First-Fit Coloring of Ladder-Free Posets

Matt E. Smith and H. A. Kierstead mattearlsmith@gmail.com kierstead@asu.edu

June 18, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Chain Partitions of Posets

- X is a set of vertices
- \leq is a reflexive, transitive, antisymmetric order on X
- ▶ P = (X, ≤) is a poset
- $C \subseteq X$ is a chain if its elements are pairwise comparable.
- A ⊆ X is an antichain if its elements are pairwise imcomparable.
- ► $C = \{C_1, C_2, ..., C_n\}$ is a chain partition of P if each C_j is a chain and $X = \bigcup_{1 \le j \le n} C_j$.

Theorem

(Dilworth, 1950) Any poset of width w can be partitioned into w chains. Furthermore, no poset of width w can be partitioned into fewer that w chains.

The on-line chain partitioning game is played between Spoiler and Algorithm.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The on-line chain partitioning game is played between Spoiler and Algorithm.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Spoiler selects a width *w* and announces it to Algorithm.

- The on-line chain partitioning game is played between Spoiler and Algorithm.
- Spoiler selects a width *w* and announces it to Algorithm.
- In alternating rounds, Spoiler reveals an element of a poset to Algorithm along with all comparabilities. Algorithm builds a chain partition by assigning each element to a chain when Spoiler reveals it.

- The on-line chain partitioning game is played between Spoiler and Algorithm.
- Spoiler selects a width *w* and announces it to Algorithm.
- In alternating rounds, Spoiler reveals an element of a poset to Algorithm along with all comparabilities. Algorithm builds a chain partition by assigning each element to a chain when Spoiler reveals it.
- val(w) is the largest integer m so that Spoiler has a poset of width at most w and order of revealing the elements that forces Algorithm to use at least m chains. Dually, it is the smallest integer n so that Algorithm may play the game indefinitely using only n chains for any poset of width w and for any order in which the elements are revealed.

•
$$4w - 3 \le val(w) \le (5^w - 1)/4$$

<□ > < @ > < E > < E > E のQ @

4w - 3 ≤ val(w) ≤ (5^w - 1)/4

$$\binom{w+1}{2}$$
 ≤ val(w)

Kierstead (1981) Szemerédi (1981)

4w - 3 ≤ val(w) ≤ (5^w - 1)/4

$$\binom{w+1}{2} ≤ val(w)$$
 val(w) ≤ w^{13 lg w}

Kierstead (1981) Szemerédi (1981) Bosek, Krawczyk (2009)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$4w - 3 \le val(w) \le (5^w - 1)/4$$
 Kierstead (1981)
 $\binom{w+1}{2} \le val(w)$ Szemerédi (1981)
 $val(w) \le w^{13 \lg w}$ Bosek, Krawczyk (2009)
 $val(w) \le w^{3+6.5 \lg w}$ MES, Bosek, Kierstead, Krawczyk (2012)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

- Spoiler plays as before.
- Algorithm must use a greedy strategy; i.e.: Algorithm indexes the chains he is building as C₁, C₂,..., C_n. When Spoiler introduces a new element x, then Algorithm must assign x to C_j where j is the smallest index so that C_j + x is a chain. If no such chain exists, Algorithm adds chain C_{n+1}.

How many chains can Spoiler force?

How many chains can Spoiler force? As many as desired.

How many chains can Spoiler force? As many as desired. Even with w = 2.

 x_{1}^{1}

How many chains can Spoiler force? As many as desired. Even with w = 2.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Suppose P and Q are posets. If Q is not an induced subposet of P, the P is Q-free.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Suppose P and Q are posets. If Q is not an induced subposet of P, the P is Q-free.

Bosek, Krawczyk, Matecki (2011)
 Let Q be a width 2 poset.

- Suppose P and Q are posets. If Q is not an induced subposet of P, the P is Q-free.
- Bosek, Krawczyk, Matecki (2011)
 Let Q be a width 2 poset. If P is Q-free, then First-Fit uses a bounded number of chains to partition P on-line.

- Suppose P and Q are posets. If Q is not an induced subposet of P, the P is Q-free.
- Bosek, Krawczyk, Matecki (2011)
 Let Q be a width 2 poset. If P is Q-free, then First-Fit uses a bounded number of chains to partition P on-line.

► The number of chains Spoiler can force First-Fit to use in coloring a width Q-free width w poset is is val_{FF}(Q, w).

Grundy Colorings

- The function $g : P \rightarrow [n]$ is an *n*-Grundy coloring if:
 - 1. g is surjective
 - 2. $\{u \in P : g(u) = i\}$ is a chain
 - 3. If g(v) = j, then for each $1 \le i < j$, there is some u with g(u) = i and u || v. The vertex u is a witness for v.

Grundy Colorings

- The function $g: P \rightarrow [n]$ is an *n*-Grundy coloring if:
 - 1. g is surjective
 - 2. $\{u \in P : g(u) = i\}$ is a chain
 - 3. If g(v) = j, then for each $1 \le i < j$, there is some u with g(u) = i and u || v. The vertex u is a witness for v.

There is a presentation of P that forces First-Fit to use n chains iff P has a n-Grundy coloring.

Grundy Colorings

- The function $g : P \rightarrow [n]$ is an *n*-Grundy coloring if:
 - 1. g is surjective
 - 2. $\{u \in P : g(u) = i\}$ is a chain
 - 3. If g(v) = j, then for each $1 \le i < j$, there is some u with g(u) = i and u || v. The vertex u is a witness for v.
- There is a presentation of P that forces First-Fit to use n chains iff P has a n-Grundy coloring.
 - ► Given *n*-Grundy coloring *g*, present vertex *u* before *v* if g(u) < g(v) (their order chosen arbitrarily if g(u) = g(v)).</p>
 - ► Given a presentation order that forces C₁, C₂,..., C_n chains to be used, define g by g(u) = i iff u ∈ C_i.

(日) (同) (三) (三) (三) (○) (○)

For Example ...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

L is an *m*-ladder if:

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

- L is an *m*-ladder if:
 - 1. its vertices are two disjoint chains $x_1 <_L x_2 <_L \cdots <_L x_m$ and $y_1 <_L y_2 <_L \cdots <_L y_m$,

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- L is an *m*-ladder if:
 - 1. its vertices are two disjoint chains $x_1 <_L x_2 <_L \cdots <_L x_m$ and $y_1 <_L y_2 <_L \cdots <_L y_m$,

2. with $x_i <_L y_i$ for all $i \in [m]$ and $y_i \parallel_L x_j$ if $i \le j \le m$.

- L is an *m*-ladder if:
 - 1. its vertices are two disjoint chains $x_1 <_L x_2 <_L \cdots <_L x_m$ and $y_1 <_L y_2 <_L \cdots <_L y_m$,

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

2. with $x_i <_L y_i$ for all $i \in [m]$ and $y_i \parallel_L x_j$ if $i \le j \le m$.

Ladders

- L is an *m*-ladder if:
 - 1. its vertices are two disjoint chains $x_1 <_L x_2 <_L \cdots <_L x_m$ and $y_1 <_L y_2 <_L \cdots <_L y_m$,
 - 2. with $x_i <_L y_i$ for all $i \in [m]$ and $y_i \parallel_L x_j$ if $i \le j \le m$.

Ladders

- L is an *m*-ladder if:
 - 1. its vertices are two disjoint chains $x_1 <_L x_2 <_L \cdots <_L x_m$ and $y_1 <_L y_2 <_L \cdots <_L y_m$,
 - 2. with $x_i <_L y_i$ for all $i \in [m]$ and $y_i \parallel_L x_j$ if $i \le j \le m$.

Why Study Ladders?

In the proof of val(w) $\leq w^{13lgw}$, Bosek and Krawczyk found that on-line chain partitioning of general width w posets could be reduced to on-line chain partitioning of L_m -free posets for $1 \leq m \leq 2w^2 + 1$.

Ladder-Free Bounds

$$\operatorname{val}_{FF}(L_2, w) = w^2$$

<□ > < @ > < E > < E > E のQ @

Ladder-Free Bounds

$$\mathsf{val}_{FF}(L_2,w) = w^2$$

$$m+2 \leq \operatorname{val}_{FF}(L_m,2) \leq 2m$$

<□ > < @ > < E > < E > E のQ @

Ladder-Free Bounds

$$\operatorname{val}_{FF}(L_2, w) = w^2$$

$$m+2 \leq \operatorname{val}_{FF}(L_m,2) \leq 2m$$

$$w^{\lg(m-1)} \leq \mathsf{val}_{FF}(P) \leq w^{2.5\lg w + 2\lg m}$$

(Lower bound from Bosek and Matecki)

Select P with an n-Grundy g coloring so P is minimal; i.e.: for any vertex v, g is not an n-Grundy coloring of P − v. Fix C, a Dilworth chain partition of P.

Select P with an n-Grundy g coloring so P is minimal; i.e.: for any vertex v, g is not an n-Grundy coloring of P − v. Fix C, a Dilworth chain partition of P.

▶
$$|{u \in P : g(u) = i}| \le 2$$

Select P with an n-Grundy g coloring so P is minimal; i.e.: for any vertex v, g is not an n-Grundy coloring of P − v. Fix C, a Dilworth chain partition of P.

▶
$$|{u \in P : g(u) = i}| \le 2$$

▶ Any pair of chains in C share at most two colors.

Select P with an n-Grundy g coloring so P is minimal; i.e.: for any vertex v, g is not an n-Grundy coloring of P − v. Fix C, a Dilworth chain partition of P.

▶
$$|{u \in P : g(u) = i}| \le 2$$

Any pair of chains in C share at most two colors.

Each chain contains at most 1 private color.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$h \leq 2\binom{w}{2} + w = w^2$$

Each chain contains at most 1 private color.

(ロ)、(型)、(E)、(E)、 E) の(の)

•
$$n \leq 2\binom{w}{2} + w = w^2$$

• Use induction on w. Base at w = 1.

- Use induction on w. Base at w = 1.
- ► To go to case w from w 1, build H and a 2w 1-Grundy coloring

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

► ... and carefully glue together with an L₂-free poset of width w - 1 with a (w - 1)²-Grundy coloring.

• Take L_m -free poset *P* with width 2 and *n*-Grundy coloring *g*.

(ロ)、(型)、(E)、(E)、 E) の(の)

• Take L_m -free poset *P* with width 2 and *n*-Grundy coloring *g*.

・ロト・日本・モート モー うへぐ

• Take vertex v so that g(v) = n and look at v's witnesses.

• Take L_m -free poset P with width 2 and n-Grundy coloring g.

・ロト・日本・モート モー うへぐ

- Take vertex v so that g(v) = n and look at v's witnesses.
- ... and then the witnesses of v's witnesses.

- Take L_m -free poset P with width 2 and n-Grundy coloring g.
- Take vertex v so that g(v) = n and look at v's witnesses.
- ... and then the witnesses of v's witnesses.
- ► There can be at most m 1 ascents and m 1 descents in the string of witness' colors so n ≤ 2m.

- Take L_m -free poset P with width 2 and n-Grundy coloring g.
- Take vertex v so that g(v) = n and look at v's witnesses.
- ... and then the witnesses of v's witnesses.
- ► There can be at most m 1 ascents and m 1 descents in the string of witness' colors so n ≤ 2m.

► Take width *w* poset *P* that is *L_m*-free and fix Dilworth partition *C*.

- ► Take width *w* poset *P* that is *L_m*-free and fix Dilworth partition *C*.
- Select maximum antichain A so that N := min_{a∈A} g(a) is maximum.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

▶ Each vertex in A needs a witness for each color < N.

- Each vertex in A needs a witness for each color < N.
- ► Vertex v has property (*) if it is a witness for ≥ 1/2 the vertices in A.

- ▶ Each vertex in A needs a witness for each color < N.
- ► Vertex v has property (*) if it is a witness for ≥ 1/2 the vertices in A.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

For each i ∈ [N] select the "near" witness and "far" witness with property (*) so that they are both on the same side of A.

イロト イポト イヨト イヨト

э

- Select a chain C ∈ C. Look at all the far witnesses on C above A.
- Matching near witnesses must form a poset of width at most w/2.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Select a chain C ∈ C. Look at all the far witnesses on C above A.
- Matching near witnesses must form a poset of width at most w/2.

- Select a chain C ∈ C. Look at all the far witnesses on C above A.
- Matching near witnesses must form a poset of width at most w/2.

If the colors of a chain of far witness are ascending, there can only be *m* colors in the sequence.

If the colors of a chain of near witnesses is descending, there can only be *m* colors in the sequence.

If a sequence of far witnesses is running "towards" a sequence of near witnesses, this sequence has at most val_{FF}(w/2, L_m) colors.

By E-S, we have at most m(w − 1)²(w/2)m²(w − 1)² val_{FF}(L_m, w/2) far witnesses on each chain in C.

•
$$N \leq 2w(w/2)m^2(w-1)^2 \operatorname{val}_{FF}(L_m,w/2)$$

By E-S, we have at most m(w − 1)²(w/2)m²(w − 1)² val_{FF}(L_m, w/2) far witnesses on each chain in C.

•
$$N \leq 2w(w/2)m^2(w-1)^2 \operatorname{val}_{FF}(L_m,w/2)$$

► From our choice of A, colors higher than N for a width w − 1 poset that is L_m-free.

► $val_{FF}(L_m, w) \leq N + val_{FF}(L_m, w - 1).$