First-Fit Coloring of Ladder-Free Posets

Matt E. Smith and H. A. Kierstead mattearlsmith@gmail.com kierstead@asu.edu

June 18, 2012

Chain Partitions of Posets

- X is a set of vertices
- \leq is a reflexive, transitive, antisymmetric order on X
- $P=(X, \leq)$ is a poset
- $C \subseteq X$ is a chain if its elements are pairwise comparable.
- $A \subseteq X$ is an antichain if its elements are pairwise imcomparable.
- $\mathcal{C}=\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}$ is a chain partition of P if each C_{j} is a chain and $X=\bigcup_{1 \leq j \leq n} C_{j}$.
Theorem
(Dilworth, 1950) Any poset of width w can be partitioned into w chains. Furthermore, no poset of width w can be partitioned into fewer that w chains.

The On-Line Chain Partitioning Game

- The on-line chain partitioning game is played between Spoiler and Algorithm.

The On-Line Chain Partitioning Game

- The on-line chain partitioning game is played between Spoiler and Algorithm.
- Spoiler selects a width w and announces it to Algorithm.

The On-Line Chain Partitioning Game

- The on-line chain partitioning game is played between Spoiler and Algorithm.
- Spoiler selects a width w and announces it to Algorithm.
- In alternating rounds, Spoiler reveals an element of a poset to Algorithm along with all comparabilities. Algorithm builds a chain partition by assigning each element to a chain when Spoiler reveals it.

The On-Line Chain Partitioning Game

- The on-line chain partitioning game is played between Spoiler and Algorithm.
- Spoiler selects a width w and announces it to Algorithm.
- In alternating rounds, Spoiler reveals an element of a poset to Algorithm along with all comparabilities. Algorithm builds a chain partition by assigning each element to a chain when Spoiler reveals it.
- val (w) is the largest integer m so that Spoiler has a poset of width at most w and order of revealing the elements that forces Algorithm to use at least m chains. Dually, it is the smallest integer n so that Algorithm may play the game indefinitely using only n chains for any poset of width w and for any order in which the elements are revealed.

Known Bounds

- $4 w-3 \leq \operatorname{val}(w) \leq\left(5^{w}-1\right) / 4$

Kierstead (1981)

Known Bounds

- $4 w-3 \leq \operatorname{val}(w) \leq\left(5^{w}-1\right) / 4$
- $\binom{w+1}{2} \leq \operatorname{val}(w)$

Kierstead (1981)
Szemerédi (1981)

Known Bounds

- $4 w-3 \leq \operatorname{val}(w) \leq\left(5^{w}-1\right) / 4$
- $\binom{w+1}{2} \leq \operatorname{val}(w)$
- $\operatorname{val}(w) \leq w^{13 \lg w}$

Kierstead (1981)
Szemerédi (1981)
Bosek, Krawczyk (2009)

Known Bounds

- $4 w-3 \leq \operatorname{val}(w) \leq\left(5^{w}-1\right) / 4$
- $\binom{w+1}{2} \leq \operatorname{val}(w)$
- $\operatorname{val}(w) \leq w^{13 \lg w}$

Kierstead (1981)
Szemerédi (1981)
Bosek, Krawczyk (2009)

- val $(w) \leq w^{3+6.5 \lg w}$ MES, Bosek, Kierstead, Krawczyk (2012)

First-Fit Chain Partitioning

- Spoiler plays as before.
- Algorithm must use a greedy strategy; i.e.: Algorithm indexes the chains he is building as $C_{1}, C_{2}, \ldots, C_{n}$. When Spoiler introduces a new element x, then Algorithm must assign x to C_{j} where j is the smallest index so that $C_{j}+x$ is a chain. If no such chain exists, Algorithm adds chain C_{n+1}.

First-Fit Chain Partitioning

How many chains can Spoiler force?

First-Fit Chain Partitioning

How many chains can Spoiler force?
As many as desired.

First-Fit Chain Partitioning

How many chains can Spoiler force?
As many as desired. Even with $w=2$.

First-Fit Chain Partitioning

How many chains can Spoiler force?
As many as desired. Even with $w=2$.

$$
\begin{aligned}
& =1 \\
& =2 \\
& =3 \\
& =4 \\
& =5
\end{aligned}
$$

$$
x_{1}^{1} \bullet
$$

First-Fit Chain Partitioning

How many chains can Spoiler force?
As many as desired. Even with $w=2$.

$$
\begin{aligned}
& =1 \\
& =2 \\
& =3 \\
& =4 \\
& =5
\end{aligned}
$$

$$
x_{1}^{1} \bullet
$$

First-Fit Chain Partitioning

How many chains can Spoiler force?
As many as desired. Even with $w=2$.

First-Fit Chain Partitioning

How many chains can Spoiler force?
As many as desired. Even with $w=2$.

First-Fit Chain Partitioning

How many chains can Spoiler force?
As many as desired. Even with $w=2$.

First-Fit Chain Partitioning

How many chains can Spoiler force?
As many as desired. Even with $w=2$.

	$=1$
	$=2$
	$=3$
	$=4$
	$=5$

First-Fit Chain Partitioning

How many chains can Spoiler force?
As many as desired. Even with $w=2$.

$\begin{aligned} & =1 \\ & =2 \\ & =3 \\ & =4 \\ & =5\end{aligned}$

First-Fit Chain Partitioning

How many chains can Spoiler force?
As many as desired. Even with $w=2$.

$\begin{aligned} & =1 \\ & =2 \\ & =3 \\ & =4 \\ & =5\end{aligned}$

First-Fit Chain Partitioning

How many chains can Spoiler force?
As many as desired. Even with $w=2$.

$\begin{aligned} & =1 \\ \square & =2 \\ & =3 \\ & =4 \\ & =5\end{aligned}$

First-Fit Chain Partitioning

How many chains can Spoiler force?
As many as desired. Even with $w=2$.

$\begin{aligned} & =1 \\ \square & =2 \\ & =3 \\ & =4 \\ & =5\end{aligned}$

So why study First-Fit Chain Partitioning?

- Suppose P and Q are posets. If Q is not an induced subposet of P, the P is Q-free.

So why study First-Fit Chain Partitioning?

- Suppose P and Q are posets. If Q is not an induced subposet of P, the P is Q-free.
- Bosek, Krawczyk, Matecki (2011)

Let Q be a width 2 poset.

So why study First-Fit Chain Partitioning?

- Suppose P and Q are posets. If Q is not an induced subposet of P, the P is Q-free.
- Bosek, Krawczyk, Matecki (2011) Let Q be a width 2 poset. If P is Q-free, then First-Fit uses a bounded number of chains to partition P on-line.

So why study First-Fit Chain Partitioning?

- Suppose P and Q are posets. If Q is not an induced subposet of P, the P is Q-free.
- Bosek, Krawczyk, Matecki (2011) Let Q be a width 2 poset. If P is Q-free, then First-Fit uses a bounded number of chains to partition P on-line.
- The number of chains Spoiler can force First-Fit to use in coloring a width Q-free width w poset is is $\operatorname{val}_{F F}(Q, w)$.

Grundy Colorings

- The function $g: P \rightarrow[n]$ is an n-Grundy coloring if:

1. g is surjective
2. $\{u \in P: g(u)=i\}$ is a chain
3. If $g(v)=j$, then for each $1 \leq i<j$, there is some u with $g(u)=i$ and $u \| v$. The vertex u is a witness for v.

Grundy Colorings

- The function $g: P \rightarrow[n]$ is an n-Grundy coloring if:

1. g is surjective
2. $\{u \in P: g(u)=i\}$ is a chain
3. If $g(v)=j$, then for each $1 \leq i<j$, there is some u with $g(u)=i$ and $u \| v$. The vertex u is a witness for v.

- There is a presentation of P that forces First-Fit to use n chains iff P has a n-Grundy coloring.

Grundy Colorings

- The function $g: P \rightarrow[n]$ is an n-Grundy coloring if:

1. g is surjective
2. $\{u \in P: g(u)=i\}$ is a chain
3. If $g(v)=j$, then for each $1 \leq i<j$, there is some u with $g(u)=i$ and $u \| v$. The vertex u is a witness for v.

- There is a presentation of P that forces First-Fit to use n chains iff P has a n-Grundy coloring.
- Given n-Grundy coloring g, present vertex u before v if $g(u)<g(v)$ (their order chosen arbitrarily if $g(u)=g(v)$).
- Given a presentation order that forces $C_{1}, C_{2}, \ldots, C_{n}$ chains to be used, define g by $g(u)=i$ iff $u \in C_{i}$.

For Example ...

$\begin{aligned} & =1 \\ & =2 \\ & =3 \\ & =4 \\ & =5\end{aligned}$

Ladders

L is an m-ladder if:

Ladders

L is an m-ladder if:

1. its vertices are two disjoint chains $x_{1}<_{L} x_{2}<_{L} \cdots<_{L} x_{m}$ and $y_{1}<_{L} y_{2}<_{L} \cdots<_{L} y_{m}$,

Ladders

L is an m-ladder if:

1. its vertices are two disjoint chains $x_{1}<_{L} x_{2}<_{L} \cdots<_{L} x_{m}$ and $y_{1}<_{L} y_{2}<_{L} \cdots<_{L} y_{m}$,
2. with $x_{i}<_{L} y_{i}$ for all $i \in[m]$ and $y_{i} \|_{L} x_{j}$ if $i \leq j \leq m$.

Ladders

L is an m-ladder if:

1. its vertices are two disjoint chains $x_{1}<_{L} x_{2}<_{L} \cdots<_{L} x_{m}$ and $y_{1}<_{L} y_{2}<_{L} \cdots<_{L} y_{m}$,
2. with $x_{i}<_{L} y_{i}$ for all $i \in[m]$ and $y_{i} \|_{L} x_{j}$ if $i \leq j \leq m$.

Ladders

L is an m-ladder if:

1. its vertices are two disjoint chains $x_{1}<_{L} x_{2}<_{L} \cdots<_{L} x_{m}$ and $y_{1}<_{L} y_{2}<_{L} \cdots<_{L} y_{m}$,
2. with $x_{i}<_{L} y_{i}$ for all $i \in[m]$ and $y_{i} \|_{L} x_{j}$ if $i \leq j \leq m$.

Ladders

L is an m-ladder if:

1. its vertices are two disjoint chains $x_{1}<_{L} x_{2}<_{L} \cdots<_{L} x_{m}$ and $y_{1}<_{L} y_{2}<_{L} \cdots<_{L} y_{m}$,
2. with $x_{i}<_{L} y_{i}$ for all $i \in[m]$ and $y_{i} \|_{L} x_{j}$ if $i \leq j \leq m$.

Why Study Ladders?

In the proof of $\operatorname{val}(w) \leq w^{13 \lg w}$, Bosek and Krawczyk found that on-line chain partitioning of general width w posets could be reduced to on-line chain partitioning of L_{m}-free posets for $1 \leq m \leq 2 w^{2}+1$.

Ladder-Free Bounds

$$
\operatorname{val}_{F F}\left(L_{2}, w\right)=w^{2}
$$

Ladder-Free Bounds

$$
\begin{gathered}
\operatorname{val}_{F F}\left(L_{2}, w\right)=w^{2} \\
m+2 \leq \operatorname{val}_{F F}\left(L_{m}, 2\right) \leq 2 m
\end{gathered}
$$

Ladder-Free Bounds

$$
\begin{gathered}
\operatorname{val}_{F F}\left(L_{2}, w\right)=w^{2} \\
m+2 \leq \operatorname{val}_{F F}\left(L_{m}, 2\right) \leq 2 m \\
w^{\lg (m-1)} \leq \operatorname{val}_{F F}(P) \leq w^{2.5 \lg w+2 \lg m}
\end{gathered}
$$

(Lower bound from Bosek and Matecki)

Upper Bound for L_{2}-Free, Width w

- Select P with an n-Grundy g coloring so P is minimal; i.e.: for any vertex v, g is not an n-Grundy coloring of $P-v$. Fix \mathcal{C}, a Dilworth chain partition of P.

Upper Bound for L_{2}-Free, Width w

- Select P with an n-Grundy g coloring so P is minimal; i.e.: for any vertex v, g is not an n-Grundy coloring of $P-v$. Fix \mathcal{C}, a Dilworth chain partition of P.
- $|\{u \in P: g(u)=i\}| \leq 2$

Upper Bound for L_{2}-Free, Width w

- Select P with an n-Grundy g coloring so P is minimal; i.e.: for any vertex v, g is not an n-Grundy coloring of $P-v$. Fix \mathcal{C}, a Dilworth chain partition of P.
- $|\{u \in P: g(u)=i\}| \leq 2$

- Any pair of chains in \mathcal{C} share at most two colors.

Upper Bound for L_{2}-Free, Width w

- Select P with an n-Grundy g coloring so P is minimal; i.e.: for any vertex v, g is not an n-Grundy coloring of $P-v$. Fix \mathcal{C}, a Dilworth chain partition of P.
- $|\{u \in P: g(u)=i\}| \leq 2$

- Any pair of chains in \mathcal{C} share at most two colors.

Upper Bound for L_{2}-Free, Width w

- Each chain contains at most 1 private color.

- $n \leq 2\binom{w}{2}+w=w^{2}$

Upper Bound for L_{2}-Free, Width w

- Each chain contains at most 1 private color.

- $n \leq 2\binom{w}{2}+w=w^{2}$

Lower Bound for L_{2}-Free, Width w

- Use induction on w. Base at $w=1$.

Lower Bound for L_{2}-Free, Width w

- Use induction on w. Base at $w=1$.
- To go to case w from $w-1$, build H and a $2 w-1$-Grundy coloring

Lower Bound for L_{2}-Free, Width w

- ... and carefully glue together with an L_{2}-free poset of width $w-1$ with a $(w-1)^{2}$-Grundy coloring.

Upper Bound for L_{m}-Free, Width 2

- Take L_{m}-free poset P with width 2 and n-Grundy coloring g.

Upper Bound for L_{m}-Free, Width 2

- Take L_{m}-free poset P with width 2 and n-Grundy coloring g.
- Take vertex v so that $g(v)=n$ and look at v 's witnesses.

Upper Bound for L_{m}-Free, Width 2

- Take L_{m}-free poset P with width 2 and n-Grundy coloring g.
- Take vertex v so that $g(v)=n$ and look at v 's witnesses.
- ... and then the witnesses of v 's witnesses.

Upper Bound for L_{m}-Free, Width 2

- Take L_{m}-free poset P with width 2 and n-Grundy coloring g.
- Take vertex v so that $g(v)=n$ and look at v 's witnesses.
- ... and then the witnesses of v 's witnesses.
- There can be at most $m-1$ ascents and $m-1$ descents in the string of witness' colors so $n \leq 2 m$.

Upper Bound for L_{m}-Free, Width 2

- Take L_{m}-free poset P with width 2 and n-Grundy coloring g.
- Take vertex v so that $g(v)=n$ and look at v 's witnesses.
- ... and then the witnesses of v 's witnesses.
- There can be at most $m-1$ ascents and $m-1$ descents in the string of witness' colors so $n \leq 2 m$.

Upper Bound for L_{m}-Free, Width w

- Take width w poset P that is L_{m}-free and fix Dilworth partition \mathcal{C}.

Upper Bound for L_{m}-Free, Width w

- Take width w poset P that is L_{m}-free and fix Dilworth partition \mathcal{C}.
- Select maximum antichain A so that $N:=\min _{a \in A} g(a)$ is maximum.

Upper Bound for L_{m}-Free, Width w

- Each vertex in A needs a witness for each color $<N$.

Upper Bound for L_{m}-Free, Width w

- Each vertex in A needs a witness for each color $<N$.
- Vertex v has property ($*$) if it is a witness for $\geq 1 / 2$ the vertices in A.

Upper Bound for L_{m}-Free, Width w

- Each vertex in A needs a witness for each color $<N$.
- Vertex v has property $(*)$ if it is a witness for $\geq 1 / 2$ the vertices in A.

Upper Bound for L_{m}-Free, Width w

- For each $i \in[N]$ select the "near" witness and "far" witness with property $(*)$ so that they are both on the same side of A.

Upper Bound for L_{m}-Free, Width w

- Select a chain $C \in \mathcal{C}$. Look at all the far witnesses on C above A.
- Matching near witnesses must form a poset of width at most $w / 2$.

Upper Bound for L_{m}-Free, Width w

- Select a chain $C \in \mathcal{C}$. Look at all the far witnesses on C above A.
- Matching near witnesses must form a poset of width at most $w / 2$.

Upper Bound for L_{m}-Free, Width w

- Select a chain $C \in \mathcal{C}$. Look at all the far witnesses on C above A.
- Matching near witnesses must form a poset of width at most $w / 2$.

Upper Bound for L_{m}-Free, Width w

- If the colors of a chain of far witness are ascending, there can only be m colors in the sequence.

Upper Bound for L_{m}-Free, Width w

- If the colors of a chain of near witnesses is descending, there can only be m colors in the sequence.

Upper Bound for L_{m}-Free, Width w

- If a sequence of far witnesses is running "towards" a sequence of near witnesses, this sequence has at most $\operatorname{val}_{\mathrm{FF}}\left(w / 2, L_{m}\right)$ colors.

Upper Bound for L_{m}-Free, Width w

- By E-S, we have at most $m(w-1)^{2}(w / 2) m^{2}(w-1)^{2} \operatorname{val}_{F F}\left(L_{m}, w / 2\right)$ far witnesses on each chain in \mathcal{C}.

Upper Bound for L_{m}-Free, Width w

- By E-S, we have at most $m(w-1)^{2}(w / 2) m^{2}(w-1)^{2} \operatorname{val}_{F F}\left(L_{m}, w / 2\right)$ far witnesses on each chain in \mathcal{C}.
- $N \leq 2 w(w / 2) m^{2}(w-1)^{2} \operatorname{val}_{F F}\left(L_{m}, w / 2\right)$

Upper Bound for L_{m}-Free, Width w

- By E-S, we have at most $m(w-1)^{2}(w / 2) m^{2}(w-1)^{2} \operatorname{val}_{F F}\left(L_{m}, w / 2\right)$ far witnesses on each chain in \mathcal{C}.
- $N \leq 2 w(w / 2) m^{2}(w-1)^{2} \operatorname{val}_{F F}\left(L_{m}, w / 2\right)$
- From our choice of A, colors higher than N for a width $w-1$ poset that is L_{m}-free.
- $\operatorname{val}_{\mathrm{FF}}\left(L_{m}, w\right) \leq N+\operatorname{val}_{\mathrm{FF}}\left(L_{m}, w-1\right)$.

