The Dimension of Posets with Planar Cover Graphs

Veit Wiechert

Co-Authors

William T. Trotter

Stefan Felsner

Drawing Posets

Diagram

Drawing Posets

Diagram

Cover Graph

Drawing Posets

Diagram

Cover Graph

Comparability Graph

Dimension and the Standard Example S_{n}

$R=\left\{L_{1}, \ldots, L_{k}\right\}$ is called a realizer of \mathbf{P} if

$$
\mathbf{P}=\bigcap_{L \in R} L
$$

Dimension and the Standard Example S_{n}

$R=\left\{L_{1}, \ldots, L_{k}\right\}$ is called a realizer of \mathbf{P} if

$$
\mathbf{P}=\bigcap_{L \in R} L
$$

And the dimension of \mathbf{P} is the minimum size of a realizer.

Dimension and the Standard Example S_{n}

$R=\left\{L_{1}, \ldots, L_{k}\right\}$ is called a realizer of \mathbf{P} if

$$
\mathbf{P}=\bigcap_{L \in R} L
$$

And the dimension of \mathbf{P} is the minimum size of a realizer.

Dimension and the Standard Example S_{n}

$R=\left\{L_{1}, \ldots, L_{k}\right\}$ is called a realizer of \mathbf{P} if

$$
\mathbf{P}=\bigcap_{L \in R} L
$$

And the dimension of \mathbf{P} is the minimum size of a realizer.

Dimension and the Standard Example S_{n}

$R=\left\{L_{1}, \ldots, L_{k}\right\}$ is called a realizer of \mathbf{P} if

$$
\mathbf{P}=\bigcap_{L \in R} L
$$

And the dimension of \mathbf{P} is the minimum size of a realizer.

Theorem (Baker, Fishburn, Roberts '71)

If \mathbf{P} is planar and has a zero and a one, then

$$
\operatorname{dim}(\mathbf{P}) \leq 2
$$

Theorem (Trotter, Moore '77)
If \mathbf{P} is planar and has a zero, then

$$
\operatorname{dim}(\mathbf{P}) \leq 3
$$

Kelly's example '81

Kelly's example '81

Kelly's example '81

Which Conditions bound the Dimension?

Theorem (Felsner, Li, Trotter 2010)
If \mathbf{P} has a planar cover graph and $\mathrm{h}(\mathbf{P}) \leq 2$ then

$$
\operatorname{dim}(\mathbf{P}) \leq 4
$$

Which Conditions bound the Dimension?

Theorem (Felsner, Li, Trotter 2010)
If \mathbf{P} has a planar cover graph and $\mathrm{h}(\mathbf{P}) \leq 2$ then

$$
\operatorname{dim}(\mathbf{P}) \leq 4
$$

Note: inequality is best possible since S_{4} is planar

Which Conditions bound the Dimension?

Theorem (Felsner, Li, Trotter 2010)
If \mathbf{P} has a planar cover graph and $\mathrm{h}(\mathbf{P}) \leq 2$ then

$$
\operatorname{dim}(\mathbf{P}) \leq 4
$$

Note: inequality is best possible since S_{4} is planar
Theorem (Streib, Trotter 2011)
For every \mathbf{h} there exist a constant $\mathrm{c}_{\mathbf{h}}$, s.t. if \mathbf{P} has height \mathbf{h} and a planar cover graph, then

$$
\operatorname{dim}(\mathbf{P}) \leq c_{\mathbf{h}}
$$

Boxicity and Poset Dimension

$\operatorname{box}(G):=\min k$ such that $\exists k$-box representation of G.

Boxicity and Poset Dimension

$\operatorname{box}(G):=\min k$ such that $\exists k$-box representation of G.
Theorem (Thomassen '86)
If \mathbf{G} is planar, then

$$
\operatorname{box}(\mathbf{G}) \leq 3
$$

Boxicity and Poset Dimension

$\operatorname{box}(G):=\min k$ such that $\exists k$-box representation of G.
Theorem (Thomassen '86)
If \mathbf{G} is planar, then

$$
\operatorname{box}(\mathbf{G}) \leq 3
$$

Theorem (Adiga, Bhowmick, Chandran 2010)
If G_{P} is the comparability graph of \mathbf{P}, then

$$
\operatorname{dim}(\mathbf{P}) \leq 2 \operatorname{box}\left(G_{P}\right)
$$

Boxicity and Poset Dimension

$\operatorname{box}(G):=\min k$ such that $\exists k$-box representation of G.
Theorem (Thomassen '86)
If \mathbf{G} is planar, then

$$
\operatorname{box}(\mathbf{G}) \leq 3
$$

Theorem (Adiga, Bhowmick, Chandran 2010)
If G_{P} is the comparability graph of \mathbf{P}, then

$$
\operatorname{dim}(\mathbf{P}) \leq 2 \operatorname{box}\left(G_{P}\right)
$$

Corollary
If G_{P} is planar, then

$$
\operatorname{dim}(\mathbf{P}) \leq 6
$$

Our Results

Theorem
If G_{P} is planar, then
$\operatorname{dim}(\mathbf{P}) \leq 4$

Our Results

Theorem
If G_{p} is planar, then

$$
\operatorname{dim}(\mathbf{P}) \leq 4
$$

- case $\mathrm{h}(\mathbf{P})>4: G_{P}$ can not be planar

Our Results

Theorem
If G_{p} is planar, then

$$
\operatorname{dim}(\mathbf{P}) \leq 4
$$

- case $\mathrm{h}(\mathbf{P})>$ 4: Gp can not be planar
- case $h(\mathbf{P}) \leq 2$: Apply (Felsner, Li, Trotter)

Our Results

Theorem
If G_{p} is planar, then

$$
\operatorname{dim}(\mathbf{P}) \leq 4
$$

- case $h(\mathbf{P})>4: G_{P}$ can not be planar
- case $h(\mathbf{P}) \leq 2$: Apply (Felsner, Li, Trotter)
- case $h(\mathbf{P})=3$ or 4 :

$|\operatorname{Down}(s)|=1$

$|\operatorname{Down}(s)|=1$

$$
|\operatorname{Down}(s)|=1
$$

- $G_{p^{\prime}}$ is planar

$$
|\operatorname{Down}(s)|=1
$$

- $G_{P^{\prime}}$ is planar
- $\operatorname{dim}(\mathbf{P}) \leq \operatorname{dim}\left(\mathbf{P}^{\prime}\right)$

$$
|\operatorname{Down}(s)|=1
$$

- $G_{P^{\prime}}$ is planar
- $\operatorname{dim}(\mathbf{P}) \leq \operatorname{dim}\left(\mathbf{P}^{\prime}\right)$
- similar for the case: $|\mathrm{Up}(s)|=1$

$$
|\operatorname{Down}(s)|=1
$$

- $G_{P^{\prime}}$ is planar
- $\operatorname{dim}(\mathbf{P}) \leq \operatorname{dim}\left(\mathbf{P}^{\prime}\right)$
- similar for the case: $|\mathrm{Up}(s)|=1$
- this leads to the case:

$$
|\operatorname{Down}(s)| \geq 2 \text { and }|\operatorname{Up}(s)| \geq 2 \text { for every } s \in S
$$

Diagram

Diagram

$|\operatorname{Down}(s)|=2$
$|\mathrm{Up}(s)|=3$

Comparability Graph

Diagram

$|\operatorname{Down}(s)|=2$
$|\mathrm{Up}(s)|=3$

Comparability Graph

Diagram

$|\operatorname{Down}(s)|=2$

$$
|\mathrm{Up}(s)|=3
$$

Comparability Graph

$\Rightarrow G_{\mathbf{P}}$ is not planar

Final Case

$|\operatorname{Down}(s)|=|\operatorname{Up}(s)|=2 \quad$ for every $s \in S$

Brightwell-Trotter-Theorem '96

Brightwell-Trotter-Theorem '96

$\begin{array}{ccccc}\bullet & \bullet & \bullet & \bullet & \bullet \\ 1 & 2 & 3 & 4 & 5 \\ & & P_{G} & & \end{array}$

Brightwell-Trotter-Theorem '96

Brightwell-Trotter-Theorem '96

Brightwell-Trotter-Theorem '96

$\operatorname{dim}\left(P_{G}\right) \leq 4$

Posets with Planar Comparability Graphs

Posets with Planar Comparability Graphs

we showed: $\mathbf{P} \cong \mathbf{P}^{\prime}$ where \mathbf{P}^{\prime} is subposet of \mathbf{P}_{G}

Posets with Planar Comparability Graphs

we showed: $\mathbf{P} \cong \mathbf{P}^{\prime}$ where \mathbf{P}^{\prime} is subposet of \mathbf{P}_{G}

$$
\Rightarrow \operatorname{dim}(\mathbf{P})=\operatorname{dim}\left(\mathbf{P}^{\prime}\right) \leq \operatorname{dim}\left(\mathbf{P}_{G}\right) \leq 4
$$

(BTT)

Posets with Outerplanar Cover Graphs

Posets with Outerplanar Cover Graphs

Theorem
If \mathbf{P} has an outerplanar cover graph, then

$$
\operatorname{dim}(\mathbf{P}) \leq 4
$$

Posets with Outerplanar Cover Graphs

Theorem
If \mathbf{P} has an outerplanar cover graph, then

$$
\operatorname{dim}(\mathbf{P}) \leq 4
$$

Theorem
If \mathbf{P} has an outerplanar cover graph and $\mathrm{h}(\mathbf{P}) \leq 2$, then

$$
\operatorname{dim}(\mathbf{P}) \leq 3
$$

Posets with Outerplanar Cover Graphs

Theorem
If \mathbf{P} has an outerplanar cover graph, then

$$
\operatorname{dim}(\mathbf{P}) \leq 4
$$

Theorem
If \mathbf{P} has an outerplanar cover graph and $\mathrm{h}(\mathbf{P}) \leq 2$, then

$$
\operatorname{dim}(\mathbf{P}) \leq 3
$$

Fact: Both inequalities are best possible

Outerplanar Cover Graph and $\mathrm{h}(\mathbf{P}) \leq 2$

Outerplanar Cover Graph and $\mathrm{h}(\mathbf{P}) \leq 2$

Outerplanar Cover Graph and $\mathrm{h}(\mathbf{P}) \leq 2$

Lower Bound

Lower Bound

- If $n \geq 17$ then $\operatorname{dim}\left(P_{n}\right)=4$

Lower Bound

- If $n \geq 17$ then $\operatorname{dim}\left(P_{n}\right)=4$
- applied (Erdős, Szekeres)

$$
17=4^{2}+1 \text { and } 5=2^{2}+1
$$

Open Problems

- better bounds for $\operatorname{dim}(\mathbf{P})$ when \mathbf{P} is planar and $h(\mathbf{P}) \leq k$

Open Problems

- better bounds for $\operatorname{dim}(\mathbf{P})$ when \mathbf{P} is planar and $\mathrm{h}(\mathbf{P}) \leq k$
- is it $N P$-complete to decide whether \mathbf{P} is a subposet of a poset with a planar cover graph?

Open Problems

- better bounds for $\operatorname{dim}(\mathbf{P})$ when \mathbf{P} is planar and $\mathrm{h}(\mathbf{P}) \leq k$
- is it $N P$-complete to decide whether \mathbf{P} is a subposet of a poset with a planar cover graph?
- Are there t_{n} s.t. if \mathbf{P} is planar with $\operatorname{dim}(\mathbf{P}) \geq t_{n}$ then \mathbf{P} contains S_{n} as a subposet?

Thank you for your attention

Bonusmaterial: nonplanar Poset with outerplanar Cover Graph

