Linear Discrepancy of Posets

Douglas B. West

Department of Mathematics University of Illinois at Urbana-Champaign west@math.uiuc.edu

slides available on DBW preprint page

Joint work with Jeong-Ok Choi and Kevin G. Milans

Tanenbaum–Trenk–Fishburn [2001]: Patients must be seen in a linear order, but "more urgent" is a poset *P*. We must treat **x** before **y** if x < y in *P*. If x || y in *P*, then x and y should be treated not long apart.

Tanenbaum–Trenk–Fishburn [2001]: Patients must be seen in a linear order, but "more urgent" is a poset *P*. We must treat **x** before **y** if x < y in *P*. If x||y in *P*, then x and y should be treated not long apart.

Def. A linear extension *L* of *P* is an order-preserving bijection $L: P \rightarrow [n]$. An extension *L* is *k*-tight if $|L(x) - L(y)| \le k$ whenever x||y. The linear discrepancy Id(P) is min $\{k: P \text{ has a } k\text{-tight linear extension}\}$.

Tanenbaum–Trenk–Fishburn [2001]: Patients must be seen in a linear order, but "more urgent" is a poset *P*. We must treat **x** before **y** if x < y in *P*. If x || y in *P*, then *x* and *y* should be treated not long apart.

Def. A linear extension *L* of *P* is an order-preserving bijection $L: P \rightarrow [n]$. An extension *L* is *k*-tight if $|L(x) - L(y)| \le k$ whenever x||y. The linear discrepancy Id(P) is min $\{k: P \text{ has a } k\text{-tight linear extension}\}$.

When P is a chain, Id(P) = 0.

Tanenbaum–Trenk–Fishburn [2001]: Patients must be seen in a linear order, but "more urgent" is a poset *P*. We must treat **x** before **y** if x < y in *P*. If x||y in *P*, then x and y should be treated not long apart.

Def. A linear extension *L* of *P* is an order-preserving bijection $L: P \rightarrow [n]$. An extension *L* is *k*-tight if $|L(x) - L(y)| \le k$ whenever x||y. The linear discrepancy Id(P) is min $\{k: P \text{ has a } k\text{-tight linear extension}\}$.

When P is a chain, Id(P) = 0.

When P is an antichain, Id(P) = |P| - 1.

Tanenbaum–Trenk–Fishburn [2001]: Patients must be seen in a linear order, but "more urgent" is a poset *P*. We must treat **x** before **y** if x < y in *P*. If x||y in *P*, then x and y should be treated not long apart.

Def. A linear extension *L* of *P* is an order-preserving bijection $L: P \rightarrow [n]$. An extension *L* is *k*-tight if $|L(x) - L(y)| \le k$ whenever x||y. The linear discrepancy Id(P) is min $\{k: P \text{ has a } k\text{-tight linear extension}\}$.

When P is a chain, Id(P) = 0.

When P is an antichain, Id(P) = |P| - 1.

More generally, $Id(P) \ge width(P) - 1$.

Ex. r + **r**; two disjoint *r*-element chains.

Ex. r + **r**; two disjoint *r*-element chains.

To get tightness below 2r - 1, top and bottom of extension must come from same chain. For the other chain, want to get bottom high and top low.

Ex. $\mathbf{r} + \mathbf{r}$; two disjoint *r*-element chains.

To get tightness below 2r - 1, top and bottom of extension must come from same chain. For the other chain, want to get bottom high and top low.

 $L = \mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_{r-1}, \mathbf{y}_r, \dots, \mathbf{x}_{r-1}, \mathbf{x}_r$

Ex. $\mathbf{r} + \mathbf{r}$; two disjoint *r*-element chains.

To get tightness below 2r - 1, top and bottom of extension must come from same chain. For the other chain, want to get bottom high and top low.

$$L = \mathbf{x}_1, \mathbf{x}_2, \dots, \underline{\mathbf{y}_1, \mathbf{y}_2, \dots, \mathbf{y}_{r-1}, \mathbf{y}_r}, \dots, \mathbf{x}_{r-1}, \mathbf{x}_r$$

Thus $\operatorname{Id}(\mathbf{r} + \mathbf{r}) = \lfloor \frac{3r-1}{2} \rfloor$.

Ex. r + **r**; two disjoint *r*-element chains.

To get tightness below 2r - 1, top and bottom of extension must come from same chain. For the other chain, want to get bottom high and top low.

$$L = \mathbf{x}_{1}, x_{2}, \dots, y_{1}, y_{2}, \dots, y_{r-1}, \mathbf{y}_{r}, \dots, x_{r-1}, \mathbf{x}_{r}$$

Thus $\operatorname{Id}(\mathbf{r} + \mathbf{r}) = \lfloor \frac{3r-1}{2} \rfloor$.

• In this example, each element is incomparable to exactly *r* other elements.

Def. The incomparability graph G(P) has the elements of P as vertices, with $xy \in E(G)$ if x || y in P. Henceforth let r denote $\Delta(G(P))$.

Def. The incomparability graph G(P) has the elements of P as vertices, with $xy \in E(G)$ if x || y in P. Henceforth let r denote $\Delta(G(P))$.

Prop. (Rautenbach [2005]) $Id(P) \le 2r - 1$.

Def. The incomparability graph G(P) has the elements of P as vertices, with $xy \in E(G)$ if x || y in P. Henceforth let r denote $\Delta(G(P))$.

Prop. (Rautenbach [2005]) $Id(P) \le 2r - 1$.

Pf. Every linear extension *L* is (2r-1)-tight. If x || y, then between them are at most r - 1 elements incomp. to x + at most r - 1 incomp. to y, so $|L(x) - L(y)| \le 2r - 1$. ■

Def. The incomparability graph G(P) has the elements of P as vertices, with $xy \in E(G)$ if x || y in P. Henceforth let r denote $\Delta(G(P))$.

Prop. (Rautenbach [2005]) $Id(P) \le 2r - 1$.

Pf. Every linear extension *L* is (2r-1)-tight. If x||y, then between them are at most *r* − 1 elements incomp. to *x* + at most *r* − 1 incomp. to *y*, so $|L(x) - L(y)| \le 2r - 1$.

Conj. (Tanenbaum-Trenk-Fishburn [2001]) Always $Id(P) \le \lfloor \frac{3r-1}{2} \rfloor$, with equality for $\mathbf{r} + \mathbf{r}$.

Def. The incomparability graph G(P) has the elements of P as vertices, with $xy \in E(G)$ if x || y in P. Henceforth let r denote $\Delta(G(P))$.

Prop. (Rautenbach [2005]) $Id(P) \le 2r - 1$.

Pf. Every linear extension *L* is (2r-1)-tight. If x||y, then between them are at most r - 1 elements incomp. to x + at most r - 1 incomp. to y, so $|L(x) - L(y)| \le 2r - 1$. ■

Conj. (Tanenbaum-Trenk-Fishburn [2001]) Always $Id(P) \le \lfloor \frac{3r-1}{2} \rfloor$, with equality for $\mathbf{r} + \mathbf{r}$.

True for r = 2 (Rautenbach [2005]). True for disconnected posets (Keller-Young [2010]). True for interval orders (Id(P) $\leq r$) (Keller-Young [2010]). True for posets of width 2 (this talk).

Def. The incomparability graph G(P) has the elements of P as vertices, with $xy \in E(G)$ if x || y in P. Henceforth let r denote $\Delta(G(P))$.

Prop. (Rautenbach [2005]) $Id(P) \le 2r - 1$.

Pf. Every linear extension *L* is (2r-1)-tight. If x||y, then between them are at most r - 1 elements incomp. to x + at most r - 1 incomp. to y, so $|L(x) - L(y)| \le 2r - 1$. ■

Conj. (Tanenbaum-Trenk-Fishburn [2001]) Always $Id(P) \le \lfloor \frac{3r-1}{2} \rfloor$, with equality for $\mathbf{r} + \mathbf{r}$.

True for r = 2 (Rautenbach [2005]). True for disconnected posets (Keller-Young [2010]). True for interval orders (Id(P) $\leq r$) (Keller-Young [2010]). True for posets of width 2 (this talk).

However, the conjecture in general is false (this talk).

Idea: Probabilistic construction produces a poset *P* consisting of *n* maximal elts and *n* minimal elts, with $r \le n + 6\sqrt{n \ln n}$ and $ld(P) \ge 2n - 2\sqrt{n \ln n}$.

Idea: Probabilistic construction produces a poset *P* consisting of *n* maximal elts and *n* minimal elts, with $r \le n + 6\sqrt{n \ln n}$ and $Id(P) \ge 2n - 2\sqrt{n \ln n}$.

Pf. Minimal elts x_1, \ldots, x_n , maximal elts y_1, \ldots, y_n . Let $\mathbb{P}[x_i < y_j] = 1 - p$.

Idea: Probabilistic construction produces a poset *P* consisting of *n* maximal elts and *n* minimal elts, with $r \le n + 6\sqrt{n \ln n}$ and $ld(P) \ge 2n - 2\sqrt{n \ln n}$.

Pf. Minimal elts x_1, \ldots, x_n , maximal elts y_1, \ldots, y_n . Let $\mathbb{P}[x_i < y_j] = 1 - p$.

For any element v, $\mathbb{E}[d_{G(P)}(v)] = (n-1) + pn$.

Idea: Probabilistic construction produces a poset *P* consisting of *n* maximal elts and *n* minimal elts, with $r \le n + 6\sqrt{n \ln n}$ and $ld(P) \ge 2n - 2\sqrt{n \ln n}$.

Pf. Minimal elts x_1, \ldots, x_n , maximal elts y_1, \ldots, y_n . Let $\mathbb{P}[x_i < y_j] = 1 - p$.

For any element v, $\mathbb{E}[d_{G(P)}(v)] = (n-1) + pn$.

Also $\mathbb{P}[d_{G(P)}(v) > (n-1) + 2pn] \rightarrow 0$ exponentially fast.

Idea: Probabilistic construction produces a poset *P* consisting of *n* maximal elts and *n* minimal elts, with $r \le n + 6\sqrt{n \ln n}$ and $ld(P) \ge 2n - 2\sqrt{n \ln n}$.

Pf. Minimal elts x_1, \ldots, x_n , maximal elts y_1, \ldots, y_n . Let $\mathbb{P}[x_i < y_j] = 1 - p$.

For any element v, $\mathbb{E}[d_{G(P)}(v)] = (n-1) + pn$.

Also $\mathbb{P}[d_{G(P)}(v) > (n-1) + 2pn] \rightarrow 0$ exponentially fast.

Multiplied by 2n still $\rightarrow 0$, so $\mathbb{P}[r > n - 1 + 2pn] \rightarrow 0$.

Let **S** and **T** be *m*-sets of minimal and maximal elts.

Let **S** and **T** be *m*-sets of minimal and maximal elts. $\mathbb{P}[S < T] = (1 - p)^{m^2}$.

Let *S* and *T* be *m*-sets of minimal and maximal elts. $\mathbb{P}[S < T] = (1-p)^{m^2}.$

 $\mathbb{P}[\text{some } S \text{ completely under some } T] \leq {\binom{n}{m}}^2 (1-p)^{m^2}$

Let *S* and *T* be *m*-sets of minimal and maximal elts. $\mathbb{P}[S < T] = (1 - p)^{m^2}$.

 $\mathbb{P}[\text{some } S \text{ completely under some } T] \leq {\binom{n}{m}}^2 (1-p)^{m^2}$

With $\binom{n}{m} \leq \left(\frac{ne}{m}\right)^m$ and $1 - p \leq e^{-p}$, the probability is bounded by $\left(\frac{ne}{m}\right)^{2m} e^{-pm^2}$.

Let *S* and *T* be *m*-sets of minimal and maximal elts. $\mathbb{P}[S < T] = (1 - p)^{m^2}$.

 $\mathbb{P}[\text{some } S \text{ completely under some } T] \leq {\binom{n}{m}}^2 (1-p)^{m^2}$

With $\binom{n}{m} \leq \left(\frac{ne}{m}\right)^m$ and $1 - p \leq e^{-p}$, the probability is bounded by $\left(\frac{ne}{m}\right)^{2m} e^{-pm^2}$.

This tends to 0 when $m = \sqrt{n \ln n}$ and $p = 3\sqrt{(\ln n)/n}$.

Let *S* and *T* be *m*-sets of minimal and maximal elts. $\mathbb{P}[S < T] = (1 - p)^{m^2}$.

 $\mathbb{P}[\text{some } S \text{ completely under some } T] \le {\binom{n}{m}}^2 (1-p)^{m^2}$

With $\binom{n}{m} \leq \left(\frac{ne}{m}\right)^m$ and $1 - p \leq e^{-p}$, the probability is bounded by $\left(\frac{ne}{m}\right)^{2m} e^{-pm^2}$.

This tends to 0 when $m = \sqrt{n \ln n}$ and $p = 3\sqrt{(\ln n)/n}$.

So, with high probability, every linear extension of the resulting *P* has some element among the first $\sqrt{n \ln n}$ incomparable to some element among the last $\sqrt{n \ln n}$.

Let *S* and *T* be *m*-sets of minimal and maximal elts. $\mathbb{P}[S < T] = (1 - p)^{m^2}$.

 $\mathbb{P}[\text{some } S \text{ completely under some } T] \le {\binom{n}{m}}^2 (1-p)^{m^2}$

With $\binom{n}{m} \leq \left(\frac{ne}{m}\right)^m$ and $1 - p \leq e^{-p}$, the probability is bounded by $\left(\frac{ne}{m}\right)^{2m} e^{-pm^2}$.

This tends to 0 when $m = \sqrt{n \ln n}$ and $p = 3\sqrt{(\ln n)/n}$.

So, with high probability, every linear extension of the resulting *P* has some element among the first $\sqrt{n \ln n}$ incomparable to some element among the last $\sqrt{n \ln n}$.

W.h.p., $r \le n + 6\sqrt{n \ln n}$ and $Id(P) \ge 2n - 2\sqrt{n \ln n}$, so in this model almost always $Id(P) \ge 2r - O(\sqrt{r \ln r})$.

Thm. If *P* has width 2, then $Id(P) \leq \lfloor \frac{3r-1}{2} \rfloor$.

Thm. If *P* has width 2, then $Id(P) \leq \lfloor \frac{3r-1}{2} \rfloor$.

Pf. Let $I(x) = \{y \in P : y || x\}.$

Thm. If *P* has width 2, then $Id(P) \leq \left|\frac{3r-1}{2}\right|$.

Pf. Let $I(x) = \{y \in P : y || x\}.$

We may assume $I(z) \neq \emptyset$ for all z [otherwise, r(P) = r(P - z) and Id(P) = Id(P - z)].

Thm. If *P* has width 2, then $Id(P) \leq \left|\frac{3r-1}{2}\right|$.

Pf. Let $I(x) = \{y \in P : y || x\}.$

We may assume $I(z) \neq \emptyset$ for all z [otherwise, r(P) = r(P - z) and Id(P) = Id(P - z)].

Dilworth's Theorem \Rightarrow *P* is covered by chains $C_0 \& C_1$.

Thm. If *P* has width 2, then $Id(P) \leq \left|\frac{3r-1}{2}\right|$.

Pf. Let $I(x) = \{y \in P : y || x\}.$

We may assume $I(z) \neq \emptyset$ for all z [otherwise, r(P) = r(P - z) and Id(P) = Id(P - z)].

Dilworth's Theorem \Rightarrow *P* is covered by chains $C_0 \& C_1$.

I(z) is an interval on the chain C_k not containing z.

Thm. If *P* has width 2, then $Id(P) \leq \left|\frac{3r-1}{2}\right|$.

Pf. Let $I(x) = \{y \in P : y || x\}.$

We may assume $I(z) \neq \emptyset$ for all z [otherwise, r(P) = r(P - z) and Id(P) = Id(P - z)].

Dilworth's Theorem \Rightarrow *P* is covered by chains $C_0 \& C_1$.

I(z) is an interval on the chain C_k not containing z. Use these intervals to define the linear extension.

Define a_j and b_j by $I(y_j) = \{x_{a_j}, \ldots, x_{b_j}\}$.

Define a_j and b_j by $I(y_j) = \{x_{a_j}, \ldots, x_{b_j}\}$.

• $a_1 \leq \cdots \leq a_q$ and $b_1 \leq \cdots \leq b_q$

Define a_j and b_j by $I(y_j) = \{x_{a_j}, \ldots, x_{b_j}\}$.

•
$$a_1 \leq \cdots \leq a_q$$
 and $b_1 \leq \cdots \leq b_q$

$$\therefore \frac{a_{j+1}+b_{j+1}}{2} \ge \frac{a_j+b_j}{2} \text{ for } 1 \le j < q.$$

Define a_j and b_j by $I(y_j) = \{x_{a_j}, \ldots, x_{b_j}\}$.

•
$$a_1 \leq \cdots \leq a_q$$
 and $b_1 \leq \cdots \leq b_q$

$$\therefore \frac{a_{j+1}+b_{j+1}}{2} \geq \frac{a_j+b_j}{2} \text{ for } 1 \leq j < q.$$

Form a linear extension *L* of *P* by inserting y_j between x_{s_j} and x_{1+s_j} on C_0 , where $s_j = \lfloor \frac{a_j + b_j}{2} \rfloor$.

Define a_j and b_j by $I(y_j) = \{x_{a_j}, \ldots, x_{b_j}\}$.

•
$$a_1 \leq \cdots \leq a_q$$
 and $b_1 \leq \cdots \leq b_q$

$$\therefore \frac{a_{j+1}+b_{j+1}}{2} \geq \frac{a_j+b_j}{2} \text{ for } 1 \leq j < q.$$

Form a linear extension *L* of *P* by inserting y_j between x_{s_j} and x_{1+s_j} on C_0 , where $s_j = \lfloor \frac{a_j + b_j}{2} \rfloor$.

It remains to show that if $x_i || y_j$, then at most $\frac{3r-1}{2} - 1$ elements lie between them on *L*.

Fix $x_i || y_j$. Let m_k be the number of elements of C_k between x_i and y_j on L; we want $m_0 + m_1 \le \lfloor \frac{3r-1}{2} \rfloor - 1$.

Fix $x_i || y_j$. Let m_k be the number of elements of C_k between x_i and y_j on L; we want $m_0 + m_1 \le \left|\frac{3r-1}{2}\right| - 1$.

Since $x_i || y_j$, every element of C_1 between y_j and x_i is incomparable to x_i , as is y_j ; hence $m_1 \le r - 1$.

Fix $x_i || y_j$. Let m_k be the number of elements of C_k between x_i and y_j on L; we want $m_0 + m_1 \le \lfloor \frac{3r-1}{2} \rfloor - 1$.

Since $x_i || y_j$, every element of C_1 between y_j and x_i is incomparable to x_i , as is y_j ; hence $m_1 \le r - 1$.

Since $x_i \in I(y_j)$, the placement of y_j just above x_{s_j} within C_0 guarantees $m_0 \leq \lfloor \frac{b_j - a_j}{2} \rfloor$.

Fix $x_i || y_j$. Let m_k be the number of elements of C_k between x_i and y_j on L; we want $m_0 + m_1 \le \lfloor \frac{3r-1}{2} \rfloor - 1$.

Since $x_i || y_j$, every element of C_1 between y_j and x_i is incomparable to x_i , as is y_j ; hence $m_1 \le r - 1$.

Since $x_i \in I(y_j)$, the placement of y_j just above x_{s_j} within C_0 guarantees $m_0 \le \left\lfloor \frac{b_j - a_j}{2} \right\rfloor$. Since $b_j - a_j \le r - 1$, $m_0 + m_1 \le \left\lfloor \frac{b_j - a_j}{2} \right\rfloor + r - 1 \le \left\lfloor \frac{3(r-1)}{2} \right\rfloor$.

Def. The bandwidth B(G) of a graph G is the least t such that V(G) has a numbering v_1, \ldots, v_n in which labels of adjacent vertices differ by at most t.

Def. The bandwidth B(G) of a graph G is the least t such that V(G) has a numbering v_1, \ldots, v_n in which labels of adjacent vertices differ by at most t.

Every linear extension gives a vertex ordering for G(P). Thus $Id(P) \ge B(G(P))$, but could B(G(P)) be smaller using an ordering not arising from a linear extension?

Def. The bandwidth B(G) of a graph G is the least t such that V(G) has a numbering v_1, \ldots, v_n in which labels of adjacent vertices differ by at most t.

Every linear extension gives a vertex ordering for G(P). Thus $Id(P) \ge B(G(P))$, but could B(G(P)) be smaller using an ordering not arising from a linear extension?

Thm. (FTT [2001]) Id(P) = B(G(P)).

Def. The bandwidth B(G) of a graph G is the least t such that V(G) has a numbering v_1, \ldots, v_n in which labels of adjacent vertices differ by at most t.

Every linear extension gives a vertex ordering for G(P). Thus $Id(P) \ge B(G(P))$, but could B(G(P)) be smaller using an ordering not arising from a linear extension?

Thm. (FTT [2001]) Id(P) = B(G(P)). (Brightwell [unpub.] gave another proof.)

Def. The bandwidth B(G) of a graph G is the least t such that V(G) has a numbering v_1, \ldots, v_n in which labels of adjacent vertices differ by at most t.

Every linear extension gives a vertex ordering for G(P). Thus $Id(P) \ge B(G(P))$, but could B(G(P)) be smaller using an ordering not arising from a linear extension?

Thm. (FTT [2001]) Id(P) = B(G(P)). (Brightwell [unpub.] gave another proof.)

But, approximation is easy. Take any linear extension!

Def. The bandwidth B(G) of a graph G is the least t such that V(G) has a numbering v_1, \ldots, v_n in which labels of adjacent vertices differ by at most t.

Every linear extension gives a vertex ordering for G(P). Thus $Id(P) \ge B(G(P))$, but could B(G(P)) be smaller using an ordering not arising from a linear extension?

Thm. (FTT [2001]) Id(P) = B(G(P)). (Brightwell [unpub.] gave another proof.)

But, approximation is easy. Take any linear extension!

Thm. If *L* is any linear extension of *P*, then $t(L) \leq 3Id(P)$, with inequality infinitely often.

Sharpness example (Rautenbach [2005])

Construct *P* with linear extensions *L* and *L'* such that t(L) = 3t(L').

Sharpness example (Rautenbach [2005])

Construct *P* with linear extensions *L* and *L'* such that t(L) = 3t(L').

Take |P| = 2k + 2 with $k \equiv 1 \mod 3$; put *u* below the top half and *v* above the bottom half of a 2k-chain.

Sharpness example (Rautenbach [2005])

Construct *P* with linear extensions *L* and *L'* such that t(L) = 3t(L').

Take |P| = 2k + 2 with $k \equiv 1 \mod 3$; put *u* below the top half and *v* above the bottom half of a 2k-chain.

Fix an extension *L* of *P*, with $x \parallel y$ and t = L(y) - L(x).

Fix an extension *L* of *P*, with $x \parallel y$ and t = L(y) - L(x).

$$L: \qquad A < \frac{x < B < y}{P'} < C$$

Fix an extension *L* of *P*, with $x \parallel y$ and t = L(y) - L(x).

$$L: \qquad A < \frac{x < B < y}{P'} < C$$

Let t' = Id(P'), with L' a t'-tight linear extension of P'. Note that $P' \subseteq P$ implies $Id(P') \leq Id(P)$, so $t' \leq Id(P)$.

Fix an extension *L* of *P*, with $x \parallel y$ and t = L(y) - L(x).

$$L: \qquad A < \frac{x < B < y}{P'} < C$$

Let t' = Id(P'), with L' a t'-tight linear extension of P'. Note that $P' \subseteq P$ implies $Id(P') \leq Id(P)$, so $t' \leq Id(P)$.

Elements below x on L' are in I(x); above y are in I(y).

Fix an extension *L* of *P*, with $x \parallel y$ and t = L(y) - L(x).

$$L: \qquad A < \frac{x < B < y}{P'} < C$$

Let t' = Id(P'), with L' a t'-tight linear extension of P'. Note that $P' \subseteq P$ implies $Id(P') \leq Id(P)$, so $t' \leq Id(P)$.

Elements below x on L' are in I(x); above y are in I(y).

Either $S_0 < y < S_1 < x < S_2$ on L' or $S_0 < x < S_1 < y < S_2$ on L'.

Fix an extension *L* of *P*, with $x \parallel y$ and t = L(y) - L(x).

$$L: \qquad A < \frac{x < B < y}{P'} < C$$

Let t' = Id(P'), with L' a t'-tight linear extension of P'. Note that $P' \subseteq P$ implies $Id(P') \leq Id(P)$, so $t' \leq Id(P)$.

Elements below x on L' are in I(x); above y are in I(y).

Either $S_0 < y < S_1 < x < S_2$ on L' or $S_0 < x < S_1 < y < S_2$ on L'.

In either case, $t' \ge |S_0|$, $t' \ge |S_2|$, and $t' \ge |S_1| + 1$.

Fix an extension *L* of *P*, with $x \parallel y$ and t = L(y) - L(x).

$$L: \qquad A < \frac{x < B < y}{P'} < C$$

Let t' = Id(P'), with L' a t'-tight linear extension of P'. Note that $P' \subseteq P$ implies $Id(P') \leq Id(P)$, so $t' \leq Id(P)$.

Elements below x on L' are in I(x); above y are in I(y).

Either $S_0 < y < S_1 < x < S_2$ on L' or $S_0 < x < S_1 < y < S_2$ on L'. In either case, $t' \ge |S_0|$, $t' \ge |S_2|$, and $t' \ge |S_1| + 1$.

∴ $t = |P'| - 1 = |S_0| + |S_1| + |S_2| + 1 \le 3t' \le 3 \operatorname{Id}(P)$.

Thm. (TTF [2001]) $Id(2^n) = 2^n - 3 \cdot 2^{n/2}$ for even *n*. $Id(2^n) = 2^n - 2^{(n+1)/2} - 1$ for odd *n*.

Thm. (TTF [2001]) $Id(2^n) = 2^n - 3 \cdot 2^{n/2}$ for even *n*. $Id(2^n) = 2^n - 2^{(n+1)/2} - 1$ for odd *n*.

Thm. (Hong-Hyun-Kim-Kim [2005]) $Id(\mathbf{m} \times \mathbf{n}) = \left\lceil \frac{mn}{2} \right\rceil - 2$.

Thm. (TTF [2001]) $Id(2^n) = 2^n - 3 \cdot 2^{n/2}$ for even *n*. $Id(2^n) = 2^n - 2^{(n+1)/2} - 1$ for odd *n*.

Thm. (Hong-Hyun-Kim-Kim [2005]) $Id(\mathbf{m} \times \mathbf{n}) = \left\lceil \frac{mn}{2} \right\rceil - 2$.

General idea:

?	High
Low	?

Thm. (TTF [2001]) $Id(2^n) = 2^n - 3 \cdot 2^{n/2}$ for even *n*. $Id(2^n) = 2^n - 2^{(n+1)/2} - 1$ for odd *n*.

Thm. (Hong-Hyun-Kim-Kim [2005]) $Id(\mathbf{m} \times \mathbf{n}) = \left\lceil \frac{mn}{2} \right\rceil - 2$.

General idea:

?	High
Low	?

Thm. (Choi [2008], Kim–Cheong [2008]) ld(k^3) = $\frac{3}{4}k^3 - \frac{1}{2}k^2 - 1$ when k is even.

Thm. (TTF [2001]) $Id(2^n) = 2^n - 3 \cdot 2^{n/2}$ for even *n*. $Id(2^n) = 2^n - 2^{(n+1)/2} - 1$ for odd *n*.

Thm. (Hong-Hyun-Kim-Kim [2005]) $Id(\mathbf{m} \times \mathbf{n}) = \left\lceil \frac{mn}{2} \right\rceil - 2$.

General idea:

?	High
Low	?

Thm. (Choi [2008], Kim–Cheong [2008]) ld(k^3) = $\frac{3}{4}k^3 - \frac{1}{2}k^2 - 1$ when k is even.

Thm. (Choi-West) The general upper bound $ld(\mathbf{k}^d) \le (1 - 2^{-d+1})k^d + O(k^{d-1})$ is sharp up to the lower-order term when d = 4.