Linear Discrepancy of Posets

Douglas B. West

Department of Mathematics
University of Illinois at Urbana-Champaign
west@math.uiuc.edu

slides available on DBW preprint page

Joint work with
Jeong-Ok Choi and Kevin G. Milans

The Problem

Tanenbaum-Trenk-Fishburn [2001]: Patients must be seen in a linear order, but "more urgent" is a poset P. We must treat x before y if $x<y$ in P. If $x \| y$ in P, then x and y should be treated not long apart.

The Problem

Tanenbaum-Trenk-Fishburn [2001]: Patients must be seen in a linear order, but "more urgent" is a poset P. We must treat x before y if $x<y$ in P. If $x \| y$ in P, then x and y should be treated not long apart.

Def. A linear extension L of P is an order-preserving bijection $L: P \rightarrow[n]$. An extension L is k-tight if $|L(x)-L(y)| \leq k$ whenever $x \| y$. The linear discrepancy $\operatorname{Id}(P)$ is $\min \{k: P$ has a k-tight linear extension $\}$.

The Problem

Tanenbaum-Trenk-Fishburn [2001]: Patients must be seen in a linear order, but "more urgent" is a poset P. We must treat x before y if $x<y$ in P. If $x \| y$ in P, then x and y should be treated not long apart.

Def. A linear extension L of P is an order-preserving bijection $L: P \rightarrow[n]$. An extension L is k-tight if $|L(x)-L(y)| \leq k$ whenever $x \| y$. The linear discrepancy $\operatorname{Id}(P)$ is $\min \{k: P$ has a k-tight linear extension $\}$.

When P is a chain, $\operatorname{ld}(P)=0$.

The Problem

Tanenbaum-Trenk-Fishburn [2001]: Patients must be seen in a linear order, but "more urgent" is a poset P. We must treat x before y if $x<y$ in P. If $x \| y$ in P, then x and y should be treated not long apart.

Def. A linear extension L of P is an order-preserving bijection $L: P \rightarrow[n]$. An extension L is k-tight if $|L(x)-L(y)| \leq k$ whenever $x \| y$. The linear discrepancy $\operatorname{ld}(P)$ is $\min \{k: P$ has a k-tight linear extension $\}$.

When P is a chain, $\operatorname{ld}(P)=0$.
When P is an antichain, $\operatorname{Id}(P)=|P|-1$.

The Problem

Tanenbaum-Trenk-Fishburn [2001]: Patients must be seen in a linear order, but "more urgent" is a poset P. We must treat x before y if $x<y$ in P. If $x \| y$ in P, then x and y should be treated not long apart.

Def. A linear extension L of P is an order-preserving bijection $L: P \rightarrow[n]$. An extension L is k-tight if $|L(x)-L(y)| \leq k$ whenever $x \| y$. The linear discrepancy $\operatorname{ld}(P)$ is $\min \{k: P$ has a k-tight linear extension $\}$.

When P is a chain, $\operatorname{ld}(P)=0$.
When P is an antichain, $\operatorname{Id}(P)=|P|-1$.
More generally, $\operatorname{Id}(P) \geq$ width $(P)-1$.

An example

Ex. $\mathbf{r}+\mathbf{r}$; two disjoint r-element chains.

$$
\begin{array}{r}
x_{r} \\
x_{r-1} \\
\vdots \\
x_{2} \\
x_{1}
\end{array} \Leftrightarrow \quad \begin{aligned}
& \bullet y_{r} \\
& y_{r-1}
\end{aligned} \quad \begin{aligned}
& \vdots \\
& y_{2}
\end{aligned}
$$

An example

Ex. $\mathbf{r}+\mathbf{r}$; two disjoint r-element chains.

To get tightness below $2 r-1$, top and bottom of extension must come from same chain. For the other chain, want to get bottom high and top low.

An example

Ex. $\mathbf{r}+\mathbf{r}$; two disjoint r-element chains.

To get tightness below $2 r-1$, top and bottom of extension must come from same chain. For the other chain, want to get bottom high and top low.

$$
L=x_{1}, x_{2}, \ldots, y_{1}, y_{2}, \ldots, y_{r-1}, y_{r}, \ldots, x_{r-1}, x_{r}
$$

An example

Ex. $\mathbf{r}+\mathbf{r}$; two disjoint r-element chains.

To get tightness below $2 r-1$, top and bottom of extension must come from same chain. For the other chain, want to get bottom high and top low.

$$
L=x_{1}, x_{2}, \ldots, \underline{y_{1}, y_{2}, \ldots, y_{r-1}, y_{r}}, \ldots, x_{r-1}, x_{r}
$$

Thus $\operatorname{Id}(\mathbf{r}+\mathbf{r})=\left\lfloor\frac{3 r-1}{2}\right\rfloor$.

An example

Ex. $\mathbf{r}+\mathbf{r}$; two disjoint r-element chains.

To get tightness below $2 r-1$, top and bottom of extension must come from same chain. For the other chain, want to get bottom high and top low.

$$
L=x_{1}, x_{2}, \ldots, \underline{y_{1}, y_{2}, \ldots, y_{r-1}, y_{r}, \ldots, x_{r-1}, x_{r},{ }_{n}, \ldots}
$$

Thus $\operatorname{Id}(\mathbf{r}+\mathbf{r})=\left\lfloor\frac{3 r-1}{2}\right\rfloor$.

- In this example, each element is incomparable to exactly r other elements.

Upper Bounds

Def. The incomparability graph $G(P)$ has the elements of P as vertices, with $x y \in E(G)$ if $x \| y$ in P. Henceforth let r denote $\Delta(G(P))$.

Upper Bounds

Def. The incomparability graph $G(P)$ has the elements of P as vertices, with $x y \in E(G)$ if $x \| y$ in P. Henceforth let r denote $\Delta(G(P))$.

Prop. (Rautenbach [2005]) $\operatorname{Id}(P) \leq 2 r-1$.

Upper Bounds

Def. The incomparability graph $G(P)$ has the elements of P as vertices, with $x y \in E(G)$ if $x \| y$ in P. Henceforth let r denote $\Delta(G(P))$.

Prop. (Rautenbach [2005]) $\operatorname{ld}(P) \leq 2 r-1$.
Pf. Every linear extension L is $(2 r-1)$-tight. If $x \| y$, then between them are at most $r-1$ elements incomp. to x + at most $r-1$ incomp. to y, so $|L(x)-L(y)| \leq 2 r-1$.

Upper Bounds

Def. The incomparability graph $G(P)$ has the elements of P as vertices, with $x y \in E(G)$ if $x \| y$ in P. Henceforth let r denote $\Delta(G(P))$.

Prop. (Rautenbach [2005]) $\operatorname{ld}(P) \leq 2 r-1$.
Pf. Every linear extension L is $(2 r-1)$-tight. If $x \| y$, then between them are at most $r-1$ elements incomp. to x + at most $r-1$ incomp. to y, so $|L(x)-L(y)| \leq 2 r-1$.

Conj. (Tanenbaum-Trenk-Fishburn [2001]) Always $\operatorname{Id}(P) \leq\left\lfloor\frac{3 r-1}{2}\right\rfloor$, with equality for $\mathbf{r}+\mathbf{r}$.

Upper Bounds

Def. The incomparability graph $G(P)$ has the elements of P as vertices, with $x y \in E(G)$ if $x \| y$ in P. Henceforth let r denote $\Delta(G(P))$.

Prop. (Rautenbach [2005]) $\operatorname{ld}(P) \leq 2 r-1$.
Pf. Every linear extension L is $(2 r-1)$-tight. If $x \| y$, then between them are at most $r-1$ elements incomp. to x + at most $r-1$ incomp. to y, so $|L(x)-L(y)| \leq 2 r-1$.

Conj. (Tanenbaum-Trenk-Fishburn [2001]) Always $\operatorname{ld}(P) \leq\left\lfloor\frac{3 r-1}{2}\right\rfloor$, with equality for $\mathbf{r}+\mathbf{r}$.

True for $r=2$ (Rautenbach [2005]).
True for disconnected posets (Keller-Young [2010]).
True for interval orders $(\operatorname{ld}(P) \leq r)$ (Keller-Young [2010]). True for posets of width 2 (this talk).

Upper Bounds

Def. The incomparability graph $G(P)$ has the elements of P as vertices, with $x y \in E(G)$ if $x \| y$ in P. Henceforth let r denote $\Delta(G(P))$.

Prop. (Rautenbach [2005]) $\operatorname{ld}(P) \leq 2 r-1$.
Pf. Every linear extension L is $(2 r-1)$-tight. If $x \| y$, then between them are at most $r-1$ elements incomp. to x + at most $r-1$ incomp. to y, so $|L(x)-L(y)| \leq 2 r-1$.

Conj. (Tanenbaum-Trenk-Fishburn [2001]) Always $\operatorname{Id}(P) \leq\left\lfloor\frac{3 r-1}{2}\right\rfloor$, with equality for $\mathbf{r}+\mathbf{r}$.

True for $r=2$ (Rautenbach [2005]).
True for disconnected posets (Keller-Young [2010]). True for interval orders $(\operatorname{ld}(P) \leq r)$ (Keller-Young [2010]). True for posets of width 2 (this talk). However, the conjecture in general is false (this talk).

Posets with Large Linear Discrepancy

Thm. Posets P exist with $\operatorname{Id}(P) \geq 2 r-o(r)$.

Posets with Large Linear Discrepancy

Thm. Posets P exist with $\operatorname{Id}(P) \geq 2 r-o(r)$.
Idea: Probabilistic construction produces a poset P consisting of n maximal elts and n minimal elts, with $r \leq n+6 \sqrt{n \ln n}$ and $\operatorname{Id}(P) \geq 2 n-2 \sqrt{n \ln n}$.

Posets with Large Linear Discrepancy

Thm. Posets P exist with $\operatorname{Id}(P) \geq 2 r-o(r)$.
Idea: Probabilistic construction produces a poset P consisting of n maximal elts and n minimal elts, with $r \leq n+6 \sqrt{n \ln n}$ and $\operatorname{Id}(P) \geq 2 n-2 \sqrt{n \ln n}$.

Pf. Minimal elts x_{1}, \ldots, x_{n}, maximal elts y_{1}, \ldots, y_{n}.
Let $\mathbb{P}\left[x_{i}<y_{j}\right]=1-p$.

Posets with Large Linear Discrepancy

Thm. Posets P exist with $\operatorname{Id}(P) \geq 2 r-o(r)$.
Idea: Probabilistic construction produces a poset P consisting of n maximal elts and n minimal elts, with $r \leq n+6 \sqrt{n \operatorname{In} n}$ and $\operatorname{Id}(P) \geq 2 n-2 \sqrt{n \operatorname{In} n}$.

Pf. Minimal elts x_{1}, \ldots, x_{n}, maximal elts y_{1}, \ldots, y_{n}. Let $\mathbb{P}\left[x_{i}<y_{j}\right]=1-p$.
For any element $v, \mathbb{E}\left[d_{G(P)}(v)\right]=(n-1)+p n$.

Posets with Large Linear Discrepancy

Thm. Posets P exist with $\operatorname{Id}(P) \geq 2 r-o(r)$.
Idea: Probabilistic construction produces a poset P consisting of n maximal elts and n minimal elts, with $r \leq n+6 \sqrt{n \ln n}$ and $\operatorname{Id}(P) \geq 2 n-2 \sqrt{n \ln n}$.

Pf. Minimal elts x_{1}, \ldots, x_{n}, maximal elts y_{1}, \ldots, y_{n}. Let $\mathbb{P}\left[x_{i}<y_{j}\right]=1-p$.
For any element $v, \mathbb{E}\left[d_{G(P)}(v)\right]=(n-1)+p n$.
Also $\mathbb{P}\left[d_{G(P)}(v)>(n-1)+2 p n\right] \rightarrow 0$ exponentially fast.

Posets with Large Linear Discrepancy

Thm. Posets P exist with $\operatorname{Id}(P) \geq 2 r-o(r)$.
Idea: Probabilistic construction produces a poset P consisting of n maximal elts and n minimal elts, with $r \leq n+6 \sqrt{n \ln n}$ and $\operatorname{Id}(P) \geq 2 n-2 \sqrt{n \ln n}$.

Pf. Minimal elts x_{1}, \ldots, x_{n}, maximal elts y_{1}, \ldots, y_{n}. Let $\mathbb{P}\left[x_{i}<y_{j}\right]=1-p$.
For any element $v, \mathbb{E}\left[d_{G(P)}(v)\right]=(n-1)+p n$.
Also $\mathbb{P}\left[d_{G(P)}(v)>(n-1)+2 p n\right] \rightarrow 0$ exponentially fast.
Multiplied by $2 n$ still $\rightarrow 0$, so $\mathbb{P}[r>n-1+2 p n] \rightarrow 0$.

Lower Bound on Id(P)

Let S and T be m-sets of minimal and maximal elts.

Lower Bound on Id(P)

Let S and T be m-sets of minimal and maximal elts.
$\mathbb{P}[S<T]=(1-p)^{m^{2}}$.

Lower Bound on Id(P)

Let S and T be m-sets of minimal and maximal elts.
$\mathbb{P}[S<T]=(1-p)^{m^{2}}$.
$\mathbb{P}[$ some S completely under some $T] \leq\binom{ n}{m}^{2}(1-p)^{m^{2}}$

Lower Bound on Id (P)

Let S and T be m-sets of minimal and maximal elts.
$\mathbb{P}[S<T]=(1-p)^{m^{2}}$.
$\mathbb{P}[$ some S completely under some $T] \leq\binom{ n}{m}^{2}(1-p)^{m^{2}}$
With $\binom{n}{m} \leq\left(\frac{n e}{m}\right)^{m}$ and $1-p \leq e^{-p}$, the probability is bounded by $\left(\frac{n e}{m}\right)^{2 m} e^{-p m^{2}}$.

Lower Bound on Id (P)

Let S and T be m-sets of minimal and maximal elts.
$\mathbb{P}[S<T]=(1-p)^{m^{2}}$.
$\mathbb{P}[$ some S completely under some $T] \leq\binom{ n}{m}^{2}(1-p)^{m^{2}}$
With $\binom{n}{m} \leq\left(\frac{n e}{m}\right)^{m}$ and $1-p \leq e^{-p}$, the probability is bounded by $\left(\frac{n e}{m}\right)^{2 m} e^{-p m^{2}}$.
This tends to 0 when $m=\sqrt{n \ln n}$ and $p=3 \sqrt{(\ln n) / n}$.

Lower Bound on Id (P)

Let S and T be m-sets of minimal and maximal elts.
$\mathbb{P}[S<T]=(1-p)^{m^{2}}$.
$\mathbb{P}[$ some S completely under some $T] \leq\binom{ n}{m}^{2}(1-p)^{m^{2}}$
With $\binom{n}{m} \leq\left(\frac{n e}{m}\right)^{m}$ and $1-p \leq e^{-p}$, the probability is bounded by $\left(\frac{n e}{m}\right)^{2 m} e^{-p m^{2}}$.
This tends to 0 when $m=\sqrt{n \ln n}$ and $p=3 \sqrt{(\ln n) / n}$.
So, with high probability, every linear extension of the resulting P has some element among the first $\sqrt{n \ln n}$ incomparable to some element among the last $\sqrt{n \ln n}$.

Lower Bound on Id (P)

Let S and T be m-sets of minimal and maximal elts.
$\mathbb{P}[S<T]=(1-p)^{m^{2}}$.
$\mathbb{P}[$ some S completely under some $T] \leq\binom{ n}{m}^{2}(1-p)^{m^{2}}$
With $\binom{n}{m} \leq\left(\frac{n e}{m}\right)^{m}$ and $1-p \leq e^{-p}$, the probability is bounded by $\left(\frac{n e}{m}\right)^{2 m} e^{-p m^{2}}$.
This tends to 0 when $m=\sqrt{n \ln n}$ and $p=3 \sqrt{(\ln n) / n}$.
So, with high probability, every linear extension of the resulting P has some element among the first $\sqrt{n \ln n}$ incomparable to some element among the last $\sqrt{n \operatorname{In} n}$.
W.h.p., $r \leq n+6 \sqrt{n \ln n}$ and $\operatorname{Id}(P) \geq 2 n-2 \sqrt{n \ln n}$, so in this model almost always $\operatorname{Id}(P) \geq 2 r-O(\sqrt{r \ln r})$.

Posets of Width 2

Thm. If P has width 2 , then $\operatorname{Id}(P) \leq\left\lfloor\frac{3 r-1}{2}\right\rfloor$.

Posets of Width 2

Thm. If P has width 2 , then $\operatorname{Id}(P) \leq\left\lfloor\frac{3 r-1}{2}\right\rfloor$.
Pf. Let $I(x)=\{y \in P: y \| x\}$.

Posets of Width 2

Thm. If P has width 2 , then $\operatorname{Id}(P) \leq\left\lfloor\frac{3 r-1}{2}\right\rfloor$.
Pf. Let $I(x)=\{y \in P: y \| x\}$.
We may assume $I(z) \neq \varnothing$ for all z [otherwise, $r(P)=r(P-z)$ and $\operatorname{Id}(P)=\operatorname{Id}(P-z)$].

Posets of Width 2

Thm. If P has width 2 , then $\operatorname{Id}(P) \leq\left\lfloor\frac{3 r-1}{2}\right\rfloor$.
Pf. Let $I(x)=\{y \in P: y \| x\}$.
We may assume $I(z) \neq \varnothing$ for all z
[otherwise, $r(P)=r(P-z)$ and $\operatorname{Id}(P)=\operatorname{Id}(P-z)$].
Dilworth's Theorem $\Rightarrow P$ is covered by chains $C_{0} \& C_{1}$.

Posets of Width 2

Thm. If P has width 2 , then $\operatorname{Id}(P) \leq\left\lfloor\frac{3 r-1}{2}\right\rfloor$.
Pf. Let $I(x)=\{y \in P: y \| x\}$.
We may assume $I(z) \neq \varnothing$ for all z
[otherwise, $r(P)=r(P-z)$ and $\operatorname{Id}(P)=\operatorname{Id}(P-z)$].
Dilworth's Theorem $\Rightarrow P$ is covered by chains $C_{0} \& C_{1}$.

$I(z)$ is an interval on the chain C_{k} not containing z.

Posets of Width 2

Thm. If P has width 2 , then $\operatorname{Id}(P) \leq\left\lfloor\frac{3 r-1}{2}\right\rfloor$.
Pf. Let $I(x)=\{y \in P: y \| x\}$.
We may assume $I(z) \neq \varnothing$ for all z
[otherwise, $r(P)=r(P-z)$ and $\operatorname{Id}(P)=\operatorname{Id}(P-z)$].
Dilworth's Theorem $\Rightarrow P$ is covered by chains $C_{0} \& C_{1}$.

$I(z)$ is an interval on the chain C_{k} not containing z.
Use these intervals to define the linear extension.

Construction of the Linear Extension

Define a_{j} and b_{j} by $I\left(y_{j}\right)=\left\{x_{a_{j}}, \ldots, x_{b_{j}}\right\}$.

Construction of the Linear Extension

Define a_{j} and b_{j} by $I\left(y_{j}\right)=\left\{x_{a_{j}}, \ldots, x_{b_{j}}\right\}$.

- $a_{1} \leq \cdots \leq a_{q}$ and $b_{1} \leq \cdots \leq b_{q}$

Construction of the Linear Extension

Define a_{j} and b_{j} by $I\left(y_{j}\right)=\left\{x_{a_{j}}, \ldots, x_{b_{j}}\right\}$.

- $a_{1} \leq \cdots \leq a_{q}$ and $b_{1} \leq \cdots \leq b_{q}$
$\therefore \frac{a_{j+1}+b_{j+1}}{2} \geq \frac{a_{j}+b_{j}}{2}$ for $1 \leq j<q$.

Construction of the Linear Extension

Define a_{j} and b_{j} by $I\left(y_{j}\right)=\left\{x_{a_{j}}, \ldots, x_{b_{j}}\right\}$.

- $a_{1} \leq \cdots \leq a_{q}$ and $b_{1} \leq \cdots \leq b_{q}$
$\therefore \frac{a_{j+1}+b_{j+1}}{2} \geq \frac{a_{j}+b_{j}}{2}$ for $1 \leq j<q$.
Form a linear extension L of P by inserting y_{j} between $x_{s_{j}}$ and $x_{1+s_{j}}$ on C_{0}, where $s_{j}=\left\lfloor\frac{a_{j}+b_{j}}{2}\right\rfloor$.

Construction of the Linear Extension

Define a_{j} and b_{j} by $I\left(y_{j}\right)=\left\{x_{a_{j}}, \ldots, x_{b_{j}}\right\}$.

- $a_{1} \leq \cdots \leq a_{q}$ and $b_{1} \leq \cdots \leq b_{q}$
$\therefore \frac{a_{j+1}+b_{j+1}}{2} \geq \frac{a_{j}+b_{j}}{2}$ for $1 \leq j<q$.
Form a linear extension L of P by inserting y_{j} between $x_{s_{j}}$ and $x_{1+s_{j}}$ on C_{0}, where $s_{j}=\left\lfloor\frac{a_{j}+b_{j}}{2}\right\rfloor$.
It remains to show that if $x_{i} \| y_{j}$, then at most $\frac{3 r-1}{2}-1$ elements lie between them on L.

Analysis of Tightness

Fix $x_{i} \| y_{j}$. Let m_{k} be the number of elements of C_{k} between x_{i} and y_{j} on L; we want $m_{0}+m_{1} \leq\left\lfloor\frac{3 r-1}{2}\right\rfloor-1$.

Analysis of Tightness

Fix $x_{i} \| y_{j}$. Let m_{k} be the number of elements of C_{k} between x_{i} and y_{j} on L; we want $m_{0}+m_{1} \leq\left\lfloor\frac{3 r-1}{2}\right\rfloor-1$.

Since $x_{i} \| y_{j}$, every element of C_{1} between y_{j} and x_{i} is incomparable to x_{i}, as is y_{j}; hence $m_{1} \leq r-1$.

Analysis of Tightness

Fix $x_{i} \| y_{j}$. Let m_{k} be the number of elements of C_{k} between x_{i} and y_{j} on L; we want $m_{0}+m_{1} \leq\left\lfloor\frac{3 r-1}{2}\right\rfloor-1$.

Since $x_{i} \| y_{j}$, every element of C_{1} between y_{j} and x_{i} is incomparable to x_{i}, as is y_{j}; hence $m_{1} \leq r-1$.
Since $x_{i} \in I\left(y_{j}\right)$, the placement of $y_{j} j$ just above $x_{s_{j}}$ within C_{0} guarantees $m_{0} \leq\left\lfloor\frac{b_{j}-a_{j}}{2}\right\rfloor$.

Analysis of Tightness

Fix $x_{i} \| y_{j}$. Let m_{k} be the number of elements of C_{k} between x_{i} and y_{j} on L; we want $m_{0}+m_{1} \leq\left\lfloor\frac{3 r-1}{2}\right\rfloor-1$.

Since $x_{i} \| y_{j}$, every element of C_{1} between y_{j} and x_{i} is incomparable to x_{i}, as is y_{j}; hence $m_{1} \leq r-1$.
Since $x_{i} \in I\left(y_{j}\right)$, the placement of y_{j} just above $x_{S_{j}}$ within C_{0} guarantees $m_{0} \leq\left\lfloor\frac{b_{j}-a_{j}}{2}\right\rfloor$. Since $b_{j}-a_{j} \leq r-1$,

$$
m_{0}+m_{1} \leq\left\lfloor\frac{b_{j}-a_{j}}{2}\right\rfloor+r-1 \leq\left\lfloor\frac{3(r-1)}{2}\right\rfloor .
$$

Complexity

Thm. (TTF [2001]) Computing Id(P) is NP-complete.

Complexity

Thm. (TTF [2001]) Computing Id(P) is NP-complete.
Def. The bandwidth $B(G)$ of a graph G is the least t such that $V(G)$ has a numbering v_{1}, \ldots, v_{n} in which labels of adjacent vertices differ by at most t.

Complexity

Thm. (TTF [2001]) Computing Id(P) is NP-complete.
Def. The bandwidth $B(G)$ of a graph G is the least t such that $V(G)$ has a numbering v_{1}, \ldots, v_{n} in which labels of adjacent vertices differ by at most t.

Every linear extension gives a vertex ordering for $G(P)$. Thus $\operatorname{ld}(P) \geq B(G(P))$, but could $B(G(P))$ be smaller using an ordering not arising from a linear extension?

Complexity

Thm. (TTF [2001]) Computing Id(P) is NP-complete.
Def. The bandwidth $B(G)$ of a graph G is the least t such that $V(G)$ has a numbering v_{1}, \ldots, v_{n} in which labels of adjacent vertices differ by at most t.

Every linear extension gives a vertex ordering for $G(P)$. Thus $\operatorname{ld}(P) \geq B(G(P))$, but could $B(G(P))$ be smaller using an ordering not arising from a linear extension?

Thm. (FTT [2001]) $\operatorname{ld}(P)=B(G(P))$.

Complexity

Thm. (TTF [2001]) Computing Id (P) is NP-complete.
Def. The bandwidth $B(G)$ of a graph G is the least t such that $V(G)$ has a numbering v_{1}, \ldots, v_{n} in which labels of adjacent vertices differ by at most t.

Every linear extension gives a vertex ordering for $G(P)$. Thus $\operatorname{ld}(P) \geq B(G(P))$, but could $B(G(P))$ be smaller using an ordering not arising from a linear extension?

Thm. (FTT [2001]) $\operatorname{Id}(P)=B(G(P))$.
(Brightwell [unpub.] gave another proof.)

Complexity

Thm. (TTF [2001]) Computing Id (P) is NP-complete.
Def. The bandwidth $B(G)$ of a graph G is the least t such that $V(G)$ has a numbering v_{1}, \ldots, v_{n} in which labels of adjacent vertices differ by at most t.

Every linear extension gives a vertex ordering for $G(P)$. Thus $\operatorname{ld}(P) \geq B(G(P))$, but could $B(G(P))$ be smaller using an ordering not arising from a linear extension?

Thm. (FTT [2001]) $\operatorname{ld}(P)=B(G(P))$.
(Brightwell [unpub.] gave another proof.)
But, approximation is easy. Take any linear extension!

Complexity

Thm. (TTF [2001]) Computing Id (P) is NP-complete.
Def. The bandwidth $B(G)$ of a graph G is the least t such that $V(G)$ has a numbering v_{1}, \ldots, v_{n} in which labels of adjacent vertices differ by at most t.

Every linear extension gives a vertex ordering for $G(P)$. Thus $\operatorname{ld}(P) \geq B(G(P))$, but could $B(G(P))$ be smaller using an ordering not arising from a linear extension?

Thm. (FTT [2001]) $\operatorname{ld}(P)=B(G(P))$.
(Brightwell [unpub.] gave another proof.)
But, approximation is easy. Take any linear extension!
Thm. If L is any linear extension of P, then $t(L) \leq 3 \operatorname{ld}(P)$, with inequality infinitely often.

Sharpness example (Rautenbach [2005])

Construct P with linear extensions L and L^{\prime} such that $t(L)=3 t\left(L^{\prime}\right)$.

Sharpness example (Rautenbach [2005])

Construct P with linear extensions L and L^{\prime} such that $t(L)=3 t\left(L^{\prime}\right)$.
Take $|P|=2 k+2$ with $k \equiv 1 \bmod 3$; put u below the top half and v above the bottom half of a $2 k$-chain.

Sharpness example (Rautenbach [2005])

Construct P with linear extensions L and L^{\prime} such that $t(L)=3 t\left(L^{\prime}\right)$.
Take $|P|=2 k+2$ with $k \equiv 1 \bmod 3$; put u below the top half and v above the bottom half of a $2 k$-chain.

$L \quad u<$ chain $<v$
$(2 k+1)$-tight
$L^{\prime} \quad \frac{2 k+1}{3}<u<\frac{2 k-2}{3}<v<\frac{2 k+1}{3}$
$\frac{2 k+1}{3}$-tight

The Bound

Fix an extension L of P, with $x \| y$ and $t=L(y)-L(x)$.

The Bound

Fix an extension L of P, with $x \| y$ and $t=L(y)-L(x)$.

$$
L: \quad A<\frac{x<B<y}{P^{\prime}}<C
$$

The Bound

Fix an extension L of P, with $x \| y$ and $t=L(y)-L(x)$.

$$
L: \quad A<\frac{x<B<y}{P^{\prime}}<C
$$

Let $t^{\prime}=\operatorname{ld}\left(P^{\prime}\right)$, with L^{\prime} a t^{\prime}-tight linear extension of P^{\prime}. Note that $P^{\prime} \subseteq P$ implies $\operatorname{Id}\left(P^{\prime}\right) \leq \operatorname{Id}(P)$, so $t^{\prime} \leq \operatorname{Id}(P)$.

The Bound

Fix an extension L of P, with $x \| y$ and $t=L(y)-L(x)$.

$$
L: \quad A<\frac{x<B<y}{P^{\prime}}<C
$$

Let $t^{\prime}=\operatorname{ld}\left(P^{\prime}\right)$, with L^{\prime} a t^{\prime}-tight linear extension of P^{\prime}. Note that $P^{\prime} \subseteq P$ implies $\operatorname{Id}\left(P^{\prime}\right) \leq \operatorname{Id}(P)$, so $t^{\prime} \leq \operatorname{Id}(P)$.

Elements below x on L^{\prime} are in $I(x)$; above y are in $I(y)$.

The Bound

Fix an extension L of P, with $x \| y$ and $t=L(y)-L(x)$.

$$
L: \quad A<\frac{x<B<y}{P^{\prime}}<C
$$

Let $t^{\prime}=\operatorname{ld}\left(P^{\prime}\right)$, with L^{\prime} a t^{\prime}-tight linear extension of P^{\prime}. Note that $P^{\prime} \subseteq P$ implies $\operatorname{Id}\left(P^{\prime}\right) \leq \operatorname{Id}(P)$, so $t^{\prime} \leq \operatorname{Id}(P)$.

Elements below x on L^{\prime} are in $I(x)$; above y are in $I(y)$.
Either $S_{0}<y<S_{1}<x<S_{2}$ on L^{\prime}
or $S_{0}<x<S_{1}<y<S_{2}$ on L^{\prime}.

The Bound

Fix an extension L of P, with $x \| y$ and $t=L(y)-L(x)$.

$$
L: \quad A<\frac{x<B<y}{P^{\prime}}<C
$$

Let $t^{\prime}=\operatorname{ld}\left(P^{\prime}\right)$, with L^{\prime} a t^{\prime}-tight linear extension of P^{\prime}. Note that $P^{\prime} \subseteq P$ implies $\operatorname{Id}\left(P^{\prime}\right) \leq \operatorname{Id}(P)$, so $t^{\prime} \leq \operatorname{Id}(P)$.

Elements below x on L^{\prime} are in $I(x)$; above y are in $I(y)$.
Either $S_{0}<y<S_{1}<x<S_{2}$ on L^{\prime}
or $S_{0}<x<S_{1}<y<S_{2}$ on L^{\prime}.
In either case, $t^{\prime} \geq\left|S_{0}\right|, t^{\prime} \geq\left|S_{2}\right|$, and $t^{\prime} \geq\left|S_{1}\right|+1$.

The Bound

Fix an extension L of P, with $x \| y$ and $t=L(y)-L(x)$.

$$
L: \quad A<\frac{x<B<y}{P^{\prime}}<C
$$

Let $t^{\prime}=\operatorname{ld}\left(P^{\prime}\right)$, with L^{\prime} a t^{\prime}-tight linear extension of P^{\prime}. Note that $P^{\prime} \subseteq P$ implies $\operatorname{Id}\left(P^{\prime}\right) \leq \operatorname{Id}(P)$, so $t^{\prime} \leq \operatorname{Id}(P)$.

Elements below x on L^{\prime} are in $I(x)$; above y are in $I(y)$.
Either $S_{0}<y<S_{1}<x<S_{2}$ on L^{\prime} or $S_{0}<x<S_{1}<y<S_{2}$ on L^{\prime}.

In either case, $t^{\prime} \geq\left|S_{0}\right|, t^{\prime} \geq\left|S_{2}\right|$, and $t^{\prime} \geq\left|S_{1}\right|+1$.
$\therefore t=\left|P^{\prime}\right|-1=\left|S_{0}\right|+\left|S_{1}\right|+\left|S_{2}\right|+1 \leq 3 t^{\prime} \leq 3 \mid d(P)$.

Products of Chains

Thm. (TTF [2001]) $\operatorname{ld}\left(\mathbf{2}^{n}\right)=2^{n}-3 \cdot 2^{n / 2}$ for even n. $\operatorname{ld}\left(\mathbf{2}^{n}\right)=2^{n}-2^{(n+1) / 2}-1$ for odd n.

Products of Chains

Thm. (TTF [2001]) $\operatorname{ld}\left(\mathbf{2}^{n}\right)=2^{n}-3 \cdot 2^{n / 2}$ for even n. $\operatorname{ld}\left(2^{n}\right)=2^{n}-2^{(n+1) / 2}-1$ for odd n.

Thm. (Hong-Hyun-Kim-Kim [2005]) Id $(\mathbf{m} \times \mathbf{n})=\left\lceil\frac{m n}{2}\right\rceil-2$.

Products of Chains

Thm. (TTF [2001]) $\operatorname{Id}\left(\mathbf{2}^{n}\right)=2^{n}-3 \cdot 2^{n / 2}$ for even n.

$$
\operatorname{ld}\left(\mathbf{2}^{n}\right)=2^{n}-2^{(n+1) / 2}-1 \text { for odd } n .
$$

Thm. (Hong-Hyun-Kim-Kim [2005]) Id $(\mathbf{m} \times \mathbf{n})=\left\lceil\frac{m n}{2}\right\rceil-2$.
General idea:

Products of Chains

Thm. (TTF [2001]) $\operatorname{Id}\left(\mathbf{2}^{n}\right)=2^{n}-3 \cdot 2^{n / 2}$ for even n.

$$
\operatorname{ld}\left(\mathbf{2}^{n}\right)=2^{n}-2^{(n+1) / 2}-1 \text { for odd } n .
$$

Thm. (Hong-Hyun-Kim-Kim [2005]) Id $(\mathbf{m} \times \mathbf{n})=\left\lceil\frac{m n}{2}\right\rceil-2$.
General idea:

Thm. (Choi [2008], Kim-Cheong [2008])
$\operatorname{ld}\left(\mathbf{k}^{3}\right)=\frac{3}{4} k^{3}-\frac{1}{2} k^{2}-1$ when k is even.

Products of Chains

Thm. (TTF [2001]) $\operatorname{ld}\left(\mathbf{2}^{n}\right)=2^{n}-3 \cdot 2^{n / 2}$ for even n.

$$
\operatorname{ld}\left(\mathbf{2}^{n}\right)=2^{n}-2^{(n+1) / 2}-1 \text { for odd } n .
$$

Thm. (Hong-Hyun-Kim-Kim [2005]) Id $(\mathbf{m} \times \mathbf{n})=\left\lceil\frac{m n}{2}\right\rceil-2$.
General idea:

Thm. (Choi [2008], Kim-Cheong [2008])
$\operatorname{Id}\left(\mathbf{k}^{3}\right)=\frac{3}{4} k^{3}-\frac{1}{2} k^{2}-1$ when k is even.
Thm. (Choi-West) The general upper bound $\operatorname{Id}\left(\mathbf{k}^{d}\right) \leq\left(1-2^{-d+1}\right) k^{d}+O\left(k^{d-1}\right)$ is sharp up to the lower-order term when $d=4$.

