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Suppose we are given a finite set of celery sticks of positive integer lengths.

We wish to chop these sticks into unit-length pieces, using a knife that

can cut up to w sticks at a time, where w is a fixed positive integer

(called the width of the knife).

How should we proceed in order to chop up the sticks using as few cuts as

possible?

Answer: (J. Ginsburg and S, 2000) At each step, choose the w longest

nontrivial (that is, of length greater than one) sticks, or all nontrivial sticks

if there are less than w of them, and chop these all in half or as nearly in

half as possible.
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We will identify a set of k sticks with an infinite non-increasing sequence

S of positive integers, where the first k integers in S represent the lengths

of the sticks, and the remaining members of S are all 1’s.

The set of all such sequences S will be denoted S .

Note that the addition (or deletion) of 1’s (which represent trivial sticks

not needing to be cut) at the end of any S ∈ S will not affect the

number of chops needed.

Thus, for example, (5, 2, 2, 1, 1, . . .) will usually be denoted (5, 2, 2).
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For each S ∈ S , define the chop vector of S by

vS = (v1, v2, v3, . . . )

where, for each integer w ≥ 1, vw is the minimum number of cuts needed

to chop S into unit pieces given a knife which can cut up to w pieces at a

time.

Note that v1 is the number of cuts required to chop all nontrivial sticks in

S into units, one stick at a time, and so v1 =
∑

s∈S(s − 1).

Also, the vi ’s are non-increasing and non-negative integers, and so vS is

eventually constant.
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For example, consider S = (7, 3, 2). Then v1 = 6 + 2 + 1 = 9, and v2 = 5

because, with a knife of width w = 2, the binary algorithm would cut S up

in five steps as follows:

(7, 3, 2) → (4, 3, 2, 2, 1)

→ (2, 2, 2, 2, 2, 1, 1)

→ (2, 2, 2, 1, 1, 1, 1, 1, 1)

→ (2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

→ (1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1).
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Ignoring trivial sticks, we would write this dissection of S = (7, 3, 2) as

(7, 3, 2)→ (4, 3, 2, 2)→ (2, 2, 2, 2, 2)→ (2, 2, 2)→ (2)→ ∅.

But with a knife of width w = 3, the chopping up takes only three steps:

(7, 3, 2)→ (4, 3, 2)→ (2, 2, 2)→ ∅.

Moreover, it is easy to see that, for any width w ≥ 3, at least three cuts

will be necessary to reduce the stick of length 7 down to unit pieces. Thus

v(7,3,2) = (9, 5, 3, 3, . . .).

But what does all this have to do with partially ordered sets??
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If we deduct 1 from each entry in a sequence S ∈ S , we obtain an infinite

non-increasing sequence S ′ of non-negative integers, only finitely many of

which are nonzero.

Thus we will consider S ′ as a partition of the positive integer∑
s′∈S′ s ′ =

∑
s∈S(s − 1).

Therefore {S ′ : S ∈ S } forms the set P of all integer partitions.

Furthermore P can be given a natural partial ordering ≤ called

dominance ordering (or majorization) as follows. For integer partitions

S = (s1, s2, . . . ) and T = (t1, t2, . . . ) in P, put S ≤ T if and only if∑j
i=1 si ≤

∑j
i=1 ti for all j ≥ 1.
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Then P = (P,≤) is a lattice called the lattice of integer partitions.

Brylawski (1973)

Baransky and Koroleva (2008)

Latapy and Phan (2009)

We can similarly define dominance ordering ≤ on the set S of all sets of

sticks. Then (S ,≤) becomes a lattice, clearly isomorphic to P, via the

renaming S → S ′.

Thao Do: Master’s Thesis on integer partitions (U of C, 2009)
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Dominance ordering ≤ on the lattice S is the transitive and reflexive

closure of the following two types of relations: for S = (s1, s2, . . . , sm) and

T = (t1, t2, . . . , tn) in S , S < T if

(i) n = m + 1, tm+1 = 2, and si = ti for all i ∈ {1, 2, . . . ,m}, or

(ii) n = m and there exists 1 ≤ j < k ≤ m so that tj = sj + 1, tk = sk − 1,

and ti = si for all i 6= j or k .

Considering S and T as (multi)sets of (lengths of) sticks rather than as

nonincreasing sequences of lengths,

(i) is equivalent to T = S ∪ {2}, and

(ii) is equivalent to T = (S − {x , y})∪ {x − 1, y + 1} for some x , y in

S satisfying 2 ≤ x ≤ y .
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(i) n = m + 1, tm+1 = 2, and si = ti for all i ∈ {1, 2, . . . ,m}, or

(ii) n = m and there exists 1 ≤ j < k ≤ m so that tj = sj + 1, tk = sk − 1,

and ti = si for all i 6= j or k .

Considering S and T as (multi)sets of (lengths of) sticks rather than as

nonincreasing sequences of lengths,

(i) is equivalent to T = S ∪ {2}, and

(ii) is equivalent to T = (S − {x , y})∪ {x − 1, y + 1} for some x , y in

S satisfying 2 ≤ x ≤ y .
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For instance, (4, 3) < (4, 3, 2) in the Figure is an example of the first kind

of relation above,

while (4, 3, 2) < (5, 2, 2) and (4, 3, 2) < (4, 4, 1) = (4, 4)

are examples of the second kind. Thus (4, 3) < (5, 2, 2) and (4, 3) < (4, 4)

in the transitive closure.

The family of all chop vectors, considered as elements of the direct

product Nω, can be naturally ordered componentwise; that is, for all

S, T ∈ S , vS ≤ vT if and only if (vS)i ≤ (vT )i for all i .
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Let φ : S → Nω defined by φ(S) = vS for all S ∈ S .

Theorem

(T. Do, B. Sands) φ is order preserving; that is, for all S, T ∈ S with

S ≤ T , vS ≤ vT .

The proof is a slightly tricky induction on the number of steps required to

completely chop up a set of sticks.
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Note: φ : S → Nω given by φ(S) = vS is order-preserving, but is not a

lattice homomorphism.

For example, let S = (3) and T = (2, 2, 2). Then

φ(3) = v(3) = (2, 2, . . .) and φ(2, 2, 2) = v(2,2,2) = (3, 2, 1, 1, . . .).

Thus φ(S) ∧ φ(T ) = (2, 2, 1, 1, . . .).

However, S ∧ T = (2, 2), and

φ(2, 2) = v(2,2) = (2, 1, 1, . . .) < φ(S) ∧ φ(T );

note that when w = 2, the binary algorithm produces

(2, 2)→ ∅,

so v2 = 1 in v(2,2).

Therefore φ is not meet preserving and so is not a lattice homomorphism.
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In contrast, all the joins illustrated in the Figure are in fact preserved, and

we have not yet found a join that is not.

Problem

1 Is φ join preserving?

An affirmative answer to this problem would supply an alternate proof to

our Theorem.
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For a vector v, let S (v) be the family of all sets S of sticks whose chop

vector vS equals v.

Then S (v) is a convex subset of S .

That is, if S and T are in S (v) and satisfy S < T in S , and if U is in S

and satisfies S < U < T , then U must be in S (v).
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However, S (v) is not always a sublattice of S , in particular S (v) is not

always closed under meets.

For example, let S = (7, 4) and T = (8, 2, 2). Then

vS = (9, 5, 4, 3, 3, . . . ) = vT ,

so

S, T ∈ S (v) where v = (9, 5, 4, 3, 3, . . . ).

But S ∧ T = (7, 4) ∧ (8, 2, 2) = (7, 3, 2), and

v(7,3,2) = (9, 5, 3, 3, . . . ),

so S ∧ T 6∈ S (v).
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Problem

2 For all vectors v, is S (v) closed under joins?

An affirmative answer to Problem 1 would give an affirmative answer to

Problem 2 as well.
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Here is another question suggested by the convex subsets S (v). Call a set

S of sticks lonely if S (vS) = {S}, that is, if S is the only element of S

having that particular chop vector.

It is easy to see that for S = (2, 2, . . . , 2) (which we abbreviate as (2n) if

there are n 2’s), its chop vector vS satisfies v1 = n and vm = 1 for all

m ≥ n.

Moreover the sequences S = (2n) for integers n ≥ 1 are the only elements

S ∈ S so that vS is eventually 1.

Thus (2n) is lonely for all integers n ≥ 1.
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Also, of the elements S ∈ S of the form S = (n) for integers n ≤ 12, the

following are lonely:

n = 2, 3, 5, 7, 8, 9, 11.

And there is more: among the remaining elements shown in the Figure,

(4, 4), (4, 4, 3) and (8, 2) are lonely.

(Incidentally, this last example shows that a lonely element need not be a

join-irreducible element of the lattice S .)

Problem

3 Characterize all lonely elements of S .
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