SIAM Conference on Discrete Mathematics

 June 18, 2012
Dimension and Height for Posets with Planar Cover Graphs

Noah Streib
(joint work with W. T. Trotter)

Figures Associated with a Poset

Comparability Graph

Cover Graph
Order Diagram

Planar Poset $=$ Order Diagram is Planar!

A Non-planar Poset with a Planar Cover

 Graph

The height 3 non-planar poset on the left has a planar cover graph drawn on the right.

The Dimension of a Poset

$$
\begin{aligned}
& L_{1}=b<e<a<d<g<c<f \\
& L_{2}=a<c<b<d<g<e<f \\
& L_{3}=a<c<b<e<f<d<g
\end{aligned}
$$

The dimension of a poset is the minimum size of a realizer. This realizer shows $\operatorname{dim}(P) \leq 3$.

Observation Many analogies between dimension and chromatic number.

Standard Examples

Fact For $n \geq 2$, the standard example S_{n} is a poset of dimension n.

Note If L is a linear extension of S_{n}, there can only be one value of i for which $a_{i}>b_{i}$ in L.

Example $L=a_{2}<\ldots<a_{n}<b_{1}<a_{1}<b_{2}<\ldots<b_{n}$

Planar Posets with Zero and One

Theorem (Baker, Fishburn and Roberts, '71)

If P has both a 0 and a 1 , then P is planar if and only if it is a lattice and has dimension at most 2 .

Dimension of Planar Posets

Theorem (Trotter and Moore, '77) If P has a 0 and the diagram of P is planar, then $\operatorname{dim}(P) \leq 3$.

A 4-Dimensional Planar Poset

Fact The standard example S_{4} is planar!

Fact S_{n} is non-planar for all $n \geq 5$!

No ... by Kelly's Construction (1981)

Fact For every $n \geq 5$, the standard example S_{n} is non-planar, but it is a subposet of a planar poset.

Fact While "dim(P) $\leq \dagger "$ is closed under taking subposets, planarity is not (unlike the situation for graphs).

Schnyder's Theorem

Theorem (Schnyder, '89) A graph is planar if and only if the dimension of its vertexedge incidence poset is at most 3 .

Theorem (Brightwell and Trotter, '97)
Let D be a non-crossing drawing of a planar multigraph G, and let P be the vertex-edge-face incidence poset determined by D. Then $\operatorname{dim}(P) \leq 4$.

Planar Cover Graphs, Dimension, and Height 2

Theorem (Felsner, Li and Trotter, '10) If P has height 2 and the cover graph of P is planar, then $\operatorname{dim}(P) \leq 4$.

Fact The inequality is best possible (by S_{4}).

Planar Cover Graphs, Dimension, and Arbitrary Height

Conjecture (Felsner, Li and Trotter, '09) For every integer h, there exists a constant c_{h} so that if P is a poset of height h and the cover graph of P is planar, then $\operatorname{dim}(P) \leq c_{h}$.

Observation $c_{1}=2$ (antichains) and $c_{2}=4(F L T)$.

Fact Kelly's construction shows that c_{h} - if it exists must be at least $h+1$.

Conjecture Resolved

Theorem (Streib and Trotter, '11) For every integer h, there exists a constant c_{h} so that if P is a poset of height h and the cover graph of P is planar, then $\operatorname{dim}(P) \leq c_{h}$.

However, our argument uses ramsey theory at several key stages ... so the constant c_{h} is very large in terms of h.

Lower Bound Construction

Fact For every $h \geq 2$, the standard example S_{h+1} is contained in a poset of height h having a planar cover graph.

Partitioning Critical Pairs into Reversible Sets

Reduction 1: only consider min/max critical pairs.
Reduction 2: use graph-theoretic contractions and deletions to reduce to a special case: there is a minimal element a_{0} under all maximal elements.

Partitioning Critical Pairs into Reversible Sets

Reduction 1: only consider min/max critical pairs.
Reduction 2: use graph-theoretic contractions and deletions to reduce to a special case: there is a minimal element a_{0} under all maximal elements.

No comparabilities are changed between elements of A and elements of B

An Oriented Tree with a DFS labeling

Regions Determined by the Cover Graph

The safe pairs can be reversed in two extensions. For each dangerous pair (a, b), we define a region in the plane that contains b.

Regions Determined by the Cover Graph

The safe pairs can be reversed in two extensions. For each dangerous pair (a, b), we define a region in the plane that contains b.

Crossing Regions

Crossing Regions

Incomparable Regions

Incomparable Regions

Identical Regions

Some Open Questions

1. Improve the bounds for the constant c_{h} in the Streib-Trotter theorem.
2. Can we generalize to other surfaces?
3. Which posets are subposets of planar posets? (Recent progress by Cohen and Wiechert)
4. For $t \geq 5$, what is the smallest planar poset having dimension \dagger ?
5. For $t \geq 5$, are there planar t-irreducible posets?

Thank you!

Maximal Elements as Faces

Partially Ordered Sets

Proof Highlights

-Use graph-theoretic contractions to reduce to a special case: there is a $\min a_{0}$ under all maxes
-Find a rooted tree T covering the upset of a_{0} and equip it with a DFS labeling scheme
-Give each critical pair a signature of parameters according to its interaction with T
-Prove that these parameters are bounded as a function of h
-Prove that the set of critical pairs with the same signature is reversible

Planar Cover Graphs, Dimension, and Arbitrary Height

Conjecture (Felsner, Li, Trotter, 2009) For every integer h, there exists a constant c_{h} so that if P is a poset of height h and the cover graph of P is planar, then $\operatorname{dim}(P) \leq c_{h}$.

Observation $c_{1}=2$ (antichains) and $c_{2}=4(F L T)$.

Fact Kelly's construction shows that c_{h} - if it exists must be at least $h+1$.

The Dimension of a Tree

Corollary (Trotter and Moore, 1977) If the diagram of P is a tree, then $\operatorname{dim}(P) \leq 3$.

Planar Multigraphs

Theorem (Brightwell and Trotter, 1993): Let D be a non-crossing drawing of a planar multigraph G, and let P be the vertex-edge-face poset determined by D. Then $\operatorname{dim}(P) \leq 4$.

Different drawings may determine posets with different dimensions.

