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Suppose we are given a finite set of celery sticks of positive integer lengths.
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Suppose we are given a finite set of celery sticks of positive integer lengths.

We wish to chop these sticks into unit-length pieces, using a knife that
can cut up to w sticks at a time, where w is a fixed positive integer

(called the width of the knife).

pYPPAThao Do and Bill Sands (University of CalgatChopping Celery and the Lattice of Integer P: June 20, 2012 2/



Suppose we are given a finite set of celery sticks of positive integer lengths.

We wish to chop these sticks into unit-length pieces, using a knife that
can cut up to w sticks at a time, where w is a fixed positive integer

(called the width of the knife).

How should we proceed in order to chop up the sticks using as few cuts as

possible?

pYPPAThao Do and Bill Sands (University of CalgatChopping Celery and the Lattice of Integer P: June 20, 2012 2/



Suppose we are given a finite set of celery sticks of positive integer lengths.

We wish to chop these sticks into unit-length pieces, using a knife that
can cut up to w sticks at a time, where w is a fixed positive integer

(called the width of the knife).

How should we proceed in order to chop up the sticks using as few cuts as

possible?

Answer: (J. Ginsburg and S, 2000) At each step, choose the w longest
nontrivial (that is, of length greater than one) sticks, or all nontrivial sticks
if there are less than w of them, and chop these all in half or as nearly in

half as possible.
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We will identify a set of k sticks with an infinite non-increasing sequence
S of positive integers, where the first k integers in S represent the lengths

of the sticks, and the remaining members of S are all 1's.
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We will identify a set of k sticks with an infinite non-increasing sequence
S of positive integers, where the first k integers in S represent the lengths

of the sticks, and the remaining members of S are all 1's.

The set of all such sequences S will be denoted .7,
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We will identify a set of k sticks with an infinite non-increasing sequence
S of positive integers, where the first k integers in S represent the lengths

of the sticks, and the remaining members of S are all 1's.
The set of all such sequences S will be denoted .7,

Note that the addition (or deletion) of 1's (which represent trivial sticks
not needing to be cut) at the end of any S € .% will not affect the

number of chops needed.
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We will identify a set of k sticks with an infinite non-increasing sequence
S of positive integers, where the first k integers in S represent the lengths

of the sticks, and the remaining members of S are all 1's.
The set of all such sequences S will be denoted .7,

Note that the addition (or deletion) of 1's (which represent trivial sticks
not needing to be cut) at the end of any S € .% will not affect the

number of chops needed.

Thus, for example, (5,2,2,1,1,...) will usually be denoted (5,2,2).

eYPPAThao Do and Bill Sands (University of CalgatChopping Celery and the Lattice of Integer P: June 20, 2012 3



For each § € ., define the chop vector of S by
Vs = (Vl, Vo, V3, .. )

where, for each integer w > 1, v, is the minimum number of cuts needed
to chop § into unit pieces given a knife which can cut up to w pieces at a

time.
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For each § € ., define the chop vector of S by
Vs = (Vl, Vo, V3, .. )

where, for each integer w > 1, v, is the minimum number of cuts needed
to chop § into unit pieces given a knife which can cut up to w pieces at a

time.

Note that vy is the number of cuts required to chop all nontrivial sticks in

S into units, one stick at a time, and so vi = ) s(s —1).
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For each § € ., define the chop vector of S by
Vs = (Vl, Vo, V3, .. )

where, for each integer w > 1, v, is the minimum number of cuts needed
to chop § into unit pieces given a knife which can cut up to w pieces at a

time.

Note that vy is the number of cuts required to chop all nontrivial sticks in

S into units, one stick at a time, and so vi = ) s(s —1).

Also, the v;'s are non-increasing and non-negative integers, and so vgs is

eventually constant.
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For example, consider S = (7,3,2). Then vy =6+2+1=9,and o, =5
because, with a knife of width w = 2, the binary algorithm would cut S up

in five steps as follows:
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For example, consider S = (7,3,2). Then vy =6+2+1=9,and o, =5
because, with a knife of width w = 2, the binary algorithm would cut S up

in five steps as follows:

(7.3,2) — (43,2,21)
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For example, consider S = (7,3,2). Then vy =6+2+1=9,and o, =5
because, with a knife of width w = 2, the binary algorithm would cut S up
in five steps as follows:

(7,3,2) — (4,3,2,2,1)

= (2,2,2,2,2,1,1)
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For example, consider S = (7,3,2). Then vy =6+2+1=9,and o, =5
because, with a knife of width w = 2, the binary algorithm would cut S up

in five steps as follows:

(7,3.2) — (4,3,2,2,1)
= (2,2,2,2,2,1,1)

- (2,2,2,1,1,1,1,1,1)
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For example, consider S = (7,3,2). Then vy =6+2+1=9,and o, =5
because, with a knife of width w = 2, the binary algorithm would cut S up

in five steps as follows:

(7,3,2) — (4,3,2,2,1)
(2,2,2,2,2,1,1)
- (2,2,2,1,1,1,1,1,1)

(

2,1,1,1,1,1,1,1,1,1,1)

) ) ) ) ) Y Y ) ) )
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For example, consider S = (7,3,2). Then vy =6+2+1=9,and o, =5
because, with a knife of width w = 2, the binary algorithm would cut S up

in five steps as follows:

(7.3,2) — (4,3,2,2,1)

2,2,2,2,2,1,1)

2,1,1,1,1,1,1,1,1,1,1)

) ) ) ) ) Y Y ) ) )

(
(
- (2,2,2,1,1,1,1,1,1)
(
(

1,1,1,1,1,1,1,1,1,1,1,1).
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Ignoring trivial sticks, we would write this dissection of S = (7,3,2) as

(7,3,2) — (4,3,2,2) — (2,2,2,2,2) — (2,2,2) — (2) — 0.
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Ignoring trivial sticks, we would write this dissection of S = (7,3,2) as

(7,3,2) — (4,3,2,2) — (2,2,2,2,2) — (2,2,2) — (2) — 0.

But with a knife of width w = 3, the chopping up takes only three steps:

(7.3,2) — (4,3,2) — (2,2,2) — 0.
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But with a knife of width w = 3, the chopping up takes only three steps:
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Moreover, it is easy to see that, for any width w > 3, at least three cuts

will be necessary to reduce the stick of length 7 down to unit pieces.
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Ignoring trivial sticks, we would write this dissection of S = (7,3,2) as

(7,3,2) — (4,3,2,2) — (2,2,2,2,2) — (2,2,2) — (2) — 0.

But with a knife of width w = 3, the chopping up takes only three steps:

(7.3,2) — (4,3,2) — (2,2,2) — 0.

Moreover, it is easy to see that, for any width w > 3, at least three cuts

will be necessary to reduce the stick of length 7 down to unit pieces. Thus

V(773’2) = (9, 57 3, 3, . )
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Ignoring trivial sticks, we would write this dissection of S = (7,3,2) as

(7,3,2) — (4,3,2,2) — (2,2,2,2,2) — (2,2,2) — (2) — 0.

But with a knife of width w = 3, the chopping up takes only three steps:
(7,3,2) — (4,3,2) — (2,2,2) — 0.
Moreover, it is easy to see that, for any width w > 3, at least three cuts
will be necessary to reduce the stick of length 7 down to unit pieces. Thus
V(773’2) = (9, 57 3, 3, . )

But what does all this have to do with partially ordered, sets??
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If we deduct 1 from each entry in a sequence S € ./, we obtain an infinite
non-increasing sequence S’ of non-negative integers, only finitely many of

which are nonzero.
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If we deduct 1 from each entry in a sequence S € ./, we obtain an infinite
non-increasing sequence S’ of non-negative integers, only finitely many of

which are nonzero.

Thus we will consider S’ as a partition of the positive integer

ZS’GS’ s’ = ZSES(S - 1)
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If we deduct 1 from each entry in a sequence S € ./, we obtain an infinite
non-increasing sequence S’ of non-negative integers, only finitely many of

which are nonzero.

Thus we will consider S’ as a partition of the positive integer

25’68’ s’ = ZSES(S - 1)

Therefore {S’ : S € .’} forms the set & of all integer partitions.
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If we deduct 1 from each entry in a sequence S € ./, we obtain an infinite
non-increasing sequence S’ of non-negative integers, only finitely many of

which are nonzero.

Thus we will consider S’ as a partition of the positive integer

ZSIES, 5, == ZSGS(S - 1)
Therefore {S’ : S € .’} forms the set & of all integer partitions.

Furthermore & can be given a natural partial ordering < called
dominance ordering (or majorization) as follows. For integer partitions
S =(s1,8,...)and T = (t1,tp,...) in &, put S <7 if and only if
Z{:l si < Zj,::l t; for all j > 1.
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Then & = (£, <) is a lattice called the lattice of integer partitions.
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Then & = (£, <) is a lattice called the lattice of integer partitions.

e Brylawski (1973)
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Then & = (£, <) is a lattice called the lattice of integer partitions.

e Brylawski (1973)
e Baransky and Koroleva (2008)

e Latapy and Phan (2009)

SJPPAThao Do and Bill Sands (University of CalgatChopping Celery and the Lattice of Integer P: June 20, 2012 8/



Then & = (£, <) is a lattice called the lattice of integer partitions.

e Brylawski (1973)
e Baransky and Koroleva (2008)

e Latapy and Phan (2009)

We can similarly define dominance ordering < on the set .¥ of all sets of

sticks.
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Then & = (£, <) is a lattice called the lattice of integer partitions.

e Brylawski (1973)
e Baransky and Koroleva (2008)

e Latapy and Phan (2009)

We can similarly define dominance ordering < on the set .¥ of all sets of
sticks. Then (#, <) becomes a lattice, clearly isomorphic to &, via the

renaming S — S'.

SJPPAThao Do and Bill Sands (University of CalgatChopping Celery and the Lattice of Integer P: June 20, 2012 8/



Then & = (£, <) is a lattice called the lattice of integer partitions.

e Brylawski (1973)
e Baransky and Koroleva (2008)

e Latapy and Phan (2009)

We can similarly define dominance ordering < on the set .¥ of all sets of
sticks. Then (#, <) becomes a lattice, clearly isomorphic to &, via the

renaming S — S'.

Thao Do: Master's Thesis on integer partitions (U of C, 2009)
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Dominance ordering < on the lattice . is the transitive and reflexive
closure of the following two types of relations: for S = (s1, s, ...,Sm) and

7T =(t1,tp,...,ty) in L, S<Tif
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(Yn=m+1, ty1 =2, and s; =t; forall i € {1,2,...,m}, or
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Dominance ordering < on the lattice . is the transitive and reflexive
closure of the following two types of relations: for S = (s1, s, ...,Sm) and
7T =(t1,tp,...,ty) in L, S<Tif

(Yn=m+1, ty1 =2, and s; =t; forall i € {1,2,...,m}, or

(i) n=mand there exists 1 <j < k < msothat tj =s; + 1, tj = s — 1,

and t; = s; for all i # j or k.
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Dominance ordering < on the lattice . is the transitive and reflexive
closure of the following two types of relations: for S = (s1, s, ...,Sm) and
7T =(t1,tp,...,ty) in L, S<Tif

(Yn=m+1, ty1 =2, and s; =t; forall i € {1,2,...,m}, or

(i) n=mand there exists 1 <j < k < msothat tj =s; + 1, tj = s — 1,

and t; = s; for all i # j or k.

Considering S and 7 as (multi)sets of (lengths of) sticks rather than as

nonincreasing sequences of lengths,
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Dominance ordering < on the lattice . is the transitive and reflexive
closure of the following two types of relations: for S = (s1, s, ...,Sm) and
7T =(t1,tp,...,ty) in L, S<Tif

(Yn=m+1, ty1 =2, and s; =t; forall i € {1,2,...,m}, or

(i) n=mand there exists 1 <j < k < msothat tj =s; + 1, tj = s — 1,

and t; = s; for all i # j or k.

Considering S and 7 as (multi)sets of (lengths of) sticks rather than as
nonincreasing sequences of lengths,
o (i) is equivalent to 7 = SU {2}, and
o (ii) is equivalentto 7 = (S — {x,y})U{x—1,y + 1} for some x,y in
S satisfying 2 < x < y.
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For instance, (4,3) < (4,3,2) in the Figure is an example of the first kind

of relation above,
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For instance, (4,3) < (4,3,2) in the Figure is an example of the first kind
of relation above, while (4,3,2) < (5,2,2) and (4,3,2) < (4,4,1) = (4,4)

are examples of the second kind.

IBWPPAThao Do and Bill Sands (University of CalgarChopping Celery and the Lattice of Integer P: June 20, 2012 11



For instance, (4,3) < (4,3,2) in the Figure is an example of the first kind
of relation above, while (4,3,2) < (5,2,2) and (4,3,2) < (4,4,1) = (4,4)
are examples of the second kind. Thus (4,3) < (5,2,2) and (4,3) < (4,4)

in the transitive closure.

IBWPPAThao Do and Bill Sands (University of CalgarChopping Celery and the Lattice of Integer P: June 20, 2012 11



For instance, (4,3) < (4,3,2) in the Figure is an example of the first kind
of relation above, while (4,3,2) < (5,2,2) and (4,3,2) < (4,4,1) = (4,4)
are examples of the second kind. Thus (4,3) < (5,2,2) and (4,3) < (4,4)

in the transitive closure.

The family of all chop vectors, considered as elements of the direct

product N*, can be naturally ordered componentwise;
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For instance, (4,3) < (4,3,2) in the Figure is an example of the first kind
of relation above, while (4,3,2) < (5,2,2) and (4,3,2) < (4,4,1) = (4,4)
are examples of the second kind. Thus (4,3) < (5,2,2) and (4,3) < (4,4)

in the transitive closure.

The family of all chop vectors, considered as elements of the direct
product N¥, can be naturally ordered componentwise; that is, for all

S, T € %, vs <vrif and only if (vs); < (vr); for all /.
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Let ¢ : . — N¥ defined by ¢(S) = vs for all S € ..
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Let ¢ : . — N¥ defined by ¢(S) = vs for all S € ..

(T. Do, B. Sands) ¢ is order preserving; that is, for all S, T € ./ with

S<T,vs <vrg.
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Let ¢ : . — N¥ defined by ¢(S) = vs for all S € ..

(T. Do, B. Sands) ¢ is order preserving; that is, for all S, T € ./ with

S<T,vs <vrg.

The proof is a slightly tricky induction on the number of steps required to

completely chop up a set of sticks.
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Note: ¢ : . — N¥ given by ¢(S) = vs is order-preserving, but is not a

lattice homomorphism.
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Note: ¢ : . — N¥ given by ¢(S) = vs is order-preserving, but is not a

lattice homomorphism.

For example, let S = (3) and 7 = (2,2,2). Then
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Note: ¢ : . — N¥ given by ¢(S) = vs is order-preserving, but is not a

lattice homomorphism.
For example, let S = (3) and 7 = (2,2,2). Then

¢(3) == V(3) == (2, 2, .. ) and ¢(2, 2, 2) = V(272’2) = (3, 2, 1, 1, . )
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Note: ¢ : . — N¥ given by ¢(S) = vs is order-preserving, but is not a

lattice homomorphism.
For example, let S = (3) and 7 = (2,2,2). Then
¢(3) =V@3) = (27 27 . ) and ¢(27 27 2) =V(2.2.2) = (37 27 1’ 1) .. )

Thus ¢(S) A ¢(T) = (2,2,1,1,...).
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Note: ¢ : . — N¥ given by ¢(S) = vs is order-preserving, but is not a

lattice homomorphism.
For example, let S = (3) and 7 = (2,2,2). Then

¢(3) == V(3) == (2, 2, .. ) and ¢(2, 2, 2) = V(272’2) = (3, 2, 1, 1, . )

Thus ¢(S) A ¢(T) = (2,2,1,1,...).

However, S AT = (2,2), and
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Note: ¢ : . — N¥ given by ¢(S) = vs is order-preserving, but is not a

lattice homomorphism.
For example, let S = (3) and 7 = (2,2,2). Then

¢(3) == V(3) == (2, 2, .. ) and ¢(2, 2, 2) = V(272’2) = (3, 2, 1, 1, . )

Thus ¢(S)ANH(T) =(2,2,1,1,...).
However, S AT = (2,2), and

$(2,2) = v = (2,1,1,...) < $(S) A ¢(T);
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Note: ¢ : . — N¥ given by ¢(S) = vs is order-preserving, but is not a

lattice homomorphism.
For example, let S = (3) and 7 = (2,2,2). Then
#(3) =v@E) =(2,2,...) and #(2,2,2) =vpa0 =(3,2,1,1,...).
Thus ¢(S)ANH(T) =(2,2,1,1,...).
However, S AT = (2,2), and
$(2,2) = v =(2,1,1,...) < &(8) N o(T);
note that when w = 2, the binary algorithm produces
(2,2) =0,

so va =1inv(yy).
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In contrast, all the joins illustrated in the Figure are in fact preserved, and

we have not yet found a join that is not.
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In contrast, all the joins illustrated in the Figure are in fact preserved, and

we have not yet found a join that is not.

Problem

1 /s ¢ join preserving?
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In contrast, all the joins illustrated in the Figure are in fact preserved, and

we have not yet found a join that is not.

Problem

1 /s ¢ join preserving?

An affirmative answer to this problem would supply an alternate proof to

our Theorem.
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For a vector v, let .’(v) be the family of all sets S of sticks whose chop

vector vg equals v.
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For a vector v, let .’(v) be the family of all sets S of sticks whose chop

vector vg equals v.

Then .#(v) is a convex subset of ..
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For a vector v, let .’(v) be the family of all sets S of sticks whose chop

vector vg equals v.
Then .#(v) is a convex subset of ..

That is, if S and 7 are in .¥(v) and satisfy S < 7 in ., and if U is in .
and satisfies S <U < 7, then U must be in .#(v).
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However, .#(v) is not always a sublattice of ., in particular .#(v) is not

always closed under meets.
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However, .#(v) is not always a sublattice of ., in particular .#(v) is not

always closed under meets.

For example, let S = (7,4) and 7 = (8, 2,2).
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However, .#(v) is not always a sublattice of ., in particular .#(v) is not

always closed under meets.
For example, let S = (7,4) and 7 = (8,2,2). Then

vs =(9,5,4,3,3,...) = vr,
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However, .#(v) is not always a sublattice of ., in particular .#(v) is not

always closed under meets.
For example, let S = (7,4) and 7 = (8,2,2). Then
vs =(9,5,4,3,3,...) = vr,

SO

S, T € S(v) where v=1(9,54733,...).
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However, .#(v) is not always a sublattice of ., in particular .#(v) is not

always closed under meets.
For example, let S = (7,4) and 7 = (8,2,2). Then
vs =(9,5,4,3,3,...) = vr,

SO

S, T € S(v) where v=1(9,54733,...).

But SAT = (7,4) A (8,2,2) = (7,3,2),
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However, .#(v) is not always a sublattice of ., in particular .#(v) is not

always closed under meets.
For example, let S = (7,4) and 7 = (8,2,2). Then
vs =(9,5,4,3,3,...) = vr,

SO

S, T € S(v) where v=1(9,54733,...).

But SAT = (7,4) A (8,2,2) = (7,3,2), and

viz32) = (9,5,3,3,...),
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However, .#(v) is not always a sublattice of ., in particular .#(v) is not

always closed under meets.
For example, let S = (7,4) and 7 = (8,2,2). Then
vs =(9,5,4,3,3,...) = vr,

SO

S, T € S(v) where v=1(9,54733,...).

But SAT = (7,4) N (8,2,2) = (7,3,2), and
viz32) = (9,5,3,3,...),

so SAT & F(v).
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Problem

2 For all vectors v, is .#(v) closed under joins?
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Problem

2 For all vectors v, is .#(v) closed under joins?

An affirmative answer to Problem 1 would give an affirmative answer to

Problem 2 as well.
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Here is another question suggested by the convex subsets .#(v). Call a set
S of sticks lonely if .#(vs) = {S}, thatis, if S is the only element of .

having that particular chop vector.
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Here is another question suggested by the convex subsets .#(v). Call a set
S of sticks lonely if .#(vs) = {S}, thatis, if S is the only element of .

having that particular chop vector.

It is easy to see that for S = (2,2,...,2) (which we abbreviate as (2") if
there are n 2's), its chop vector vg satisfies vi = n and v, = 1 for all

m > n.
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Here is another question suggested by the convex subsets .#(v). Call a set
S of sticks lonely if .#(vs) = {S}, thatis, if S is the only element of .

having that particular chop vector.

It is easy to see that for S = (2,2,...,2) (which we abbreviate as (2") if
there are n 2's), its chop vector vg satisfies vi = n and v, = 1 for all

m > n.

Moreover the sequences S = (2") for integers n > 1 are the only elements

S € ¥ so that vg is eventually 1.
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Here is another question suggested by the convex subsets .#(v). Call a set
S of sticks lonely if .#(vs) = {S}, thatis, if S is the only element of .

having that particular chop vector.

It is easy to see that for S = (2,2,...,2) (which we abbreviate as (2") if
there are n 2's), its chop vector vg satisfies vi = n and v, = 1 for all

m > n.

Moreover the sequences S = (2") for integers n > 1 are the only elements

S € ¥ so that vg is eventually 1.

Thus (27) is lonely for all integers n > 1.
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Also, of the elements S € . of the form S = (n) for integers n < 12, the

following are lonely:
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Also, of the elements S € . of the form S = (n) for integers n < 12, the

following are lonely: n=23,57,8,9,11.
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Also, of the elements S € . of the form S = (n) for integers n < 12, the

following are lonely: n=23,57,8,9,11.

And there is more: among the remaining elements shown in the Figure,

(4,4),(4,4,3) and (8,2) are lonely.
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Also, of the elements S € . of the form S = (n) for integers n < 12, the

following are lonely: n=23,57,8,9,11.

And there is more: among the remaining elements shown in the Figure,

(4,4),(4,4,3) and (8,2) are lonely.

(Incidentally, this last example shows that a lonely element need not be a

join-irreducible element of the lattice .#.)
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Also, of the elements S € . of the form S = (n) for integers n < 12, the

following are lonely: n=23,57,8,9,11.

And there is more: among the remaining elements shown in the Figure,

(4,4),(4,4,3) and (8,2) are lonely.

(Incidentally, this last example shows that a lonely element need not be a

join-irreducible element of the lattice .#.)

Problem

3 Characterize all lonely elements of .7
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