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seen in a linear order, but “more urgent” is a poset P.

We must treat  before y if  < y in P. If ‖y in P, then

 and y should be treated not long apart.

Def. A linear extension L of P is an order-preserving

bijection L : P→ [n]. An extension L is k-tight if

|L()− L(y)| ≤ k whenever ‖y. The linear discrepancy

ld(P) is min{k : P has a k-tight linear extension}.

When P is a chain, ld(P) = 0.

When P is an antichain, ld(P) = |P| − 1.
More generally, ld(P) ≥ width(P)− 1.
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• In this example, each element is incomparable to

exactly r other elements.
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, with equality for r+ r.

True for r = 2 (Rautenbach [2005]).

True for disconnected posets (Keller-Young [2010]).

True for interval orders (ld(P) ≤ r) (Keller-Young [2010]).

True for posets of width 2 (this talk).

However, the conjecture in general is false (this talk).
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Pf. Minimal elts 1, . . . , n, maximal elts y1, . . . , yn.

Let P[ < yj] = 1− p.
For any element , E[dG(P)()] = (n− 1) + pn.

Also P[dG(P)() > (n− 1) + 2pn]→ 0 exponentially fast.

Multiplied by 2n still → 0, so P[r > n− 1+ 2pn]→ 0.
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p

(lnn)/n.

So, with high probability, every linear extension of the

resulting P has some element among the first
p
n lnn

incomparable to some element among the last
p
n lnn.

W.h.p., r ≤ n+ 6
p
n lnn and ld(P) ≥ 2n− 2

p
n lnn,

so in this model almost always ld(P) ≥ 2r −O(
p
r ln r).
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(z) is an interval on the chain Ck not containing z.

Use these intervals to define the linear extension.
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Form a linear extension L of P by inserting yj between
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It remains to show that if ‖yj, then at most
3r−1
2
− 1

elements lie between them on L.
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Thm. (TTF [2001]) Computing ld(P) is NP-complete.

Def. The bandwidth B(G) of a graph G is the least t

such that V(G) has a numbering 1, . . . , n in which

labels of adjacent vertices differ by at most t.

Every linear extension gives a vertex ordering for G(P).

Thus ld(P) ≥ B(G(P)), but could B(G(P)) be smaller

using an ordering not arising from a linear extension?

Thm. (FTT [2001]) ld(P) = B(G(P)).

(Brightwell [unpub.] gave another proof.)

But, approximation is easy. Take any linear extension!

Thm. If L is any linear extension of P, then

t(L) ≤ 3ld(P), with inequality infinitely often.
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L  < chain <  (2k + 1)-tight

L′ 2k+1
3

<  <
2k−2
3

<  <
2k+1
3

2k+1
3

-tight
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The Bound

Fix an extension L of P, with ‖y and t = L(y)− L().

L: A <  < B < y < C

P′

Let t′ = ld(P′), with L′ a t′-tight linear extension of P′.
Note that P′ ⊆ P implies ld(P′) ≤ ld(P), so t′ ≤ ld(P).

Elements below  on L′ are in (); above y are in (y).

Either S0 < y < S1 <  < S2 on L′

or S0 <  < S1 < y < S2 on L′.

In either case, t′ ≥ |S0|, t′ ≥ |S2|, and t′ ≥ |S1|+ 1.

∴ t = |P′| − 1 = |S0|+ |S1|+ |S2|+ 1 ≤ 3t′ ≤ 3ld(P).
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Products of Chains

Thm. (TTF [2001]) ld(2n) = 2n − 3 · 2n/2 for even n.

ld(2n) = 2n − 2(n+1)/2 − 1 for odd n.

Thm. (Hong-Hyun-Kim-Kim [2005]) ld(m×n) =
 

mn

2

£

−2.

General idea:

Low

High?

?

Thm. (Choi [2008], Kim–Cheong [2008])

ld(k3) =
3

4
k3 − 1

2
k2 − 1 when k is even.

Thm. (Choi-West) The general upper bound

ld(kd) ≤ (1− 2−d+1)kd +O(kd−1) is sharp up to the

lower-order term when d = 4.
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