Chopping Celery and the Lattice of Integer Partitions

Thao Do and Bill Sands

University of Calgary
June 20, 2012

Suppose we are given a finite set of celery sticks of positive integer lengths.

Suppose we are given a finite set of celery sticks of positive integer lengths.

We wish to chop these sticks into unit-length pieces, using a knife that can cut up to w sticks at a time, where w is a fixed positive integer (called the width of the knife).

Suppose we are given a finite set of celery sticks of positive integer lengths.

We wish to chop these sticks into unit-length pieces, using a knife that can cut up to w sticks at a time, where w is a fixed positive integer (called the width of the knife).

How should we proceed in order to chop up the sticks using as few cuts as possible?

Suppose we are given a finite set of celery sticks of positive integer lengths.

We wish to chop these sticks into unit-length pieces, using a knife that can cut up to w sticks at a time, where w is a fixed positive integer (called the width of the knife).

How should we proceed in order to chop up the sticks using as few cuts as possible?

Answer: (J. Ginsburg and S, 2000) At each step, choose the w longest nontrivial (that is, of length greater than one) sticks, or all nontrivial sticks if there are less than w of them, and chop these all in half or as nearly in half as possible.

We will identify a set of k sticks with an infinite non-increasing sequence \mathcal{S} of positive integers, where the first k integers in \mathcal{S} represent the lengths of the sticks, and the remaining members of \mathcal{S} are all 1's.

We will identify a set of k sticks with an infinite non-increasing sequence \mathcal{S} of positive integers, where the first k integers in \mathcal{S} represent the lengths of the sticks, and the remaining members of \mathcal{S} are all 1's.

The set of all such sequences \mathcal{S} will be denoted \mathscr{S}.

We will identify a set of k sticks with an infinite non-increasing sequence \mathcal{S} of positive integers, where the first k integers in \mathcal{S} represent the lengths of the sticks, and the remaining members of \mathcal{S} are all 1's.

The set of all such sequences \mathcal{S} will be denoted \mathscr{S}.

Note that the addition (or deletion) of 1's (which represent trivial sticks not needing to be cut) at the end of any $\mathcal{S} \in \mathscr{S}$ will not affect the number of chops needed.

We will identify a set of k sticks with an infinite non-increasing sequence \mathcal{S} of positive integers, where the first k integers in \mathcal{S} represent the lengths of the sticks, and the remaining members of \mathcal{S} are all 1's.

The set of all such sequences \mathcal{S} will be denoted \mathscr{S}.

Note that the addition (or deletion) of 1's (which represent trivial sticks not needing to be cut) at the end of any $\mathcal{S} \in \mathscr{S}$ will not affect the number of chops needed.

Thus, for example, $(5,2,2,1,1, \ldots)$ will usually be denoted $(5,2,2)$.

For each $\mathcal{S} \in \mathscr{S}$, define the chop vector of \mathcal{S} by

$$
\mathbf{v}_{\mathcal{S}}=\left(v_{1}, v_{2}, v_{3}, \ldots\right)
$$

where, for each integer $w \geq 1, v_{w}$ is the minimum number of cuts needed to chop \mathcal{S} into unit pieces given a knife which can cut up to w pieces at a time.

For each $\mathcal{S} \in \mathscr{S}$, define the chop vector of \mathcal{S} by

$$
\mathbf{v}_{\mathcal{S}}=\left(v_{1}, v_{2}, v_{3}, \ldots\right)
$$

where, for each integer $w \geq 1, v_{w}$ is the minimum number of cuts needed to chop \mathcal{S} into unit pieces given a knife which can cut up to w pieces at a time.

Note that v_{1} is the number of cuts required to chop all nontrivial sticks in \mathcal{S} into units, one stick at a time, and so $v_{1}=\sum_{s \in \mathcal{S}}(s-1)$.

For each $\mathcal{S} \in \mathscr{S}$, define the chop vector of \mathcal{S} by

$$
\mathbf{v}_{\mathcal{S}}=\left(v_{1}, v_{2}, v_{3}, \ldots\right)
$$

where, for each integer $w \geq 1, v_{w}$ is the minimum number of cuts needed to chop \mathcal{S} into unit pieces given a knife which can cut up to w pieces at a time.

Note that v_{1} is the number of cuts required to chop all nontrivial sticks in \mathcal{S} into units, one stick at a time, and so $v_{1}=\sum_{s \in \mathcal{S}}(s-1)$.

Also, the v_{i} 's are non-increasing and non-negative integers, and so $\mathbf{v}_{\mathcal{S}}$ is eventually constant.

For example, consider $\mathcal{S}=(7,3,2)$. Then $v_{1}=6+2+1=9$, and $v_{2}=5$ because, with a knife of width $w=2$, the binary algorithm would cut \mathcal{S} up in five steps as follows:

For example, consider $\mathcal{S}=(7,3,2)$. Then $v_{1}=6+2+1=9$, and $v_{2}=5$ because, with a knife of width $w=2$, the binary algorithm would cut \mathcal{S} up in five steps as follows:

$$
(7,3,2) \rightarrow(4,3,2,2,1)
$$

For example, consider $\mathcal{S}=(7,3,2)$. Then $v_{1}=6+2+1=9$, and $v_{2}=5$ because, with a knife of width $w=2$, the binary algorithm would cut \mathcal{S} up in five steps as follows:

$$
\begin{aligned}
(7,3,2) & \rightarrow(4,3,2,2,1) \\
& \rightarrow(2,2,2,2,2,1,1)
\end{aligned}
$$

For example, consider $\mathcal{S}=(7,3,2)$. Then $v_{1}=6+2+1=9$, and $v_{2}=5$ because, with a knife of width $w=2$, the binary algorithm would cut \mathcal{S} up in five steps as follows:

$$
\begin{aligned}
(7,3,2) & \rightarrow(4,3,2,2,1) \\
& \rightarrow(2,2,2,2,2,1,1) \\
& \rightarrow(2,2,2,1,1,1,1,1,1)
\end{aligned}
$$

For example, consider $\mathcal{S}=(7,3,2)$. Then $v_{1}=6+2+1=9$, and $v_{2}=5$ because, with a knife of width $w=2$, the binary algorithm would cut \mathcal{S} up in five steps as follows:

$$
\begin{aligned}
(7,3,2) & \rightarrow(4,3,2,2,1) \\
& \rightarrow(2,2,2,2,2,1,1) \\
& \rightarrow(2,2,2,1,1,1,1,1,1) \\
& \rightarrow(2,1,1,1,1,1,1,1,1,1,1)
\end{aligned}
$$

For example, consider $\mathcal{S}=(7,3,2)$. Then $v_{1}=6+2+1=9$, and $v_{2}=5$ because, with a knife of width $w=2$, the binary algorithm would cut \mathcal{S} up in five steps as follows:

$$
\begin{aligned}
(7,3,2) & \rightarrow(4,3,2,2,1) \\
& \rightarrow(2,2,2,2,2,1,1) \\
& \rightarrow(2,2,2,1,1,1,1,1,1) \\
& \rightarrow(2,1,1,1,1,1,1,1,1,1,1) \\
& \rightarrow(1,1,1,1,1,1,1,1,1,1,1,1) .
\end{aligned}
$$

Ignoring trivial sticks, we would write this dissection of $\mathcal{S}=(7,3,2)$ as

$$
(7,3,2) \rightarrow(4,3,2,2) \rightarrow(2,2,2,2,2) \rightarrow(2,2,2) \rightarrow(2) \rightarrow \emptyset .
$$

Ignoring trivial sticks, we would write this dissection of $\mathcal{S}=(7,3,2)$ as

$$
(7,3,2) \rightarrow(4,3,2,2) \rightarrow(2,2,2,2,2) \rightarrow(2,2,2) \rightarrow(2) \rightarrow \emptyset .
$$

But with a knife of width $w=3$, the chopping up takes only three steps:

$$
(7,3,2) \rightarrow(4,3,2) \rightarrow(2,2,2) \rightarrow \emptyset .
$$

Ignoring trivial sticks, we would write this dissection of $\mathcal{S}=(7,3,2)$ as

$$
(7,3,2) \rightarrow(4,3,2,2) \rightarrow(2,2,2,2,2) \rightarrow(2,2,2) \rightarrow(2) \rightarrow \emptyset .
$$

But with a knife of width $w=3$, the chopping up takes only three steps:

$$
(7,3,2) \rightarrow(4,3,2) \rightarrow(2,2,2) \rightarrow \emptyset .
$$

Moreover, it is easy to see that, for any width $w \geq 3$, at least three cuts will be necessary to reduce the stick of length 7 down to unit pieces.

Ignoring trivial sticks, we would write this dissection of $\mathcal{S}=(7,3,2)$ as

$$
(7,3,2) \rightarrow(4,3,2,2) \rightarrow(2,2,2,2,2) \rightarrow(2,2,2) \rightarrow(2) \rightarrow \emptyset .
$$

But with a knife of width $w=3$, the chopping up takes only three steps:

$$
(7,3,2) \rightarrow(4,3,2) \rightarrow(2,2,2) \rightarrow \emptyset .
$$

Moreover, it is easy to see that, for any width $w \geq 3$, at least three cuts will be necessary to reduce the stick of length 7 down to unit pieces. Thus

$$
\mathbf{v}_{(7,3,2)}=(9,5,3,3, \ldots)
$$

Ignoring trivial sticks, we would write this dissection of $\mathcal{S}=(7,3,2)$ as

$$
(7,3,2) \rightarrow(4,3,2,2) \rightarrow(2,2,2,2,2) \rightarrow(2,2,2) \rightarrow(2) \rightarrow \emptyset .
$$

But with a knife of width $w=3$, the chopping up takes only three steps:

$$
(7,3,2) \rightarrow(4,3,2) \rightarrow(2,2,2) \rightarrow \emptyset .
$$

Moreover, it is easy to see that, for any width $w \geq 3$, at least three cuts will be necessary to reduce the stick of length 7 down to unit pieces. Thus

$$
\mathbf{v}_{(7,3,2)}=(9,5,3,3, \ldots) .
$$

But what does all this have to do with partially ordered sets??

If we deduct 1 from each entry in a sequence $\mathcal{S} \in \mathscr{S}$, we obtain an infinite non-increasing sequence \mathcal{S}^{\prime} of non-negative integers, only finitely many of which are nonzero.

If we deduct 1 from each entry in a sequence $\mathcal{S} \in \mathscr{S}$, we obtain an infinite non-increasing sequence \mathcal{S}^{\prime} of non-negative integers, only finitely many of which are nonzero.

Thus we will consider \mathcal{S}^{\prime} as a partition of the positive integer $\sum_{s^{\prime} \in \mathcal{S}^{\prime}} s^{\prime}=\sum_{s \in \mathcal{S}}(s-1)$.

If we deduct 1 from each entry in a sequence $\mathcal{S} \in \mathscr{S}$, we obtain an infinite non-increasing sequence \mathcal{S}^{\prime} of non-negative integers, only finitely many of which are nonzero.

Thus we will consider \mathcal{S}^{\prime} as a partition of the positive integer
$\sum_{s^{\prime} \in \mathcal{S}^{\prime}} s^{\prime}=\sum_{s \in \mathcal{S}}(s-1)$.

Therefore $\left\{\mathcal{S}^{\prime}: \mathcal{S} \in \mathscr{S}\right\}$ forms the set \mathscr{P} of all integer partitions.

If we deduct 1 from each entry in a sequence $\mathcal{S} \in \mathscr{S}$, we obtain an infinite non-increasing sequence \mathcal{S}^{\prime} of non-negative integers, only finitely many of which are nonzero.

Thus we will consider \mathcal{S}^{\prime} as a partition of the positive integer
$\sum_{s^{\prime} \in \mathcal{S}^{\prime}} s^{\prime}=\sum_{s \in \mathcal{S}}(s-1)$.

Therefore $\left\{\mathcal{S}^{\prime}: \mathcal{S} \in \mathscr{S}\right\}$ forms the set \mathscr{P} of all integer partitions.

Furthermore \mathscr{P} can be given a natural partial ordering \leq called dominance ordering (or majorization) as follows. For integer partitions $\mathcal{S}=\left(s_{1}, s_{2}, \ldots\right)$ and $\mathcal{T}=\left(t_{1}, t_{2}, \ldots\right)$ in \mathscr{P}, put $\mathcal{S} \leq \mathcal{T}$ if and only if $\sum_{i=1}^{j} s_{i} \leq \sum_{i=1}^{j} t_{i}$ for all $j \geq 1$.

Then $\mathscr{P}=(\mathscr{P}, \leq)$ is a lattice called the lattice of integer partitions.

Then $\mathscr{P}=(\mathscr{P}, \leq)$ is a lattice called the lattice of integer partitions.

- Brylawski (1973)

Then $\mathscr{P}=(\mathscr{P}, \leq)$ is a lattice called the lattice of integer partitions.

- Brylawski (1973)
- Baransky and Koroleva (2008)
- Latapy and Phan (2009)

Then $\mathscr{P}=(\mathscr{P}, \leq)$ is a lattice called the lattice of integer partitions.

- Brylawski (1973)
- Baransky and Koroleva (2008)
- Latapy and Phan (2009)

We can similarly define dominance ordering \leq on the set \mathscr{S} of all sets of sticks.

Then $\mathscr{P}=(\mathscr{P}, \leq)$ is a lattice called the lattice of integer partitions.

- Brylawski (1973)
- Baransky and Koroleva (2008)
- Latapy and Phan (2009)

We can similarly define dominance ordering \leq on the set \mathscr{S} of all sets of sticks. Then (\mathscr{S}, \leq) becomes a lattice, clearly isomorphic to \mathscr{P}, via the renaming $\mathcal{S} \rightarrow \mathcal{S}^{\prime}$.

Then $\mathscr{P}=(\mathscr{P}, \leq)$ is a lattice called the lattice of integer partitions.

- Brylawski (1973)
- Baransky and Koroleva (2008)
- Latapy and Phan (2009)

We can similarly define dominance ordering \leq on the set \mathscr{S} of all sets of sticks. Then (\mathscr{S}, \leq) becomes a lattice, clearly isomorphic to \mathscr{P}, via the renaming $\mathcal{S} \rightarrow \mathcal{S}^{\prime}$.

Thao Do: Master's Thesis on integer partitions (U of C, 2009)

Dominance ordering \leq on the lattice \mathscr{S} is the transitive and reflexive closure of the following two types of relations: for $\mathcal{S}=\left(s_{1}, s_{2}, \ldots, s_{m}\right)$ and $\mathcal{T}=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ in $\mathscr{S}, \mathcal{S}<\mathcal{T}$ if

Dominance ordering \leq on the lattice \mathscr{S} is the transitive and reflexive closure of the following two types of relations: for $\mathcal{S}=\left(s_{1}, s_{2}, \ldots, s_{m}\right)$ and $\mathcal{T}=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ in $\mathscr{S}, \mathcal{S}<\mathcal{T}$ if
(i) $n=m+1, t_{m+1}=2$, and $s_{i}=t_{i}$ for all $i \in\{1,2, \ldots, m\}$, or

Dominance ordering \leq on the lattice \mathscr{S} is the transitive and reflexive closure of the following two types of relations: for $\mathcal{S}=\left(s_{1}, s_{2}, \ldots, s_{m}\right)$ and $\mathcal{T}=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ in $\mathscr{S}, \mathcal{S}<\mathcal{T}$ if
(i) $n=m+1, t_{m+1}=2$, and $s_{i}=t_{i}$ for all $i \in\{1,2, \ldots, m\}$, or
(ii) $n=m$ and there exists $1 \leq j<k \leq m$ so that $t_{j}=s_{j}+1, t_{k}=s_{k}-1$, and $t_{i}=s_{i}$ for all $i \neq j$ or k.

Dominance ordering \leq on the lattice \mathscr{S} is the transitive and reflexive closure of the following two types of relations: for $\mathcal{S}=\left(s_{1}, s_{2}, \ldots, s_{m}\right)$ and $\mathcal{T}=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ in $\mathscr{S}, \mathcal{S}<\mathcal{T}$ if
(i) $n=m+1, t_{m+1}=2$, and $s_{i}=t_{i}$ for all $i \in\{1,2, \ldots, m\}$, or
(ii) $n=m$ and there exists $1 \leq j<k \leq m$ so that $t_{j}=s_{j}+1, t_{k}=s_{k}-1$, and $t_{i}=s_{i}$ for all $i \neq j$ or k.

Considering \mathcal{S} and \mathcal{T} as (multi)sets of (lengths of) sticks rather than as nonincreasing sequences of lengths,

Dominance ordering \leq on the lattice \mathscr{S} is the transitive and reflexive closure of the following two types of relations: for $\mathcal{S}=\left(s_{1}, s_{2}, \ldots, s_{m}\right)$ and $\mathcal{T}=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ in $\mathscr{S}, \mathcal{S}<\mathcal{T}$ if
(i) $n=m+1, t_{m+1}=2$, and $s_{i}=t_{i}$ for all $i \in\{1,2, \ldots, m\}$, or
(ii) $n=m$ and there exists $1 \leq j<k \leq m$ so that $t_{j}=s_{j}+1, t_{k}=s_{k}-1$, and $t_{i}=s_{i}$ for all $i \neq j$ or k.

Considering \mathcal{S} and \mathcal{T} as (multi)sets of (lengths of) sticks rather than as nonincreasing sequences of lengths,

- (i) is equivalent to $\mathcal{T}=\mathcal{S} \cup\{2\}$, and

Dominance ordering \leq on the lattice \mathscr{S} is the transitive and reflexive closure of the following two types of relations: for $\mathcal{S}=\left(s_{1}, s_{2}, \ldots, s_{m}\right)$ and $\mathcal{T}=\left(t_{1}, t_{2}, \ldots, t_{n}\right)$ in $\mathscr{S}, \mathcal{S}<\mathcal{T}$ if
(i) $n=m+1, t_{m+1}=2$, and $s_{i}=t_{i}$ for all $i \in\{1,2, \ldots, m\}$, or
(ii) $n=m$ and there exists $1 \leq j<k \leq m$ so that $t_{j}=s_{j}+1, t_{k}=s_{k}-1$, and $t_{i}=s_{i}$ for all $i \neq j$ or k.

Considering \mathcal{S} and \mathcal{T} as (multi)sets of (lengths of) sticks rather than as nonincreasing sequences of lengths,

- (i) is equivalent to $\mathcal{T}=\mathcal{S} \cup\{2\}$, and
- (ii) is equivalent to $\mathcal{T}=(\mathcal{S}-\{x, y\}) \cup\{x-1, y+1\}$ for some x, y in \mathcal{S} satisfying $2 \leq x \leq y$.

For instance, $(4,3)<(4,3,2)$ in the Figure is an example of the first kind of relation above,

For instance, $(4,3)<(4,3,2)$ in the Figure is an example of the first kind of relation above, while $(4,3,2)<(5,2,2)$ and $(4,3,2)<(4,4,1)=(4,4)$ are examples of the second kind.

For instance, $(4,3)<(4,3,2)$ in the Figure is an example of the first kind of relation above, while $(4,3,2)<(5,2,2)$ and $(4,3,2)<(4,4,1)=(4,4)$ are examples of the second kind. Thus $(4,3)<(5,2,2)$ and $(4,3)<(4,4)$ in the transitive closure.

For instance, $(4,3)<(4,3,2)$ in the Figure is an example of the first kind of relation above, while $(4,3,2)<(5,2,2)$ and $(4,3,2)<(4,4,1)=(4,4)$ are examples of the second kind. Thus $(4,3)<(5,2,2)$ and $(4,3)<(4,4)$ in the transitive closure.

The family of all chop vectors, considered as elements of the direct product \mathbb{N}^{ω}, can be naturally ordered componentwise;

For instance, $(4,3)<(4,3,2)$ in the Figure is an example of the first kind of relation above, while $(4,3,2)<(5,2,2)$ and $(4,3,2)<(4,4,1)=(4,4)$ are examples of the second kind. Thus $(4,3)<(5,2,2)$ and $(4,3)<(4,4)$ in the transitive closure.

The family of all chop vectors, considered as elements of the direct product \mathbb{N}^{ω}, can be naturally ordered componentwise; that is, for all $\mathcal{S}, \mathcal{T} \in \mathscr{S}, \mathbf{v}_{\mathcal{S}} \leq \mathbf{v}_{\mathcal{T}}$ if and only if $\left(\mathbf{v}_{\mathcal{S}}\right)_{i} \leq\left(\mathbf{v}_{\mathcal{T}}\right)_{i}$ for all i.

Let $\phi: \mathscr{S} \rightarrow \mathbb{N}^{\omega}$ defined by $\phi(\mathcal{S})=\mathbf{v}_{\mathcal{S}}$ for all $\mathcal{S} \in \mathscr{S}$.

Let $\phi: \mathscr{S} \rightarrow \mathbb{N}^{\omega}$ defined by $\phi(\mathcal{S})=\mathbf{v}_{\mathcal{S}}$ for all $\mathcal{S} \in \mathscr{S}$.

Theorem
(T. Do, B. Sands) ϕ is order preserving; that is, for all $\mathcal{S}, \mathcal{T} \in \mathscr{S}$ with $\mathcal{S} \leq \mathcal{T}, \mathbf{v}_{\mathcal{S}} \leq \mathbf{v}_{\mathcal{T}}$.

Let $\phi: \mathscr{S} \rightarrow \mathbb{N}^{\omega}$ defined by $\phi(\mathcal{S})=\mathbf{v}_{\mathcal{S}}$ for all $\mathcal{S} \in \mathscr{S}$.

Theorem

(T. Do, B. Sands) ϕ is order preserving; that is, for all $\mathcal{S}, \mathcal{T} \in \mathscr{S}$ with $\mathcal{S} \leq \mathcal{T}, \mathbf{v}_{\mathcal{S}} \leq \mathbf{v}_{\mathcal{T}}$.

The proof is a slightly tricky induction on the number of steps required to completely chop up a set of sticks.

Note: $\phi: \mathscr{S} \rightarrow \mathbb{N}^{\omega}$ given by $\phi(\mathcal{S})=\mathbf{v}_{\mathcal{S}}$ is order-preserving, but is not a lattice homomorphism.

Note: $\phi: \mathscr{S} \rightarrow \mathbb{N}^{\omega}$ given by $\phi(\mathcal{S})=\mathbf{v}_{\mathcal{S}}$ is order-preserving, but is not a lattice homomorphism.

For example, let $\mathcal{S}=(3)$ and $\mathcal{T}=(2,2,2)$. Then

Note: $\phi: \mathscr{S} \rightarrow \mathbb{N}^{\omega}$ given by $\phi(\mathcal{S})=\mathbf{v}_{\mathcal{S}}$ is order-preserving, but is not a lattice homomorphism.

For example, let $\mathcal{S}=(3)$ and $\mathcal{T}=(2,2,2)$. Then

$$
\phi(3)=\mathbf{v}_{(3)}=(2,2, \ldots) \quad \text { and } \quad \phi(2,2,2)=\mathbf{v}_{(2,2,2)}=(3,2,1,1, \ldots) .
$$

Note: $\phi: \mathscr{S} \rightarrow \mathbb{N}^{\omega}$ given by $\phi(\mathcal{S})=\mathbf{v}_{\mathcal{S}}$ is order-preserving, but is not a lattice homomorphism.

For example, let $\mathcal{S}=(3)$ and $\mathcal{T}=(2,2,2)$. Then

$$
\phi(3)=\mathbf{v}_{(3)}=(2,2, \ldots) \quad \text { and } \quad \phi(2,2,2)=\mathbf{v}_{(2,2,2)}=(3,2,1,1, \ldots) .
$$

Thus $\phi(\mathcal{S}) \wedge \phi(\mathcal{T})=(2,2,1,1, \ldots)$.

Note: $\phi: \mathscr{S} \rightarrow \mathbb{N}^{\omega}$ given by $\phi(\mathcal{S})=\mathbf{v}_{\mathcal{S}}$ is order-preserving, but is not a lattice homomorphism.

For example, let $\mathcal{S}=(3)$ and $\mathcal{T}=(2,2,2)$. Then

$$
\phi(3)=\mathbf{v}_{(3)}=(2,2, \ldots) \quad \text { and } \quad \phi(2,2,2)=\mathbf{v}_{(2,2,2)}=(3,2,1,1, \ldots) .
$$

Thus $\phi(\mathcal{S}) \wedge \phi(\mathcal{T})=(2,2,1,1, \ldots)$.
However, $\mathcal{S} \wedge \mathcal{T}=(2,2)$, and

Note: $\phi: \mathscr{S} \rightarrow \mathbb{N}^{\omega}$ given by $\phi(\mathcal{S})=\mathbf{v}_{\mathcal{S}}$ is order-preserving, but is not a lattice homomorphism.

For example, let $\mathcal{S}=(3)$ and $\mathcal{T}=(2,2,2)$. Then

$$
\phi(3)=\mathbf{v}_{(3)}=(2,2, \ldots) \quad \text { and } \quad \phi(2,2,2)=\mathbf{v}_{(2,2,2)}=(3,2,1,1, \ldots) .
$$

Thus $\phi(\mathcal{S}) \wedge \phi(\mathcal{T})=(2,2,1,1, \ldots)$.
However, $\mathcal{S} \wedge \mathcal{T}=(2,2)$, and

$$
\phi(2,2)=\mathbf{v}_{(2,2)}=(2,1,1, \ldots)<\phi(\mathcal{S}) \wedge \phi(\mathcal{T}) ;
$$

Note: $\phi: \mathscr{S} \rightarrow \mathbb{N}^{\omega}$ given by $\phi(\mathcal{S})=\mathbf{v}_{\mathcal{S}}$ is order-preserving, but is not a lattice homomorphism.

For example, let $\mathcal{S}=(3)$ and $\mathcal{T}=(2,2,2)$. Then

$$
\phi(3)=\mathbf{v}_{(3)}=(2,2, \ldots) \quad \text { and } \quad \phi(2,2,2)=\mathbf{v}_{(2,2,2)}=(3,2,1,1, \ldots) .
$$

Thus $\phi(\mathcal{S}) \wedge \phi(\mathcal{T})=(2,2,1,1, \ldots)$.
However, $\mathcal{S} \wedge \mathcal{T}=(2,2)$, and

$$
\phi(2,2)=\mathbf{v}_{(2,2)}=(2,1,1, \ldots)<\phi(\mathcal{S}) \wedge \phi(\mathcal{T}) ;
$$

note that when $w=2$, the binary algorithm produces

$$
(2,2) \rightarrow \emptyset,
$$

so $v_{2}=1$ in $\mathbf{v}_{(2,2)}$.

Note: $\phi: \mathscr{S} \rightarrow \mathbb{N}^{\omega}$ given by $\phi(\mathcal{S})=\mathbf{v}_{\mathcal{S}}$ is order-preserving, but is not a lattice homomorphism.

For example, let $\mathcal{S}=(3)$ and $\mathcal{T}=(2,2,2)$. Then

$$
\phi(3)=\mathbf{v}_{(3)}=(2,2, \ldots) \quad \text { and } \quad \phi(2,2,2)=\mathbf{v}_{(2,2,2)}=(3,2,1,1, \ldots) .
$$

Thus $\phi(\mathcal{S}) \wedge \phi(\mathcal{T})=(2,2,1,1, \ldots)$.
However, $\mathcal{S} \wedge \mathcal{T}=(2,2)$, and

$$
\phi(2,2)=\mathbf{v}_{(2,2)}=(2,1,1, \ldots)<\phi(\mathcal{S}) \wedge \phi(\mathcal{T}) ;
$$

note that when $w=2$, the binary algorithm produces

$$
(2,2) \rightarrow \emptyset,
$$

so $v_{2}=1$ in $\mathbf{v}_{(2,2)}$.

In contrast, all the joins illustrated in the Figure are in fact preserved, and we have not yet found a join that is not.

In contrast, all the joins illustrated in the Figure are in fact preserved, and we have not yet found a join that is not.

Problem
 1 Is ϕ join preserving?

In contrast, all the joins illustrated in the Figure are in fact preserved, and we have not yet found a join that is not.

Problem

1 Is ϕ join preserving?

An affirmative answer to this problem would supply an alternate proof to our Theorem.

For a vector \mathbf{v}, let $\mathscr{S}(\mathbf{v})$ be the family of all sets \mathcal{S} of sticks whose chop vector $\mathbf{v}_{\mathcal{S}}$ equals \mathbf{v}.

For a vector \mathbf{v}, let $\mathscr{S}(\mathbf{v})$ be the family of all sets \mathcal{S} of sticks whose chop vector $\mathbf{v}_{\mathcal{S}}$ equals \mathbf{v}.

Then $\mathscr{S}(\mathbf{v})$ is a convex subset of \mathscr{S}.

For a vector \mathbf{v}, let $\mathscr{S}(\mathbf{v})$ be the family of all sets \mathcal{S} of sticks whose chop vector $\mathbf{v}_{\mathcal{S}}$ equals \mathbf{v}.

Then $\mathscr{S}(\mathbf{v})$ is a convex subset of \mathscr{S}.

That is, if \mathcal{S} and \mathcal{T} are in $\mathscr{S}(\mathbf{v})$ and satisfy $\mathcal{S}<\mathcal{T}$ in \mathscr{S}, and if \mathcal{U} is in \mathscr{S} and satisfies $\mathcal{S}<\mathcal{U}<\mathcal{T}$, then \mathcal{U} must be in $\mathscr{S}(\mathbf{v})$.

However, $\mathscr{S}(\mathbf{v})$ is not always a sublattice of \mathscr{S}, in particular $\mathscr{S}(\mathbf{v})$ is not always closed under meets.

However, $\mathscr{S}(\mathbf{v})$ is not always a sublattice of \mathscr{S}, in particular $\mathscr{S}(\mathbf{v})$ is not always closed under meets.

For example, let $\mathcal{S}=(7,4)$ and $\mathcal{T}=(8,2,2)$.

However, $\mathscr{S}(\mathbf{v})$ is not always a sublattice of \mathscr{S}, in particular $\mathscr{S}(\mathbf{v})$ is not always closed under meets.

For example, let $\mathcal{S}=(7,4)$ and $\mathcal{T}=(8,2,2)$. Then

$$
\mathbf{v}_{\mathcal{S}}=(9,5,4,3,3, \ldots)=\mathbf{v}_{\mathcal{T}}
$$

However, $\mathscr{S}(\mathbf{v})$ is not always a sublattice of \mathscr{S}, in particular $\mathscr{S}(\mathbf{v})$ is not always closed under meets.

For example, let $\mathcal{S}=(7,4)$ and $\mathcal{T}=(8,2,2)$. Then

$$
\mathbf{v}_{\mathcal{S}}=(9,5,4,3,3, \ldots)=\mathbf{v}_{\mathcal{T}},
$$

SO

$$
\mathcal{S}, \mathcal{T} \in \mathscr{S}(\mathbf{v}) \quad \text { where } \quad \mathbf{v}=(9,5,4,3,3, \ldots)
$$

However, $\mathscr{S}(\mathbf{v})$ is not always a sublattice of \mathscr{S}, in particular $\mathscr{S}(\mathbf{v})$ is not always closed under meets.

For example, let $\mathcal{S}=(7,4)$ and $\mathcal{T}=(8,2,2)$. Then

$$
\mathbf{v}_{\mathcal{S}}=(9,5,4,3,3, \ldots)=\mathbf{v}_{\mathcal{T}},
$$

so
$\mathcal{S}, \mathcal{T} \in \mathscr{S}(\mathbf{v})$ where $\quad \mathbf{v}=(9,5,4,3,3, \ldots)$.
But $\mathcal{S} \wedge \mathcal{T}=(7,4) \wedge(8,2,2)=(7,3,2)$,

However, $\mathscr{S}(\mathbf{v})$ is not always a sublattice of \mathscr{S}, in particular $\mathscr{S}(\mathbf{v})$ is not always closed under meets.

For example, let $\mathcal{S}=(7,4)$ and $\mathcal{T}=(8,2,2)$. Then

$$
\mathbf{v}_{\mathcal{S}}=(9,5,4,3,3, \ldots)=\mathbf{v}_{\mathcal{T}},
$$

so

$$
\mathcal{S}, \mathcal{T} \in \mathscr{S}(\mathbf{v}) \quad \text { where } \quad \mathbf{v}=(9,5,4,3,3, \ldots)
$$

But $\mathcal{S} \wedge \mathcal{T}=(7,4) \wedge(8,2,2)=(7,3,2)$, and

$$
\mathbf{v}_{(7,3,2)}=(9,5,3,3, \ldots)
$$

However, $\mathscr{S}(\mathbf{v})$ is not always a sublattice of \mathscr{S}, in particular $\mathscr{S}(\mathbf{v})$ is not always closed under meets.

For example, let $\mathcal{S}=(7,4)$ and $\mathcal{T}=(8,2,2)$. Then

$$
\mathbf{v}_{\mathcal{S}}=(9,5,4,3,3, \ldots)=\mathbf{v}_{\mathcal{T}},
$$

so

$$
\mathcal{S}, \mathcal{T} \in \mathscr{S}(\mathbf{v}) \quad \text { where } \quad \mathbf{v}=(9,5,4,3,3, \ldots)
$$

But $\mathcal{S} \wedge \mathcal{T}=(7,4) \wedge(8,2,2)=(7,3,2)$, and

$$
\mathbf{v}_{(7,3,2)}=(9,5,3,3, \ldots)
$$

so $\mathcal{S} \wedge \mathcal{T} \notin \mathscr{S}(\mathbf{v})$.

Problem

2 For all vectors \mathbf{v}, is $\mathscr{S}(\mathbf{v})$ closed under joins?

Problem

2 For all vectors \mathbf{v}, is $\mathscr{S}(\mathbf{v})$ closed under joins?

An affirmative answer to Problem 1 would give an affirmative answer to Problem 2 as well.

Here is another question suggested by the convex subsets $\mathscr{S}(\mathbf{v})$. Call a set \mathcal{S} of sticks lonely if $\mathscr{S}\left(\mathbf{v}_{\mathcal{S}}\right)=\{\mathcal{S}\}$, that is, if \mathcal{S} is the only element of \mathscr{S} having that particular chop vector.

Here is another question suggested by the convex subsets $\mathscr{S}(\mathbf{v})$. Call a set \mathcal{S} of sticks lonely if $\mathscr{S}\left(\mathbf{v}_{\mathcal{S}}\right)=\{\mathcal{S}\}$, that is, if \mathcal{S} is the only element of \mathscr{S} having that particular chop vector.

It is easy to see that for $\mathcal{S}=(2,2, \ldots, 2)$ (which we abbreviate as $\left(2^{n}\right)$ if there are $n 2$'s), its chop vector $\mathbf{v}_{\mathcal{S}}$ satisfies $v_{1}=n$ and $v_{m}=1$ for all $m \geq n$.

Here is another question suggested by the convex subsets $\mathscr{S}(\mathbf{v})$. Call a set \mathcal{S} of sticks lonely if $\mathscr{S}\left(\mathbf{v}_{\mathcal{S}}\right)=\{\mathcal{S}\}$, that is, if \mathcal{S} is the only element of \mathscr{S} having that particular chop vector.

It is easy to see that for $\mathcal{S}=(2,2, \ldots, 2)$ (which we abbreviate as $\left(2^{n}\right)$ if there are $n 2$'s), its chop vector $\mathbf{v}_{\mathcal{S}}$ satisfies $v_{1}=n$ and $v_{m}=1$ for all $m \geq n$.

Moreover the sequences $\mathcal{S}=\left(2^{n}\right)$ for integers $n \geq 1$ are the only elements $\mathcal{S} \in \mathscr{S}$ so that $\mathbf{v}_{\mathcal{S}}$ is eventually 1 .

Here is another question suggested by the convex subsets $\mathscr{S}(\mathbf{v})$. Call a set \mathcal{S} of sticks lonely if $\mathscr{S}\left(\mathbf{v}_{\mathcal{S}}\right)=\{\mathcal{S}\}$, that is, if \mathcal{S} is the only element of \mathscr{S} having that particular chop vector.

It is easy to see that for $\mathcal{S}=(2,2, \ldots, 2)$ (which we abbreviate as $\left(2^{n}\right)$ if there are $n 2$'s), its chop vector $\mathbf{v}_{\mathcal{S}}$ satisfies $v_{1}=n$ and $v_{m}=1$ for all $m \geq n$.

Moreover the sequences $\mathcal{S}=\left(2^{n}\right)$ for integers $n \geq 1$ are the only elements $\mathcal{S} \in \mathscr{S}$ so that $\mathbf{v}_{\mathcal{S}}$ is eventually 1 .

Thus $\left(2^{n}\right)$ is lonely for all integers $n \geq 1$.

Also, of the elements $\mathcal{S} \in \mathscr{S}$ of the form $\mathcal{S}=(n)$ for integers $n \leq 12$, the following are lonely:

Also, of the elements $\mathcal{S} \in \mathscr{S}$ of the form $\mathcal{S}=(n)$ for integers $n \leq 12$, the following are lonely: $\quad n=2,3,5,7,8,9,11$.

Also, of the elements $\mathcal{S} \in \mathscr{S}$ of the form $\mathcal{S}=(n)$ for integers $n \leq 12$, the following are lonely: $\quad n=2,3,5,7,8,9,11$.

And there is more: among the remaining elements shown in the Figure, $(4,4),(4,4,3)$ and $(8,2)$ are lonely.

Also, of the elements $\mathcal{S} \in \mathscr{S}$ of the form $\mathcal{S}=(n)$ for integers $n \leq 12$, the following are lonely: $\quad n=2,3,5,7,8,9,11$.

And there is more: among the remaining elements shown in the Figure, $(4,4),(4,4,3)$ and $(8,2)$ are lonely.
(Incidentally, this last example shows that a lonely element need not be a join-irreducible element of the lattice \mathscr{S}.)

Also, of the elements $\mathcal{S} \in \mathscr{S}$ of the form $\mathcal{S}=(n)$ for integers $n \leq 12$, the following are lonely: $\quad n=2,3,5,7,8,9,11$.

And there is more: among the remaining elements shown in the Figure, $(4,4),(4,4,3)$ and $(8,2)$ are lonely.
(Incidentally, this last example shows that a lonely element need not be a join-irreducible element of the lattice \mathscr{S}.)

Problem

3 Characterize all lonely elements of \mathscr{S}.
V. Baransky and T. Koroleva, The lattice of partitions of a positive integer, Doklady Mathematics 77 (2008), 72-75.
T. Brylawski, The lattice of integer partitions, Discrete Mathematics 6 (1973), 201-219.
T. Do, The Hidden World of Integer Partitions, Master's Thesis, University of Calgary, 2009.
T. Do and B. Sands, Chop vectors and the lattice of integer partitions, Discrete Mathematics 312 (2012), 1195-1200.
J. Ginsburg and B. Sands, An optimal algorithm for a parallel cutting problem, Ars Combinatoria 57 (2000), 87-95.
E. Goles, M. Latapy, C. Magnien, M. Morvan, H. D. Phan, Sandpile models and lattices: a comprehensive survey, Theoretical Computer
C. Greene, A class of lattices with Möbius function $\pm 1,0$, European
J. Combinatorics 9 (1988), 225-240.
M. Latapy and T. H. D. Phan, The lattice of integer partitions and its infinite extension, Discrete Mathematics 309 (2009), 1357-1367.
M. H. Le and T. H. D. Phan, Strict partitions and discrete dynamical systems, Theoretical Computer Science 389 (2007), 82-90.
A. W. Marshall and I. Olkin, Inequalities: Theory Of Majorization And Its Applications, Academic Press, 1979.
http://www.imo-official.org/problems/IMO2010SL.pdf.

