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Dimension and the Standard Example Sn

R = {L1, . . . , Lk} is called a realizer of P if

P =
⋂
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dim(Sn) = n



Theorem (Baker, Fishburn, Roberts ’71)

If P is planar and has a zero and a one, then

dim(P) ≤ 2
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Theorem (Trotter, Moore ’77)

If P is planar and has a zero, then

dim(P) ≤ 3

0
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Which Conditions bound the Dimension?

Theorem (Felsner, Li, Trotter 2010)

If P has a planar cover graph and h(P) ≤ 2 then

dim(P) ≤ 4

Note: inequality is best possible since S4 is planar

Theorem (Streib, Trotter 2011)

For every h there exist a constant ch, s.t. if P has height h and a
planar cover graph, then

dim(P) ≤ ch
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Boxicity and Poset Dimension

box(G ) := min k such that ∃ k-box representation of G .

Theorem (Thomassen ’86)

If G is planar, then
box(G) ≤ 3

Theorem (Adiga, Bhowmick, Chandran 2010)

If GP is the comparability graph of P, then

dim(P) ≤ 2box(GP)

Corollary

If GP is planar, then
dim(P) ≤ 6
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Our Results

Theorem
If GP is planar, then

dim(P) ≤ 4

I case h(P) > 4: GP can not be planar

I case h(P) ≤ 2: Apply (Felsner, Li, Trotter)

I case h(P) = 3 or 4:

X
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|Down(s)| = 1

s

GP

I GP′ is planar

I dim(P) ≤ dim(P′)
I similar for the case: |Up(s)| = 1

I this leads to the case:

|Down(s)| ≥ 2 and |Up(s)| ≥ 2 for every s ∈ S
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s

Diagram

|Down(s)| = 2

|Up(s)| = 3

s

Comparability Graph

⇒ GP is not planar



Final Case

|Down(s)| = |Up(s)| = 2 for every s ∈ S



Brightwell-Trotter-Theorem ’96
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Brightwell-Trotter-Theorem ’96
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dim(PG) ≤ 4
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Posets with Planar Comparability Graphs

P G

we showed: P ∼= P′ where P′ is subposet of PG



Posets with Planar Comparability Graphs

P G

we showed: P ∼= P′ where P′ is subposet of PG

⇒ dim(P) = dim(P′) ≤ dim(PG) ≤ 4
(BTT)



Posets with Outerplanar Cover Graphs

Theorem
If P has an outerplanar cover graph, then

dim(P) ≤ 4

Theorem
If P has an outerplanar cover graph and h(P) ≤ 2, then

dim(P) ≤ 3

Fact: Both inequalities are best possible
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Outerplanar Cover Graph and h(P) ≤ 2
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Outerplanar Cover Graph and h(P) ≤ 2



Lower Bound

P4
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I If n ≥ 17 then dim(Pn) = 4

I applied (Erdős, Szekeres)
17 = 42 + 1 and 5 = 22 + 1
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Open Problems

I better bounds for dim(P) when P is planar and h(P) ≤ k

I is it NP-complete to decide whether P is a subposet of a
poset with a planar cover graph?

I Are there tn s.t. if P is planar with dim(P) ≥ tn then P
contains Sn as a subposet?
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Thank you for your attention



Bonusmaterial: nonplanar Poset with outerplanar Cover
Graph


