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Chain Partitions of Posets

I X is a set of vertices

I ≤ is a reflexive, transitive, antisymmetric order on X

I P = (X ,≤) is a poset

I C ⊆ X is a chain if its elements are pairwise comparable.

I A ⊆ X is an antichain if its elements are pairwise
imcomparable.

I C = {C1,C2, . . . ,Cn} is a chain partition of P if each Cj is a

chain and X =
⋃

1≤j≤n
Cj .

Theorem
(Dilworth, 1950) Any poset of width w can be partitioned into w
chains. Furthermore, no poset of width w can be partitioned into
fewer that w chains.



The On-Line Chain Partitioning Game

I The on-line chain partitioning game is played between Spoiler
and Algorithm.

I Spoiler selects a width w and announces it to Algorithm.

I In alternating rounds, Spoiler reveals an element of a poset to
Algorithm along with all comparabilities. Algorithm builds a
chain partition by assigning each element to a chain when
Spoiler reveals it.

I val(w) is the largest integer m so that Spoiler has a poset of
width at most w and order of revealing the elements that
forces Algorithm to use at least m chains. Dually, it is the
smallest integer n so that Algorithm may play the game
indefinitely using only n chains for any poset of width w and
for any order in which the elements are revealed.
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Known Bounds

I 4w − 3 ≤ val(w) ≤ (5w − 1)/4 Kierstead (1981)

I
(w+1

2

)
≤ val(w) Szemerédi (1981)

I val(w) ≤ w13 lgw Bosek, Krawczyk (2009)

I val(w) ≤ w3+6.5 lgw MES, Bosek, Kierstead, Krawczyk (2012)
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First-Fit Chain Partitioning

I Spoiler plays as before.

I Algorithm must use a greedy strategy; i.e.: Algorithm indexes
the chains he is building as C1,C2, . . . ,Cn. When Spoiler
introduces a new element x , then Algorithm must assign x to
Cj where j is the smallest index so that Cj + x is a chain. If
no such chain exists, Algorithm adds chain Cn+1.



First-Fit Chain Partitioning

How many chains can Spoiler force?

As many as desired. Even with w = 2.
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So why study First-Fit Chain Partitioning?

I Suppose P and Q are posets. If Q is not an induced subposet
of P, the P is Q-free.

I Bosek, Krawczyk, Matecki (2011)
Let Q be a width 2 poset. If P is Q-free, then First-Fit uses a
bounded number of chains to partition P on-line.

I The number of chains Spoiler can force First-Fit to use in
coloring a width Q-free width w poset is is valFF (Q,w).
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Grundy Colorings

I The function g : P → [n] is an n-Grundy coloring if:

1. g is surjective
2. {u ∈ P : g(u) = i} is a chain
3. If g(v) = j , then for each 1 ≤ i < j , there is some u with

g(u) = i and u‖v . The vertex u is a witness for v .

I There is a presentation of P that forces First-Fit to use n
chains iff P has a n-Grundy coloring.

I Given n-Grundy coloring g , present vertex u before v if
g(u) < g(v) (their order chosen arbitrarily if g(u) = g(v)).

I Given a presentation order that forces C1,C2, . . . ,Cn chains to
be used, define g by g(u) = i iff u ∈ Ci .
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For Example ...
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Ladders
L is an m-ladder if:

1. its vertices are two disjoint chains x1 <L x2 <L · · · <L xm and
y1 <L y2 <L · · · <L ym,

2. with xi <L yi for all i ∈ [m] and yi ‖L xj if i ≤ j ≤ m.
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Why Study Ladders?

In the proof of val(w) ≤ w13lgw , Bosek and Krawczyk found that
on-line chain partitioning of general width w posets could be
reduced to on-line chain partitioning of Lm-free posets for
1 ≤ m ≤ 2w2 + 1.



Ladder-Free Bounds

valFF (L2,w) = w2

m + 2 ≤ valFF (Lm, 2) ≤ 2m

w lg(m−1) ≤ valFF (P) ≤ w2.5 lgw+2 lgm

(Lower bound from Bosek and Matecki)
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Upper Bound for L2-Free, Width w

I Select P with an n-Grundy g coloring so P is minimal; i.e.:
for any vertex v , g is not an n-Grundy coloring of P − v . Fix
C, a Dilworth chain partition of P.

I |{u ∈ P : g(u) = i}| ≤ 2

t

u x

v

I Any pair of chains in C share at most two colors.
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Upper Bound for L2-Free, Width w

I Each chain contains at most 1 private color.
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+ w = w2



Upper Bound for L2-Free, Width w

I Each chain contains at most 1 private color.

v

u

x

I n ≤ 2

(
w

2

)
+ w = w2



Lower Bound for L2-Free, Width w

I Use induction on w . Base at w = 1.

I To go to case w from w − 1, build H and a 2w − 1-Grundy
coloring

a1
5

a2
6

a3
7

a4
8

b1
1

b2
2

b3
3

b4
4

H

c1 1

c2 2

c3 3

c4 4

c5 9

c6 8

c7 7

c8 6

c9 5



Lower Bound for L2-Free, Width w

I Use induction on w . Base at w = 1.

I To go to case w from w − 1, build H and a 2w − 1-Grundy
coloring

a1
5

a2
6

a3
7

a4
8

b1
1

b2
2

b3
3

b4
4

H

c1 1

c2 2

c3 3

c4 4

c5 9

c6 8

c7 7

c8 6

c9 5



Lower Bound for L2-Free, Width w

I ... and carefully glue together with an L2-free poset of width
w − 1 with a (w − 1)2-Grundy coloring.

P ′ H

a1 a2 a3 a4

a′1 a′2 a′3 a′4

b1 b2 b3 b4

b′1 b′2 b′3 b′4
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Upper Bound for Lm-Free, Width 2

I Take Lm-free poset P with width 2 and n-Grundy coloring g .

I Take vertex v so that g(v) = n and look at v ’s witnesses.

I ... and then the witnesses of v ’s witnesses.

I There can be at most m − 1 ascents and m − 1 descents in
the string of witness’ colors so n ≤ 2m.
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Upper Bound for Lm-Free, Width w

I Take width w poset P that is Lm-free and fix Dilworth
partition C.

I Select maximum antichain A so that N := mina∈A g(a) is
maximum.

a1 a2 a3 a4 A
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Upper Bound for Lm-Free, Width w

I Each vertex in A needs a witness for each color < N.

I Vertex v has property (∗) if it is a witness for ≥ 1/2 the
vertices in A.
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Upper Bound for Lm-Free, Width w

I For each i ∈ [N] select the “near” witness and “far” witness
with property (∗) so that they are both on the same side of A.
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Upper Bound for Lm-Free, Width w

I Select a chain C ∈ C. Look at all the far witnesses on C
above A.

I Matching near witnesses must form a poset of width at most
w/2.
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Upper Bound for Lm-Free, Width w

I Select a chain C ∈ C. Look at all the far witnesses on C
above A.

I Matching near witnesses must form a poset of width at most
w/2.
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Upper Bound for Lm-Free, Width w

I If the colors of a chain of far witness are ascending, there can
only be m colors in the sequence.
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Upper Bound for Lm-Free, Width w

I If the colors of a chain of near witnesses is descending, there
can only be m colors in the sequence.
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Upper Bound for Lm-Free, Width w

I If a sequence of far witnesses is running “towards” a sequence
of near witnesses, this sequence has at most valFF(w/2, Lm)
colors.
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Upper Bound for Lm-Free, Width w

I By E-S, we have at most
m(w − 1)2(w/2)m2(w − 1)2 valFF (Lm,w/2) far witnesses on
each chain in C.

I N ≤ 2w(w/2)m2(w − 1)2 valFF (Lm,w/2)

I From our choice of A, colors higher than N for a width w − 1
poset that is Lm-free.

I valFF(Lm,w) ≤ N + valFF(Lm,w − 1).



Upper Bound for Lm-Free, Width w

I By E-S, we have at most
m(w − 1)2(w/2)m2(w − 1)2 valFF (Lm,w/2) far witnesses on
each chain in C.

I N ≤ 2w(w/2)m2(w − 1)2 valFF (Lm,w/2)

I From our choice of A, colors higher than N for a width w − 1
poset that is Lm-free.

I valFF(Lm,w) ≤ N + valFF(Lm,w − 1).



Upper Bound for Lm-Free, Width w

I By E-S, we have at most
m(w − 1)2(w/2)m2(w − 1)2 valFF (Lm,w/2) far witnesses on
each chain in C.

I N ≤ 2w(w/2)m2(w − 1)2 valFF (Lm,w/2)

I From our choice of A, colors higher than N for a width w − 1
poset that is Lm-free.

I valFF(Lm,w) ≤ N + valFF(Lm,w − 1).


