frac{\operatorname{La}^{*}(n, P)}{\binom{n}{\lfloor n / 2\rfloor}} .
$$

The Induced Turán Threshold

- Let $\mathrm{La}^{*}(n, P)$ be the maximum size of a family \mathcal{F} such that $\mathcal{F} \subseteq 2^{[n]}$ and P is not an induced subposet of \mathcal{F}.
- The induced Turán threshold of P, denoted $\pi^{*}(P)$, is given by

$$
\pi^{*}(P)=\limsup _{n \rightarrow \infty} \frac{\operatorname{La}^{*}(n, P)}{\binom{n}{\lfloor n / 2\rfloor}} .
$$

- Fact: $\mathrm{La}(n, P) \leq \mathrm{La}^{*}(n, P)$ and $\pi(P) \leq \pi^{*}(P)$.

The Induced Turán Threshold

- Let $\mathrm{La}^{*}(n, P)$ be the maximum size of a family \mathcal{F} such that $\mathcal{F} \subseteq 2^{[n]}$ and P is not an induced subposet of \mathcal{F}.
- The induced Turán threshold of P, denoted $\pi^{*}(P)$, is given by

$$
\pi^{*}(P)=\limsup _{n \rightarrow \infty} \frac{\operatorname{La}^{*}(n, P)}{\binom{n}{\lfloor n / 2\rfloor}} .
$$

- Fact: $\mathrm{La}(n, P) \leq \mathrm{La}^{*}(n, P)$ and $\pi(P) \leq \pi^{*}(P)$.
- [Sperner (1928); Erdős (1945)] $\pi^{*}\left(\mathcal{P}_{k}\right)=k-1$.

The Induced Turán Threshold

- Let $\mathrm{La}^{*}(n, P)$ be the maximum size of a family \mathcal{F} such that $\mathcal{F} \subseteq 2^{[n]}$ and P is not an induced subposet of \mathcal{F}.
- The induced Turán threshold of P, denoted $\pi^{*}(P)$, is given by

$$
\pi^{*}(P)=\limsup _{n \rightarrow \infty} \frac{\operatorname{La}^{*}(n, P)}{\binom{n}{\lfloor n / 2\rfloor}} .
$$

- Fact: $\mathrm{La}(n, P) \leq \mathrm{La}^{*}(n, P)$ and $\pi(P) \leq \pi^{*}(P)$.
- [Sperner (1928); Erdős (1945)] $\pi^{*}\left(\mathcal{P}_{k}\right)=k-1$.
- [Carroll-Katona (2008)]: sharp bounds on La* (n, vo \mathbf{V}^{\prime}), implying $\pi^{*}\left(\vee^{\prime}\right)=1$.

The Induced Turán Threshold

- Let $\mathrm{La}^{*}(n, P)$ be the maximum size of a family \mathcal{F} such that $\mathcal{F} \subseteq 2^{[n]}$ and P is not an induced subposet of \mathcal{F}.
- The induced Turán threshold of P, denoted $\pi^{*}(P)$, is given by

$$
\pi^{*}(P)=\limsup _{n \rightarrow \infty} \frac{\mathrm{La}^{*}(n, P)}{\binom{n}{\lfloor n / 2\rfloor}}
$$

- Fact: $\mathrm{La}(n, P) \leq \mathrm{La}^{*}(n, P)$ and $\pi(P) \leq \pi^{*}(P)$.
- [Sperner (1928); Erdős (1945)] $\pi^{*}\left(\mathcal{P}_{k}\right)=k-1$.
- [Carroll-Katona (2008)]: sharp bounds on La* (n, ví), implying $\pi^{*}\left(ソ^{\prime}\right)=1$.

Theorem (Boehnlein-Jiang (2011))
If the Hasse diagram of P is a tree, then $\pi^{*}(P)=h(P)-1$.

The Induced Turán Threshold

- Let $\mathrm{La}^{*}(n, P)$ be the maximum size of a family \mathcal{F} such that $\mathcal{F} \subseteq 2^{[n]}$ and P is not an induced subposet of \mathcal{F}.
- The induced Turán threshold of P, denoted $\pi^{*}(P)$, is given by

$$
\pi^{*}(P)=\limsup _{n \rightarrow \infty} \frac{\mathrm{La}^{*}(n, P)}{\binom{n}{\lfloor n / 2\rfloor}}
$$

- Fact: $\mathrm{La}(n, P) \leq \mathrm{La}^{*}(n, P)$ and $\pi(P) \leq \pi^{*}(P)$.
- [Sperner (1928); Erdős (1945)] $\pi^{*}\left(\mathcal{P}_{k}\right)=k-1$.
- [Carroll-Katona (2008)]: sharp bounds on La* (n, ví), implying $\pi^{*}\left(ソ^{\prime}\right)=1$.

Theorem (Boehnlein-Jiang (2011))
If the Hasse diagram of P is a tree, then $\pi^{*}(P)=h(P)-1$.
Observation (Boehnlein-Jiang (2011))
$\pi^{*}(P)$ may be much larger than $\pi(P)$.

Our Results

Theorem
If P is a series-parallel poset, then $\pi^{*}(P)$ is finite.

Our Results

Theorem
If P is a series-parallel poset, then $\pi^{*}(P)$ is finite.

Definition

The standard example on $2 r$ elements, denoted \mathcal{S}_{r}, is the poset consisting of antichains $\left\{a_{1}, \ldots, a_{r}\right\}$ and $\left\{b_{1}, \ldots, b_{r}\right\}$ and the relations $a_{i} \leq b_{j}$ where $i \neq j$.

Our Results

Theorem
If P is a series-parallel poset, then $\pi^{*}(P)$ is finite.

Definition

The standard example on $2 r$ elements, denoted \mathcal{S}_{r}, is the poset consisting of antichains $\left\{a_{1}, \ldots, a_{r}\right\}$ and $\left\{b_{1}, \ldots, b_{r}\right\}$ and the relations $a_{i} \leq b_{j}$ where $i \neq j$.

Theorem
$r-2 \leq \pi^{*}\left(\mathcal{S}_{r}\right) \leq 4 r+O(\sqrt{r})$

Our Results

Theorem
If P is a series-parallel poset, then $\pi^{*}(P)$ is finite.

Definition

The standard example on $2 r$ elements, denoted \mathcal{S}_{r}, is the poset consisting of antichains $\left\{a_{1}, \ldots, a_{r}\right\}$ and $\left\{b_{1}, \ldots, b_{r}\right\}$ and the relations $a_{i} \leq b_{j}$ where $i \neq j$.

Theorem
$r-2 \leq \pi^{*}\left(\mathcal{S}_{r}\right) \leq 4 r+O(\sqrt{r})$
Corollary
$\pi^{*}\left(2^{[3]}\right) \leq 23.55$.

The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$ and $A \subseteq B$, define $\ell(\mathcal{F} ;[A, B])$ to be the expected number of times that a random full (A, B)-chain meets \mathcal{F}.

The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$ and $A \subseteq B$, define $\ell(\mathcal{F} ;[A, B])$ to be the expected number of times that a random full (A, B)-chain meets \mathcal{F}.

The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$ and $A \subseteq B$, define $\ell(\mathcal{F} ;[A, B])$ to be the expected number of times that a random full (A, B)-chain meets \mathcal{F}.

The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$ and $A \subseteq B$, define $\ell(\mathcal{F} ;[A, B])$ to be the expected number of times that a random full (A, B)-chain meets \mathcal{F}.

The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$ and $A \subseteq B$, define $\ell(\mathcal{F} ;[A, B])$ to be the expected number of times that a random full (A, B)-chain meets \mathcal{F}.

The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$ and $A \subseteq B$, define $\ell(\mathcal{F} ;[A, B])$ to be the expected number of times that a random full (A, B)-chain meets \mathcal{F}.

The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$ and $A \subseteq B$, define $\ell(\mathcal{F} ;[A, B])$ to be the expected number of times that a random full (A, B)-chain meets \mathcal{F}.

The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$ and $A \subseteq B$, define $\ell(\mathcal{F} ;[A, B])$ to be the expected number of times that a random full (A, B)-chain meets \mathcal{F}.
- $\ell_{A}^{+}(\mathcal{F})=\ell(\mathcal{F} ;[A,[n]])$.

The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$ and $A \subseteq B$, define $\ell(\mathcal{F} ;[A, B])$ to be the expected number of times that a random full (A, B)-chain meets \mathcal{F}.
- $\ell_{A}^{+}(\mathcal{F})=\ell(\mathcal{F} ;[A,[n]])$.

The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$ and $A \subseteq B$, define $\ell(\mathcal{F} ;[A, B])$ to be the expected number of times that a random full (A, B)-chain meets \mathcal{F}.
- $\ell_{A}^{+}(\mathcal{F})=\ell(\mathcal{F} ;[A,[n]])$.

The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$ and $A \subseteq B$, define $\ell(\mathcal{F} ;[A, B])$ to be the expected number of times that a random full (A, B)-chain meets \mathcal{F}.
- $\ell_{A}^{+}(\mathcal{F})=\ell(\mathcal{F} ;[A,[n]])$.

The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$ and $A \subseteq B$, define $\ell(\mathcal{F} ;[A, B])$ to be the expected number of times that a random full (A, B)-chain meets \mathcal{F}.
- $\ell_{A}^{+}(\mathcal{F})=\ell(\mathcal{F} ;[A,[n]])$.

The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$ and $A \subseteq B$, define $\ell(\mathcal{F} ;[A, B])$ to be the expected number of times that a random full (A, B)-chain meets \mathcal{F}.
- $\ell_{A}^{+}(\mathcal{F})=\ell(\mathcal{F} ;[A,[n]])$.

The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$ and $A \subseteq B$, define $\ell(\mathcal{F} ;[A, B])$ to be the expected number of times that a random full (A, B)-chain meets \mathcal{F}.
- $\ell_{A}^{+}(\mathcal{F})=\ell(\mathcal{F} ;[A,[n]])$.

The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$ and $A \subseteq B$, define $\ell(\mathcal{F} ;[A, B])$ to be the expected number of times that a random full (A, B)-chain meets \mathcal{F}.
- $\ell_{A}^{+}(\mathcal{F})=\ell(\mathcal{F} ;[A,[n]])$.

The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$ and $A \subseteq B$, define $\ell(\mathcal{F} ;[A, B])$ to be the expected number of times that a random full (A, B)-chain meets \mathcal{F}.
- $\ell_{A}^{+}(\mathcal{F})=\ell(\mathcal{F} ;[A,[n]])$.

The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$ and $A \subseteq B$, define $\ell(\mathcal{F} ;[A, B])$ to be the expected number of times that a random full (A, B)-chain meets \mathcal{F}.
- $\ell_{A}^{+}(\mathcal{F})=\ell(\mathcal{F} ;[A,[n]])$.
- $\ell_{A}^{-}(\mathcal{F})=\ell(\mathcal{F} ;[\varnothing, A])$.

The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$ and $A \subseteq B$, define $\ell(\mathcal{F} ;[A, B])$ to be the expected number of times that a random full (A, B)-chain meets \mathcal{F}.
- $\ell_{A}^{+}(\mathcal{F})=\ell(\mathcal{F} ;[A,[n]])$.
- $\ell_{A}^{-}(\mathcal{F})=\ell(\mathcal{F} ;[\varnothing, A])$.

The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$ and $A \subseteq B$, define $\ell(\mathcal{F} ;[A, B])$ to be the expected number of times that a random full (A, B)-chain meets \mathcal{F}.
- $\ell_{A}^{+}(\mathcal{F})=\ell(\mathcal{F} ;[A,[n]])$.
- $\ell_{A}^{-}(\mathcal{F})=\ell(\mathcal{F} ;[\varnothing, A])$.

The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$ and $A \subseteq B$, define $\ell(\mathcal{F} ;[A, B])$ to be the expected number of times that a random full (A, B)-chain meets \mathcal{F}.
- $\ell_{A}^{+}(\mathcal{F})=\ell(\mathcal{F} ;[A,[n]])$.
- $\ell_{A}^{-}(\mathcal{F})=\ell(\mathcal{F} ;[\varnothing, A])$.

The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$ and $A \subseteq B$, define $\ell(\mathcal{F} ;[A, B])$ to be the expected number of times that a random full (A, B)-chain meets \mathcal{F}.
- $\ell_{A}^{+}(\mathcal{F})=\ell(\mathcal{F} ;[A,[n]])$.
- $\ell_{A}^{-}(\mathcal{F})=\ell(\mathcal{F} ;[\varnothing, A])$.

The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$ and $A \subseteq B$, define $\ell(\mathcal{F} ;[A, B])$ to be the expected number of times that a random full (A, B)-chain meets \mathcal{F}.
- $\ell_{A}^{+}(\mathcal{F})=\ell(\mathcal{F} ;[A,[n]])$.
- $\ell_{A}^{-}(\mathcal{F})=\ell(\mathcal{F} ;[\varnothing, A])$.

The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$ and $A \subseteq B$, define $\ell(\mathcal{F} ;[A, B])$ to be the expected number of times that a random full (A, B)-chain meets \mathcal{F}.
- $\ell_{A}^{+}(\mathcal{F})=\ell(\mathcal{F} ;[A,[n]])$.
- $\ell_{A}^{-}(\mathcal{F})=\ell(\mathcal{F} ;[\varnothing, A])$.

The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$ and $A \subseteq B$, define $\ell(\mathcal{F} ;[A, B])$ to be the expected number of times that a random full (A, B)-chain meets \mathcal{F}.
- $\ell_{A}^{+}(\mathcal{F})=\ell(\mathcal{F} ;[A,[n]])$.
- $\ell_{A}^{-}(\mathcal{F})=\ell(\mathcal{F} ;[\varnothing, A])$.

The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$ and $A \subseteq B$, define $\ell(\mathcal{F} ;[A, B])$ to be the expected number of times that a random full (A, B)-chain meets \mathcal{F}.
- $\ell_{A}^{+}(\mathcal{F})=\ell(\mathcal{F} ;[A,[n]])$.
- $\ell_{A}^{-}(\mathcal{F})=\ell(\mathcal{F} ;[\varnothing, A])$.

The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$ and $A \subseteq B$, define $\ell(\mathcal{F} ;[A, B])$ to be the expected number of times that a random full (A, B)-chain meets \mathcal{F}.
- $\ell_{A}^{+}(\mathcal{F})=\ell(\mathcal{F} ;[A,[n]])$.
- $\ell_{A}^{-}(\mathcal{F})=\ell(\mathcal{F} ;[\varnothing, A])$.

The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$ and $A \subseteq B$, define $\ell(\mathcal{F} ;[A, B])$ to be the expected number of times that a random full (A, B)-chain meets \mathcal{F}.
- $\ell_{A}^{+}(\mathcal{F})=\ell(\mathcal{F} ;[A,[n]])$.
- $\ell_{A}^{-}(\mathcal{F})=\ell(\mathcal{F} ;[\varnothing, A])$.
- $\ell(\mathcal{F})=\ell(\mathcal{F} ;[\varnothing,[n]])$.

The Lubell Function

- Given $\mathcal{F} \subseteq 2^{[n]}$ and $A \subseteq B$, define $\ell(\mathcal{F} ;[A, B])$ to be the expected number of times that a random full (A, B)-chain meets \mathcal{F}.
- $\ell_{A}^{+}(\mathcal{F})=\ell(\mathcal{F} ;[A,[n]])$.
- $\ell_{A}^{-}(\mathcal{F})=\ell(\mathcal{F} ;[\varnothing, A])$.
- $\ell(\mathcal{F})=\ell(\mathcal{F} ;[\varnothing,[n]])$.
- Linearity of Expectation:

$$
\ell(\mathcal{F})=\sum_{A \in \mathcal{F}} \frac{1}{\binom{n}{|A|}}
$$

The Induced Lubell Threshold

- The induced Lubell threshold, denoted $\lambda^{*}(P)$, is given by
$\lambda^{*}(P)=\sup \{\ell(\mathcal{F}): \mathcal{F}$ does not contain an induced copy of $P\}$.

The Induced Lubell Threshold

- The induced Lubell threshold, denoted $\lambda^{*}(P)$, is given by
$\lambda^{*}(P)=\sup \{\ell(\mathcal{F}): \mathcal{F}$ does not contain an induced copy of $P\}$.
- $\ell(\mathcal{F})>\lambda^{*}(P) \Longrightarrow \mathcal{F}$ contains an induced copy of P.

The Induced Lubell Threshold

- The induced Lubell threshold, denoted $\lambda^{*}(P)$, is given by
$\lambda^{*}(P)=\sup \{\ell(\mathcal{F}): \mathcal{F}$ does not contain an induced copy of $P\}$.
- $\ell(\mathcal{F})>\lambda^{*}(P) \Longrightarrow \mathcal{F}$ contains an induced copy of P.
- $\pi^{*}(P) \leq \lambda^{*}(P)$.

The Induced Lubell Threshold

- The induced Lubell threshold, denoted $\lambda^{*}(P)$, is given by
$\lambda^{*}(P)=\sup \{\ell(\mathcal{F}): \mathcal{F}$ does not contain an induced copy of $P\}$.
- $\ell(\mathcal{F})>\lambda^{*}(P) \Longrightarrow \mathcal{F}$ contains an induced copy of P.
- $\pi^{*}(P) \leq \lambda^{*}(P)$.

Conjecture
Always $\lambda^{*}(P)$ is finite.

Series-Parallel Posets

Theorem
If P is a series-parallel poset, then $\lambda^{*}(P)$ is finite.

Series-Parallel Posets

Theorem
If P is a series-parallel poset, then $\lambda^{*}(P)$ is finite.
Lemma (Series Construction)

$$
\lambda^{*}(P) \leq \lambda^{*}\left(P_{1}\right)+\lambda^{*}\left(P_{2}\right)+2
$$

Series-Parallel Posets

Theorem
If P is a series-parallel poset, then $\lambda^{*}(P)$ is finite.
Lemma (Series Construction)

$$
\lambda^{*}(P) \leq \lambda^{*}\left(P_{1}\right)+\lambda^{*}\left(P_{2}\right)+2
$$

Lemma (Parallel Construction)

$$
\lambda^{*}(P) \leq \max \left\{\lambda^{*}\left(P_{1}\right), \lambda^{*}\left(P_{2}\right)\right\}+8
$$

Series Construction

Lemma (Shallow Sets)
A set $A \in \mathcal{F}$ is α-shallow if $\ell_{A}^{+}(\mathcal{F}) \leq \alpha$. If every element in \mathcal{F} is α-shallow, then $\ell(\mathcal{F}) \leq \alpha$.

Series Construction

Lemma (Shallow Sets)
A set $A \in \mathcal{F}$ is α-shallow if $\ell_{A}^{+}(\mathcal{F}) \leq \alpha$. If every element in \mathcal{F} is α-shallow, then $\ell(\mathcal{F}) \leq \alpha$.
Proof.

- Let X be the $\#$ of times a random full chain meets \mathcal{F}.

Series Construction

Lemma (Shallow Sets)
A set $A \in \mathcal{F}$ is α-shallow if $\ell_{A}^{+}(\mathcal{F}) \leq \alpha$. If every element in \mathcal{F} is α-shallow, then $\ell(\mathcal{F}) \leq \alpha$.
Proof.

- Let X be the $\#$ of times a random full chain meets \mathcal{F}.
- When $X \geq 1$, let Y be the first element in \mathcal{F}.

Series Construction

Lemma (Shallow Sets)
A set $A \in \mathcal{F}$ is α-shallow if $\ell_{A}^{+}(\mathcal{F}) \leq \alpha$. If every element in \mathcal{F} is α-shallow, then $\ell(\mathcal{F}) \leq \alpha$.
Proof.

- Let X be the $\#$ of times a random full chain meets \mathcal{F}.
- When $X \geq 1$, let Y be the first element in \mathcal{F}.

$$
\ell(\mathcal{F})=\mathbf{E}[X]=\sum_{A \in \mathcal{F}} \mathbf{E}[X \mid Y=A] \cdot \operatorname{Pr}[Y=A]
$$

Series Construction

Lemma (Shallow Sets)
A set $A \in \mathcal{F}$ is α-shallow if $\ell_{A}^{+}(\mathcal{F}) \leq \alpha$. If every element in \mathcal{F} is α-shallow, then $\ell(\mathcal{F}) \leq \alpha$.
Proof.

- Let X be the $\#$ of times a random full chain meets \mathcal{F}.
- When $X \geq 1$, let Y be the first element in \mathcal{F}.

$$
\begin{aligned}
\ell(\mathcal{F})=\mathbf{E}[X] & =\sum_{A \in \mathcal{F}} \mathbf{E}[X \mid Y=A] \cdot \operatorname{Pr}[Y=A] \\
& =\sum_{A \in \mathcal{F}} \ell_{A}^{+}(\mathcal{F}) \cdot \operatorname{Pr}[Y=A]
\end{aligned}
$$

Series Construction

Lemma (Shallow Sets)
A set $A \in \mathcal{F}$ is α-shallow if $\ell_{A}^{+}(\mathcal{F}) \leq \alpha$. If every element in \mathcal{F} is α-shallow, then $\ell(\mathcal{F}) \leq \alpha$.
Proof.

- Let X be the $\#$ of times a random full chain meets \mathcal{F}.
- When $X \geq 1$, let Y be the first element in \mathcal{F}.

$$
\begin{aligned}
\ell(\mathcal{F})=\mathbf{E}[X] & =\sum_{A \in \mathcal{F}} \mathbf{E}[X \mid Y=A] \cdot \operatorname{Pr}[Y=A] \\
& =\sum_{A \in \mathcal{F}} \ell_{A}^{+}(\mathcal{F}) \cdot \operatorname{Pr}[Y=A] \\
& \leq \sum_{A \in \mathcal{F}} \alpha \cdot \operatorname{Pr}[Y=A]
\end{aligned}
$$

Series Construction

Lemma (Shallow Sets)
A set $A \in \mathcal{F}$ is α-shallow if $\ell_{A}^{+}(\mathcal{F}) \leq \alpha$. If every element in \mathcal{F} is α-shallow, then $\ell(\mathcal{F}) \leq \alpha$.
Proof.

- Let X be the $\#$ of times a random full chain meets \mathcal{F}.
- When $X \geq 1$, let Y be the first element in \mathcal{F}.

$$
\begin{aligned}
\ell(\mathcal{F})=\mathbf{E}[X] & =\sum_{A \in \mathcal{F}} \mathbf{E}[X \mid Y=A] \cdot \operatorname{Pr}[Y=A] \\
& =\sum_{A \in \mathcal{F}} \ell_{A}^{+}(\mathcal{F}) \cdot \operatorname{Pr}[Y=A] \\
& \leq \sum_{A \in \mathcal{F}} \alpha \cdot \operatorname{Pr}[Y=A] \\
& \leq \alpha
\end{aligned}
$$

Series Construction

Lemma (Shallow Sets)
A set $A \in \mathcal{F}$ is α-shallow if $\ell_{A}^{+}(\mathcal{F}) \leq \alpha$. If every element in \mathcal{F} is α-shallow, then $\ell(\mathcal{F}) \leq \alpha$.

Lemma (Series Construction)

$$
\lambda^{*}(P) \leq \lambda^{*}\left(P_{1}\right)+\lambda^{*}\left(P_{2}\right)+2
$$

Series Construction

Lemma (Shallow Sets)
A set $A \in \mathcal{F}$ is α-shallow if $\ell_{A}^{+}(\mathcal{F}) \leq \alpha$. If every element in \mathcal{F} is α-shallow, then $\ell(\mathcal{F}) \leq \alpha$.

Lemma (Series Construction)

$$
\lambda^{*}(P) \leq \lambda^{*}\left(P_{1}\right)+\lambda^{*}\left(P_{2}\right)+2
$$

Proof.

- Let $\alpha_{1}=\lambda^{*}\left(P_{1}\right)$ and $\alpha_{2}=\lambda^{*}\left(P_{2}\right)$.

Series Construction

Lemma (Shallow Sets)
A set $A \in \mathcal{F}$ is α-shallow if $\ell_{A}^{+}(\mathcal{F}) \leq \alpha$. If every element in \mathcal{F} is α-shallow, then $\ell(\mathcal{F}) \leq \alpha$.

Lemma (Series Construction)

$$
\lambda^{*}(P) \leq \lambda^{*}\left(P_{1}\right)+\lambda^{*}\left(P_{2}\right)+2
$$

Proof.

- Let $\alpha_{1}=\lambda^{*}\left(P_{1}\right)$ and $\alpha_{2}=\lambda^{*}\left(P_{2}\right)$.
- Consider \mathcal{F} with $\ell(\mathcal{F})>\alpha_{1}+\alpha_{2}+2$.

Series Construction

Lemma (Shallow Sets)
A set $A \in \mathcal{F}$ is α-shallow if $\ell_{A}^{+}(\mathcal{F}) \leq \alpha$. If every element in \mathcal{F} is α-shallow, then $\ell(\mathcal{F}) \leq \alpha$.

Lemma (Series Construction)

$$
\lambda^{*}(P) \leq \lambda^{*}\left(P_{1}\right)+\lambda^{*}\left(P_{2}\right)+2
$$

Proof.

- Let $\alpha_{1}=\lambda^{*}\left(P_{1}\right)$ and $\alpha_{2}=\lambda^{*}\left(P_{2}\right)$.
- Consider \mathcal{F} with $\ell(\mathcal{F})>\alpha_{1}+\alpha_{2}+2$.
- Discard $\left(\alpha_{1}+1\right)$-shallow points.

Series Construction

Lemma (Shallow Sets)
A set $A \in \mathcal{F}$ is α-shallow if $\ell_{A}^{+}(\mathcal{F}) \leq \alpha$. If every element in \mathcal{F} is α-shallow, then $\ell(\mathcal{F}) \leq \alpha$.

Lemma (Series Construction)

$$
\lambda^{*}(P) \leq \lambda^{*}\left(P_{1}\right)+\lambda^{*}\left(P_{2}\right)+2
$$

Proof.

- Let $\alpha_{1}=\lambda^{*}\left(P_{1}\right)$ and $\alpha_{2}=\lambda^{*}\left(P_{2}\right)$.
- Consider \mathcal{F} with $\ell(\mathcal{F})>\alpha_{1}+\alpha_{2}+2$.
- Discard $\left(\alpha_{1}+1\right)$-shallow points.
- Discard "dually" $\left(\alpha_{2}+1\right)$-shallow points.

Series Construction

Lemma (Shallow Sets)

A set $A \in \mathcal{F}$ is α-shallow if $\ell_{A}^{+}(\mathcal{F}) \leq \alpha$. If every element in \mathcal{F} is α-shallow, then $\ell(\mathcal{F}) \leq \alpha$.

Lemma (Series Construction)

$$
\lambda^{*}(P) \leq \lambda^{*}\left(P_{1}\right)+\lambda^{*}\left(P_{2}\right)+2
$$

Proof.

- Let $\alpha_{1}=\lambda^{*}\left(P_{1}\right)$ and $\alpha_{2}=\lambda^{*}\left(P_{2}\right)$.
- Consider \mathcal{F} with $\ell(\mathcal{F})>\alpha_{1}+\alpha_{2}+2$.
- Discard $\left(\alpha_{1}+1\right)$-shallow points.
- Discard "dually" $\left(\alpha_{2}+1\right)$-shallow points.
- Choose a surviving set A.

Series Construction

Lemma (Shallow Sets)
A set $A \in \mathcal{F}$ is α-shallow if $\ell_{A}^{+}(\mathcal{F}) \leq \alpha$. If every element in \mathcal{F} is α-shallow, then $\ell(\mathcal{F}) \leq \alpha$.

Lemma (Series Construction)

$$
\lambda^{*}(P) \leq \lambda^{*}\left(P_{1}\right)+\lambda^{*}\left(P_{2}\right)+2
$$

Proof.

- $\ell_{A}^{+}(\mathcal{F})>\alpha_{1}+1$

Series Construction

Lemma (Shallow Sets)
A set $A \in \mathcal{F}$ is α-shallow if $\ell_{A}^{+}(\mathcal{F}) \leq \alpha$. If every element in \mathcal{F} is α-shallow, then $\ell(\mathcal{F}) \leq \alpha$.

Lemma (Series Construction)

$$
\lambda^{*}(P) \leq \lambda^{*}\left(P_{1}\right)+\lambda^{*}\left(P_{2}\right)+2
$$

Proof.

- $\ell_{A}^{+}(\mathcal{F})>\alpha_{1}+1$
- Find P_{1} in $(\mathcal{F}-\{A\}) \cap[A,[n]]$.

Series Construction

Lemma (Shallow Sets)
A set $A \in \mathcal{F}$ is α-shallow if $\ell_{A}^{+}(\mathcal{F}) \leq \alpha$. If every element in \mathcal{F} is α-shallow, then $\ell(\mathcal{F}) \leq \alpha$.

Lemma (Series Construction)

$$
\lambda^{*}(P) \leq \lambda^{*}\left(P_{1}\right)+\lambda^{*}\left(P_{2}\right)+2
$$

Proof.

- $\ell_{A}^{+}(\mathcal{F})>\alpha_{1}+1$
- Find P_{1} in $(\mathcal{F}-\{A\}) \cap[A,[n]]$.
- $\ell_{A}^{-}(\mathcal{F})>\alpha_{2}+1$

Series Construction

Lemma (Shallow Sets)
A set $A \in \mathcal{F}$ is α-shallow if $\ell_{A}^{+}(\mathcal{F}) \leq \alpha$. If every element in \mathcal{F} is α-shallow, then $\ell(\mathcal{F}) \leq \alpha$.

Lemma (Series Construction)

$$
\lambda^{*}(P) \leq \lambda^{*}\left(P_{1}\right)+\lambda^{*}\left(P_{2}\right)+2
$$

Proof.

- $\ell_{A}^{+}(\mathcal{F})>\alpha_{1}+1$
- Find P_{1} in $(\mathcal{F}-\{A\}) \cap[A,[n]]$.
- $\ell_{A}^{-}(\mathcal{F})>\alpha_{2}+1$
- Find P_{2} in $(\mathcal{F}-\{A\}) \cap[\varnothing, A)$.

Parallel Construction

- \mathcal{F} is balanced if, for each $A, B \in 2^{[n]}$ with $A \subseteq B$, we have $\ell(\mathcal{F} ;[A, B]) \leq \ell(\mathcal{F})$.

Parallel Construction

- \mathcal{F} is balanced if, for each $A, B \in 2^{[n]}$ with $A \subseteq B$, we have $\ell(\mathcal{F} ;[A, B]) \leq \ell(\mathcal{F})$.
- Given disjoint sets A and B, let $R_{A}^{B}=[A,[n]-B]$; this is the sublattice consisting of all sets that contain A and are disjoint from B.

Parallel Construction

- \mathcal{F} is balanced if, for each $A, B \in 2^{[n]}$ with $A \subseteq B$, we have $\ell(\mathcal{F} ;[A, B]) \leq \ell(\mathcal{F})$.
- Given disjoint sets A and B, let $R_{A}^{B}=[A,[n]-B]$; this is the sublattice consisting of all sets that contain A and are disjoint from B.

Lemma (Four Sublattices)

If \mathcal{F} is balanced, then there exist $i, j \in[n]$ such that the Lubell Function in each of the sublattices $R^{i j}, R_{i}^{j}, R_{j}^{i}, R_{i j}$ is at least $\ell(\mathcal{F})-8$.

Parallel Construction

Lemma (Four Sublattices)

If \mathcal{F} is balanced, then there exist $i, j \in[n]$ such that the Lubell Function in each of the sublattices $R^{i j}, R_{i}^{j}, R_{j}^{i}, R_{i j}$ is at least $\ell(\mathcal{F})-8$.

Parallel Construction

Lemma (Four Sublattices)

If \mathcal{F} is balanced, then there exist $i, j \in[n]$ such that the Lubell Function in each of the sublattices $R^{i j}, R_{i}^{j}, R_{j}^{i}, R_{i j}$ is at least $\ell(\mathcal{F})-8$.

Lemma (Parallel Construction)

$$
\lambda^{*}(P) \leq \max \left\{\lambda^{*}\left(P_{1}\right), \lambda^{*}\left(P_{2}\right)\right\}+8
$$

The Standard Example and Flexible Sets

Theorem

$$
\lambda^{*}\left(\mathcal{S}_{r}\right) \leq 4 r+4 \sqrt{2 \ln 2 \cdot r}+2 \ln 2
$$

The Standard Example and Flexible Sets

Theorem

$$
\lambda^{*}\left(\mathcal{S}_{r}\right) \leq 4 r+4 \sqrt{2 \ln 2 \cdot r}+2 \ln 2
$$

Definition

We say that $A \in \mathcal{F}$ is γ-flexible if

The Standard Example and Flexible Sets

Theorem

$$
\lambda^{*}\left(\mathcal{S}_{r}\right) \leq 4 r+4 \sqrt{2 \ln 2 \cdot r}+2 \ln 2
$$

Definition

We say that $A \in \mathcal{F}$ is γ-flexible if there are more than $\gamma|A|$ indices $t \in A$

The Standard Example and Flexible Sets

Theorem

\mathcal{S}_{4}
Definition

$$
\lambda^{*}\left(\mathcal{S}_{r}\right) \leq 4 r+4 \sqrt{2 \ln 2 \cdot r}+2 \ln 2
$$

We say that $A \in \mathcal{F}$ is γ-flexible if there are more than $\gamma|A|$ indices $t \in A$ such that $A-B=\{t\}$ for some $B \in \mathcal{F}$ with $|B|=|A|$.

The Standard Example and Flexible Sets

\mathcal{S}_{4}

$$
\lambda^{*}\left(\mathcal{S}_{r}\right) \leq 4 r+4 \sqrt{2 \ln 2 \cdot r}+2 \ln 2
$$

We say that $A \in \mathcal{F}$ is γ-flexible if there are more than $\gamma|A|$ indices $t \in A$ such that $A-B=\{t\}$ for some $B \in \mathcal{F}$ with $|B|=|A|$.

Lemma (Flexible Sets)
Let \mathcal{F} be a family of subsets of $[n]$ such that $|A| \leq n / 2$ for each $A \in \mathcal{F}$ and suppose that $0 \leq \gamma<1$.

The Standard Example and Flexible Sets

\mathcal{S}_{4}

$$
\lambda^{*}\left(\mathcal{S}_{r}\right) \leq 4 r+4 \sqrt{2 \ln 2 \cdot r}+2 \ln 2
$$

We say that $A \in \mathcal{F}$ is γ-flexible if there are more than $\gamma|A|$ indices $t \in A$ such that $A-B=\{t\}$ for some $B \in \mathcal{F}$ with $|B|=|A|$.

Lemma (Flexible Sets)

Let \mathcal{F} be a family of subsets of $[n]$ such that $|A| \leq n / 2$ for each $A \in \mathcal{F}$ and suppose that $0 \leq \gamma<1$. If \mathcal{F} does not contain a γ-flexible set, then $\ell(\mathcal{F}) \leq 1+\ln 2 /(1-\gamma)$.

Projection Lemma

Lemma (Projection)

- Let \mathcal{F} be a family of sets in $2^{[n]}$.

Projection Lemma

Lemma (Projection)

- Let \mathcal{F} be a family of sets in $2^{[n]}$.
- Let $T \subseteq[n]$ and let $t=|T|$.

Projection Lemma

Lemma (Projection)

- Let \mathcal{F} be a family of sets in $2^{[n]}$.
- Let $T \subseteq[n]$ and let $t=|T|$.
- Let \mathcal{F}^{\prime} be the projection of \mathcal{F} onto T :

$$
\mathcal{F}^{\prime}=\{A \cap T: A \in \mathcal{F}\}
$$

Projection Lemma

Lemma (Projection)

- Let \mathcal{F} be a family of sets in $2^{[n]}$.
- Let $T \subseteq[n]$ and let $t=|T|$.
- Let \mathcal{F}^{\prime} be the projection of \mathcal{F} onto T :

$$
\mathcal{F}^{\prime}=\{A \cap T: A \in \mathcal{F}\}
$$

Projection Lemma

Lemma (Projection)

- Let \mathcal{F} be a family of sets in $2^{[n]}$.
- Let $T \subseteq[n]$ and let $t=|T|$.
- Let \mathcal{F}^{\prime} be the projection of \mathcal{F} onto T :

$$
\mathcal{F}^{\prime}=\{A \cap T: A \in \mathcal{F}\}
$$

Projection Lemma

Lemma (Projection)

- Let \mathcal{F} be a family of sets in $2^{[n]}$.
- Let $T \subseteq[n]$ and let $t=|T|$.
- Let \mathcal{F}^{\prime} be the projection of \mathcal{F} onto T :

$$
\mathcal{F}^{\prime}=\{A \cap T: A \in \mathcal{F}\}
$$

We have that

$$
\ell_{\mathcal{T}}^{-}\left(\mathcal{F}^{\prime}\right) \geq \frac{t+1}{n+1} \cdot \ell(\mathcal{F}) .
$$

Private Elements Lemma

Lemma (Private Elements)
Let r be an integer and suppose that $\mathcal{F} \subseteq 2^{[n]}$ with $\ell(\mathcal{F})>2 r-1$.

Private Elements Lemma

Lemma (Private Elements)

Let r be an integer and suppose that $\mathcal{F} \subseteq 2^{[n]}$ with $\ell(\mathcal{F})>2 r-1$. There exist $A_{1}, \ldots, A_{r} \in \mathcal{F}$ and $a_{1}, \ldots, a_{r} \in[n]$ such that $a_{i} \in A_{j}$ if and only if $i \neq j$.

The Standard Example

Theorem

$$
\lambda^{*}\left(\mathcal{S}_{r}\right) \leq 4 r+4 \sqrt{2 \ln 2 \cdot r}+2 \ln 2
$$

$$
\mathcal{S}_{4}
$$

The Standard Example

Theorem

\mathcal{S}_{4}
Proof (sketch).

- Consider \mathcal{F} with $\ell(\mathcal{F})>4 r+\Omega(\sqrt{r})$.

The Standard Example

Theorem

\mathcal{S}_{4}
Proof (sketch).

$$
\lambda^{*}\left(\mathcal{S}_{r}\right) \leq 4 r+4 \sqrt{2 \ln 2 \cdot r}+2 \ln 2
$$

- Consider \mathcal{F} with $\ell(\mathcal{F})>4 r+\Omega(\sqrt{r})$.
- Let $\mathcal{F}_{1}=\{A \in \mathcal{F}:|A| \leq n / 2\}$.

The Standard Example

Theorem

\mathcal{S}_{4}
Proof (sketch).

$$
\lambda^{*}\left(\mathcal{S}_{r}\right) \leq 4 r+4 \sqrt{2 \ln 2 \cdot r}+2 \ln 2
$$

- Consider \mathcal{F} with $\ell(\mathcal{F})>4 r+\Omega(\sqrt{r})$.
- Let $\mathcal{F}_{1}=\{A \in \mathcal{F}:|A| \leq n / 2\}$.
- By symmetry, we may assume that $\ell\left(\mathcal{F}_{1}\right)>2 r+\Omega(\sqrt{r})$.

The Standard Example

Theorem

\mathcal{S}_{4}
Proof (sketch).

The Standard Example

Theorem

\mathcal{S}_{4}

Proof (sketch).

$$
\lambda^{*}\left(\mathcal{S}_{r}\right) \leq 4 r+4 \sqrt{2 \ln 2 \cdot r}+2 \ln 2
$$

- Set $\gamma=1-\frac{c}{\sqrt{r}}$.
- Discard the set \mathcal{B}_{1} of all points in \mathcal{F}_{1} that are not γ-flexible. Set $\mathcal{F}_{2}=\mathcal{F}_{1}-\mathcal{B}_{1}$.

The Standard Example

Theorem

\mathcal{S}_{4}

Proof (sketch).

$$
\lambda^{*}\left(\mathcal{S}_{r}\right) \leq 4 r+4 \sqrt{2 \ln 2 \cdot r}+2 \ln 2
$$

- Set $\gamma=1-\frac{c}{\sqrt{r}}$.
- Discard the set \mathcal{B}_{1} of all points in \mathcal{F}_{1} that are not γ-flexible. Set $\mathcal{F}_{2}=\mathcal{F}_{1}-\mathcal{B}_{1}$.

The Standard Example

Theorem

\mathcal{S}_{4}
Proof (sketch).

$$
\lambda^{*}\left(\mathcal{S}_{r}\right) \leq 4 r+4 \sqrt{2 \ln 2 \cdot r}+2 \ln 2
$$

- Set $\gamma=1-\frac{c}{\sqrt{r}}$.
- Discard the set \mathcal{B}_{1} of all points in \mathcal{F}_{1} that are not γ-flexible. Set $\mathcal{F}_{2}=\mathcal{F}_{1}-\mathcal{B}_{1}$.
- By the Flexible Sets Lemma, $\ell\left(\mathcal{B}_{1}\right)<O(\sqrt{r})$.

The Standard Example

Theorem

\mathcal{S}_{4}
Proof (sketch).

- Set $\gamma=1-\frac{c}{\sqrt{r}}$.
- Discard the set \mathcal{B}_{1} of all points in \mathcal{F}_{1} that are not γ-flexible. Set $\mathcal{F}_{2}=\mathcal{F}_{1}-\mathcal{B}_{1}$.
- By the Flexible Sets Lemma, $\ell\left(\mathcal{B}_{1}\right)<O(\sqrt{r})$.
- We have $\ell\left(\mathcal{F}_{2}\right)>(2 r-1) / \gamma$.

The Standard Example

Theorem

\mathcal{S}_{4}

Proof (sketch).

$$
\lambda^{*}\left(\mathcal{S}_{r}\right) \leq 4 r+4 \sqrt{2 \ln 2 \cdot r}+2 \ln 2
$$

- By the Shallow Sets Lemma, find $A \in \mathcal{F}_{2}$ with $\ell_{A}^{-}\left(\mathcal{F}_{2}\right)>(2 r-1) / \gamma$.

The Standard Example

Theorem

\mathcal{S}_{4}

Proof (sketch).

$$
\lambda^{*}\left(\mathcal{S}_{r}\right) \leq 4 r+4 \sqrt{2 \ln 2 \cdot r}+2 \ln 2
$$

- By the Shallow Sets Lemma, find $A \in \mathcal{F}_{2}$ with $\ell_{A}^{-}\left(\mathcal{F}_{2}\right)>(2 r-1) / \gamma$.

The Standard Example

Theorem

\mathcal{S}_{4}
Proof (sketch).

$$
\lambda^{*}\left(\mathcal{S}_{r}\right) \leq 4 r+4 \sqrt{2 \ln 2 \cdot r}+2 \ln 2
$$

- By the Shallow Sets Lemma, find $A \in \mathcal{F}_{2}$ with $\ell_{A}^{-}\left(\mathcal{F}_{2}\right)>(2 r-1) / \gamma$.

The Standard Example

Theorem

\mathcal{S}_{4}

Proof (sketch).

$$
\lambda^{*}\left(\mathcal{S}_{r}\right) \leq 4 r+4 \sqrt{2 \ln 2 \cdot r}+2 \ln 2
$$

- By the Shallow Sets Lemma, find $A \in \mathcal{F}_{2}$ with $\ell_{A}^{-}\left(\mathcal{F}_{2}\right)>(2 r-1) / \gamma$.
- Let $\mathcal{F}_{3}=\left\{A^{\prime} \in \mathcal{F}_{2}: A^{\prime} \subseteq A\right\}$.

The Standard Example

Theorem

\mathcal{S}_{4}
Proof (sketch).

$$
\lambda^{*}\left(\mathcal{S}_{r}\right) \leq 4 r+4 \sqrt{2 \ln 2 \cdot r}+2 \ln 2
$$

- By the Shallow Sets Lemma, find $A \in \mathcal{F}_{2}$ with $\ell_{A}^{-}\left(\mathcal{F}_{2}\right)>(2 r-1) / \gamma$.
- Let $\mathcal{F}_{3}=\left\{A^{\prime} \in \mathcal{F}_{2}: A^{\prime} \subseteq A\right\}$.
- Let T be the set of all indices $t \in A$ such that $A-B=\{t\}$ for some $B \in \mathcal{F}_{1}$ with $|B|=|A|$.

The Standard Example

Theorem

\mathcal{S}_{4}
Proof (sketch).

$$
\lambda^{*}\left(\mathcal{S}_{r}\right) \leq 4 r+4 \sqrt{2 \ln 2 \cdot r}+2 \ln 2
$$

- By the Shallow Sets Lemma, find $A \in \mathcal{F}_{2}$ with $\ell_{A}^{-}\left(\mathcal{F}_{2}\right)>(2 r-1) / \gamma$.
- Let $\mathcal{F}_{3}=\left\{A^{\prime} \in \mathcal{F}_{2}: A^{\prime} \subseteq A\right\}$.
- Let T be the set of all indices $t \in A$ such that $A-B=\{t\}$ for some $B \in \mathcal{F}_{1}$ with $|B|=|A|$.

The Standard Example

Theorem

\mathcal{S}_{4}
Proof (sketch).

$$
\lambda^{*}\left(\mathcal{S}_{r}\right) \leq 4 r+4 \sqrt{2 \ln 2 \cdot r}+2 \ln 2
$$

- By the Shallow Sets Lemma, find $A \in \mathcal{F}_{2}$ with $\ell_{A}^{-}\left(\mathcal{F}_{2}\right)>(2 r-1) / \gamma$.
- Let $\mathcal{F}_{3}=\left\{A^{\prime} \in \mathcal{F}_{2}: A^{\prime} \subseteq A\right\}$.
- Let T be the set of all indices $t \in A$ such that $A-B=\{t\}$ for some $B \in \mathcal{F}_{1}$ with $|B|=|A|$.
- Since A is γ-flexible, $|T| \geq \gamma|A|$.

The Standard Example

Theorem

\mathcal{S}_{4}
Proof (sketch).

$$
\lambda^{*}\left(\mathcal{S}_{r}\right) \leq 4 r+4 \sqrt{2 \ln 2 \cdot r}+2 \ln 2
$$

The Standard Example

Theorem

\mathcal{S}_{4}
Proof (sketch).

- Let \mathcal{F}_{4} be the projection of \mathcal{F}_{3} onto T.

The Standard Example

Theorem

\mathcal{S}_{4}
Proof (sketch).

- Let \mathcal{F}_{4} be the projection of \mathcal{F}_{3} onto T.
- By the Projection Lemma,

$$
\ell_{T}^{-}\left(\mathcal{F}_{4}\right) \geq \frac{|T|+1}{|A|+1} \cdot \ell_{A}^{-}\left(\mathcal{F}_{3}\right)
$$

The Standard Example

Theorem

\mathcal{S}_{4}
Proof (sketch).

- Let \mathcal{F}_{4} be the projection of \mathcal{F}_{3} onto T.
- By the Projection Lemma,

$$
\begin{aligned}
\ell_{T}^{-}\left(\mathcal{F}_{4}\right) & \geq \frac{|T|+1}{|A|+1} \cdot \ell_{A}^{-}\left(\mathcal{F}_{3}\right) \\
& >\gamma \cdot \frac{2 r-1}{\gamma}
\end{aligned}
$$

The Standard Example

Theorem

\mathcal{S}_{4}
Proof (sketch).

- Let \mathcal{F}_{4} be the projection of \mathcal{F}_{3} onto T.
- By the Projection Lemma,

$$
\begin{aligned}
\ell_{T}^{-}\left(\mathcal{F}_{4}\right) & \geq \frac{|T|+1}{|A|+1} \cdot \ell_{A}^{-}\left(\mathcal{F}_{3}\right) \\
& >\gamma \cdot \frac{2 r-1}{\gamma} \\
& >2 r-1
\end{aligned}
$$

The Standard Example

Theorem

\mathcal{S}_{4}
Proof (sketch).

$$
\lambda^{*}\left(\mathcal{S}_{r}\right) \leq 4 r+4 \sqrt{2 \ln 2 \cdot r}+2 \ln 2
$$

- By the Private Elements Lemma, find sets $T_{1}, \ldots, T_{r} \in \mathcal{F}_{4}$ and elements $t_{1}, \ldots, t_{r} \in T$ with $t_{i} \in T_{j}$ if and only if $i \neq j$.

The Standard Example

Theorem

\mathcal{S}_{4}
Proof (sketch).

$$
\lambda^{*}\left(\mathcal{S}_{r}\right) \leq 4 r+4 \sqrt{2 \ln 2 \cdot r}+2 \ln 2
$$

- By the Private Elements Lemma, find sets $T_{1}, \ldots, T_{r} \in \mathcal{F}_{4}$ and elements $t_{1}, \ldots, t_{r} \in T$ with $t_{i} \in T_{j}$ if and only if $i \neq j$.
- Each T_{i} extends to a set $A_{i} \in \mathcal{F}_{3}$ with $A_{i} \subseteq A$.

The Standard Example

Theorem

\mathcal{S}_{4}
Proof (sketch).

$$
\lambda^{*}\left(\mathcal{S}_{r}\right) \leq 4 r+4 \sqrt{2 \ln 2 \cdot r}+2 \ln 2
$$

- By the Private Elements Lemma, find sets $T_{1}, \ldots, T_{r} \in \mathcal{F}_{4}$ and elements $t_{1}, \ldots, t_{r} \in T$ with $t_{i} \in T_{j}$ if and only if $i \neq j$.
- Each T_{i} extends to a set $A_{i} \in \mathcal{F}_{3}$ with $A_{i} \subseteq A$.
- Still, $t_{i} \in A_{j}$ if and only if $i \neq j$.

The Standard Example

Theorem

\mathcal{S}_{4}
Proof (sketch).

$$
\lambda^{*}\left(\mathcal{S}_{r}\right) \leq 4 r+4 \sqrt{2 \ln 2 \cdot r}+2 \ln 2
$$

- By the Private Elements Lemma, find sets $T_{1}, \ldots, T_{r} \in \mathcal{F}_{4}$ and elements $t_{1}, \ldots, t_{r} \in T$ with $t_{i} \in T_{j}$ if and only if $i \neq j$.
- Each T_{i} extends to a set $A_{i} \in \mathcal{F}_{3}$ with $A_{i} \subseteq A$.
- Still, $t_{i} \in A_{j}$ if and only if $i \neq j$.

The Standard Example

Theorem

\mathcal{S}_{4}
Proof (sketch).

$$
\lambda^{*}\left(\mathcal{S}_{r}\right) \leq 4 r+4 \sqrt{2 \ln 2 \cdot r}+2 \ln 2
$$

- By the Private Elements Lemma, find sets $T_{1}, \ldots, T_{r} \in \mathcal{F}_{4}$ and elements $t_{1}, \ldots, t_{r} \in T$ with $t_{i} \in T_{j}$ if and only if $i \neq j$.
- Each T_{i} extends to a set $A_{i} \in \mathcal{F}_{3}$ with $A_{i} \subseteq A$.
- Still, $t_{i} \in A_{j}$ if and only if $i \neq j$.

The Standard Example

Theorem

\mathcal{S}_{4}

Proof (sketch).

$$
\lambda^{*}\left(\mathcal{S}_{r}\right) \leq 4 r+4 \sqrt{2 \ln 2 \cdot r}+2 \ln 2
$$

- Choose $B_{j} \in \mathcal{F}_{1}$ so that $A_{j}-B_{j}=\left\{t_{j}\right\}$.

The Standard Example

Theorem

\mathcal{S}_{4}

Proof (sketch).

- Choose $B_{j} \in \mathcal{F}_{1}$ so that $A_{j}-B_{j}=\left\{t_{j}\right\}$.

The Standard Example

Theorem

\mathcal{S}_{4}

Proof (sketch).

$$
\lambda^{*}\left(\mathcal{S}_{r}\right) \leq 4 r+4 \sqrt{2 \ln 2 \cdot r}+2 \ln 2
$$

- Choose $B_{j} \in \mathcal{F}_{1}$ so that $A_{j}-B_{j}=\left\{t_{j}\right\}$.
- $\left\{A_{1}, \ldots, A_{r}\right\}$ and $\left\{B_{1}, \ldots, B_{r}\right\}$ form \mathcal{S}_{r}.

Open Problems

Conjecture
Always $\lambda^{*}(P)$ is finite.

Open Problems

Conjecture
Always $\lambda^{*}(P)$ is finite.

- Every poset is an induced subposet of a sufficiently large boolean lattice.

Open Problems

Conjecture

Always $\lambda^{*}(P)$ is finite.

- Every poset is an induced subposet of a sufficiently large boolean lattice.
- $\lambda^{*}\left(2^{[3]}\right) \leq \lambda^{*}\left(\mathcal{S}_{3}\right)+2 \leq 23.55$.

Open Problems

Conjecture

Always $\lambda^{*}(P)$ is finite.

- Every poset is an induced subposet of a sufficiently large boolean lattice.
- $\lambda^{*}\left(2^{[3]}\right) \leq \lambda^{*}\left(\mathcal{S}_{3}\right)+2 \leq 23.55$.

Problem

Find a bound on $\lambda^{*}\left(2^{[4]}\right)$.

Open Problems

Conjecture

Always $\lambda^{*}(P)$ is finite.

- Every poset is an induced subposet of a sufficiently large boolean lattice.
- $\lambda^{*}\left(2^{[3]}\right) \leq \lambda^{*}\left(\mathcal{S}_{3}\right)+2 \leq 23.55$.

Problem

Find a bound on $\lambda^{*}\left(2^{[4]}\right)$.
Thank You.

