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Tanenbaum-Trenk-Fishburn [2001]: Patients must be
seen in a linear order, but “more urgent” is a poset P.
We must treat x before y if x <y in P. If x|ly in P, then
x and y should be treated not long apart.

Def. A linear extension L of P is an order-preserving
bijection L: P — [n]. An extension L is k-tight if

[L(x) — L(y)| < k whenever x||y. The linear discrepancy
[d(P) is min{k: P has a k-tight linear extension}.
When P is a chain, Id(P) = 0.

When P is an antichain, Id(P) = |P| — 1.

More generally, Id(P) = width(P) — 1.
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Ex. r+r; two disjoint r-element chains.

Xr Yr
Xr-1 Yr-1
X2 Y2
X1 Y1

To get tightness below 2r — 1, top and bottom of
extension must come from same chain. For the other
chain, want to get bottom high and top low.

L:XLXZ,---,y1,y2/---,Yr—lzyr,---lxr—llxr

Thus ld(r+r) = |35+ ].

e In this example, each element is incomparable to
exactly r other elements.
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let r denote A(G(P)).

Prop. (Rautenbach [2005]) Id(P) < 2r—1.

Pf. Every linear extension L is (2r—1)-tight. If x|y, then
between them are at most r — 1 elements incomp. to x
+atmostr—1incomp.toy,so |[L(x)—L(y)|<2r—-1. m

Conj. (Tanenbaum-Trenk-Fishburn [2001])

Always ld(P) < L3r2_1J, with equality for r +r.

True for r =2 (Rautenbach [2005]).

True for disconnected posets (Keller-Young [2010]).
True for interval orders (Id(P) < r) (Keller-Young [2010]).
True for posets of width 2 (this talk).

However, the conjecture in general is false (this talk).
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Posets with Large Linear Discrepancy
Thm. Posets P exist with [d(P) > 2r — o(r).
Idea: Probabilistic construction produces a poset P

consisting of n maximal elts and n minimal elts, with

r<n+6+vninnandId(P)>2n-2+vnlnn.

Pf. Minimal elts x4, ..., Xp, maximal elts yq, ..., Yn.
Let P[x;<yjl]=1-p.

For any element v, E[dgppy (V)] = (n—1) + pn.
Also P[dgppy(v) = (n—1)+2pn] — 0 exponentially fast.
Multiplied by 2n still - 0, so P[r>n—1+2pn]— 0.
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Let S and T be m-sets of minimal and maximal elts.
P[S<T]=(1-p)™.
P[ S completely under T]< (r’;)z(l —p)ym’
with () < (%)m and 1 —p < eP, the probability is
bounded by (%)zm e=pm?,
This tends to 0 when m = v/ninn and p = 3+/(Inn)/n.

So, with high probability, linear extension of the
resulting P has some element among the first vninn
incomparable to some element among the last vnlinn.

W.h.p.,r<n+6+ninnandId(P)>=2n-2vnlinn,
so in this model almost always |d(P) > 2r — O(v/rinr). m
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I(z) is an interval on the chain C¢ not containing z.

Use these intervals to define the linear extension.
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Xp Yq
b2=p-1—- Xp1 Yq-1
Co ;G
a =2 — X2 y2
X1 Y1

Define a; and b; by I(y;) = {xq;, ..., Xp; }-

e gy <---<agand by <---< by

aj+1+bj+1 aj+bj ,
s>t forl <) <q.
Form a linear extension L of P by inserting y; between

aj+bj
Xs; and X145, on Co, where s; = [ 5 ’J.

It remains to show that if x;[|y;, then at most 3r2_1 -1

elements lie between them on L.
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Xp Yq
Xp-1 Yaq-1
Co X Ci1
X2 Yij
X1 Y1

Fix xi||ly;. Let my be the number of elements of Cy
between x; and y; on L; we want mg +mj < Prz_lj -1.

Since x||ly;, every element of C; between y; and x; is
incomparable to x;, asis y;; hence m; <r —1.

Since x; € I(y;), the placement of y; just above xs; within

bi-i | e
Co guarantees mg < L’T’]’J Since bj—a; <r—1,

mo+my < |52 +r—1< |25 .
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Complexity
Thm. (TTF [2001]) Computing Id(P) is NP-complete.
Def. The bandwidth B(G) of a graph G is the least t

such that V(G) has a numbering v4, ..., Vv in which
labels of adjacent vertices differ by at most t.

Every linear extension gives a vertex ordering for G(P).
Thus |d(P) = B(G(P)), but could B(G(P)) be smaller
using an ordering not arising from a linear extension?

Thm. (FTT [2001]) Id(P) = B(G(P)).
(Brightwell [unpub.] gave another proof.)

But, approximation is easy. Take linear extension!

Thm. If L is any linear extension of P, then
t(L) < 31d(P), with inequality infinitely often.
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Sharpness example (Rautenbach [2005])

Construct P with linear extensions L and L’ such that
t(L) = 3t(L").

Take |P| = 2k + 2 with k =1 mod 3; put u below the top
half and v above the bottom half of a 2k-chain.

!
e
u
i
L u < chain <v (2k + 1)-tight
L EHlcy< 2oyl 2L tight
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The Bound
Fix an extension L of P, with x|y and t = L(y) — L(x).

L: A<x<B<y<C
——

Let t/ = Id(P’), with L” a t’-tight linear extension of P’.
Note that P’ € P implies |d(P’) < Id(P), so t’ < Id(P).

Elements x onL”areinI(x); y areinI(y).

EitherSp <y <Si<x<S,onl’
or Sp<x<S;<y<S,onl’.
In either case, t’ > |Sg|, t’ > |S>|, and t/ > |S1| + 1.

S t=|P|—=1=1So|+|[S1|+1S2]1+1 < 3t < 3ld(P).
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Products of Chains

Thm. (TTF [2001]) Id(2") = 2" —3-2"/2 for even n.
ld(2") = 2" — 2(n+1)/2 _ 1 for odd n.

Thm. (Hong-Hyun-Kim-Kim [2005]) ld(m x n) = (%] —2.

General idea:

? High

Low ?

Thm. (Choi[2008], Kim—-Cheong [2008])
ld(k®) = 2k> — 2k? — 1 when k is even.

Thm. (Choi-West) The general upper bound
ld(k9) < (1 —=2"9"1k9 + 0(k?"1) is sharp up to the
lower-order term when d = 4.
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