2012 SIAM Discrete Mathematics Conference

Chromatic Number and Dimension of Incidence Posets

William T. Trotter trotter@math.gatech.edu

Joint Work with Ruidong Wang

The Incidence Poset of a Graph

The incidence poset of a graph is also called the vertex-edge poset of the graph.

Realizes of Posets

A family $F=\left\{L_{1}, L_{2}, \ldots, L_{+}\right\}$of linear extensions of P is a realizer of P if $P=\cap F$, ie., whenever x is incomparable to y in P, there is some L_{i} in F with $x>y$ in L_{i}.

The Dimension of a Poset

$$
\begin{aligned}
& L_{1}=b<e<a<d<g<c<f \\
& L_{2}=a<c<b<d<g<e<f \\
& L_{3}=a<c<b<e<f<d<g
\end{aligned}
$$

The dimension of a poset is the minimum size of a realizer. This realizer shows $\operatorname{dim}(P) \leq 3$. In fact,

$$
\operatorname{dim}(P)=3
$$

Schnyder's Theorem

Theorem (Schnyder, 1989) A graph is planar if and only if the dimension of its incidence poset is at most 3 .

Remark While the structure developed by Schnyder in proving this theorem remains important today, Barrera-Cruz and Haxell have recently found a very short, direct and elegant proof.

Definition (Barrera-Cruz, Haxell)

Let G be a graph with vertex set V and let P be the incidence poset of G. Then $\operatorname{dim}(P)$ is the least \dagger for which there are linear orders $L_{1}, L_{2}, \ldots, L_{+}$on V so that:

1. If x, y, z are distinct vertices and $y z$ is an edge, there is some i for which $x>y$ and $x>z$ in L_{i}.
2. If x and y are distinct vertices, there is some i for which $x>y$ in L_{i}.

Two Natural Questions

Let G be a graph and let P be the incidence poset of G.

Question 1 Is the dimension of P bounded as a function of the chromatic number of G ?

Question 2 Is the chromatic number of G bounded as a function of the dimension of P ?

Yes, for Question 1

Theorem (Agnarsson, Felsner and Trotter, 1999)
If G is a graph with incidence poset P and $X(G)=r$, then $\operatorname{dim}(P)=O(\lg \lg r)$.

Remark This result is related to the ErdősSzekeres theorem for monotonic sequences. Quite accurate asymptotic estimates are known.

Yes, for Question 2 when $\operatorname{dim}(P) \leq 3$

Corollary (Schnyder, 1984) If G is a graph, P is the incidence poset of G and $\operatorname{dim}(P) \leq 3$, then $X(G) \leq 4$.

No, for Question 2 when $d \geq 4$

Theorem (Trotter and Wang, 2012) For every $r \geq 1$, there exists a graph G with incidence poset P so that $\operatorname{dim}(P) \leq 4$ and $X(G)=r$.

Remark Of course, the inequality $\operatorname{dim}(P) \leq 4$ becomes tight once $r \geq 5$.

Order Diagrams and Cover Graphs

Order Diagram

Cover Graph

Classic Results (1)

Theorem (B. Descartes, 1943) For every $r \geq 1$, there exists a poset P with cover graph G so that height (P) $=r$ and $X(G)=r$.

Theorem (Nešetřil and Rődl, 1983) For every r, $g \geq 1$, there exists a poset P with cover graph G so that height $(P)=r, \operatorname{girth}(G) \geq g$ and $X(G)=r$.
Theorem (Felsner and Trotter, 1995) For every $r \geq 1$, there exists an interval order P with cover graph G so that $X(G)=r$. The height of P must be exponentially large in r.

Classic Results (2)

Theorem (Bollobás, 1977) For every $r \geq 1$, there exists a lattice L with cover graph G so that $X(G)$ = r.

Theorem (Křiž and Nešetřil, 1991) For every $r \geq 1$, there exists a poset P with cover graph G so that $\operatorname{dim}(P)=2$ and $X(G)=r$.

An Application

Let $r \geq 1$, and let P be a poset with cover graph G so that $\operatorname{dim}(P)=2$ and $X(G)=r$. Also, let $\left\{L_{1}, L_{2}\right\}$ be a realizer for P.

For each $i=1$, 2 , let M_{i} be the dual of L_{i}. Also, let Q be the incidence poset of G. Then, using the Barrera-Cruz/Haxell definition, the family $\left\{L_{1}, L_{2}\right.$, $\left.M_{1}, M_{2}\right\}$ witnesses that $\operatorname{dim}(Q) \leq 4$.

A Graph Parameter (Křizz and Nešetřil)

Let G be a graph with vertex set V. Set eye(G) to be the least \dagger for which there are linear orders L_{1}, L_{2}, \ldots, L_{+}on V so that:

1. If x, y, z are distinct vertices and $y z$ is an edge in G, there is some i for which x is not between y and z in L_{i}

Classic Results (Křizž and Nešetřil)

Corollary For every $r \geq 1$, there exists a graph G so that eye $(G) \leq 2$ and $X(G)=r$.

Corollary For every $g, r \geq 1$, there exists a graph G so that eye $(G) \leq 3, \operatorname{girth}(G) \geq g$ and $X(G)=r$.
Question Is it true that for every $g, r \geq 1$, there exists a graph G so that eye $(G) \leq 2$, girth $(G) \geq 9$ and $X(G)=r$?

Answer and New Question

Theorem (Trotter and Wang, 2012) For every g, r ≥ 1, there exists a graph G so that eye $(G) \leq 2$, $\operatorname{girth}(G) \geq g$ and $X(G)=r$.

Question Is it true that for every $g, r \geq 1$, there exists a poset P with cover graph G so that $\operatorname{dim}(P)$ ≤ 2, girth $(G) \geq g$ and $X(G) \geq r$?

Remark We expect that the answer is no!!

