The Dimension of Posets with Planar Cover Graphs

Veit Wiechert

Co-Authors

William T. Trotter

Stefan Felsner

Drawing Posets

Drawing Posets

Drawing Posets

 $R = \{L_1, \dots, L_k\}$ is called a *realizer* of **P** if $\mathbf{P} = \bigcap_{L \in R} L$

$$R = \{L_1, \dots, L_k\}$$
 is called a *realizer* of **P** if $\mathbf{P} = \bigcap_{L \in R} L$

$$R = \{L_1, \dots, L_k\}$$
 is called a *realizer* of **P** if $\mathbf{P} = \bigcap_{L \in R} L$

$$R = \{L_1, \dots, L_k\}$$
 is called a *realizer* of **P** if $\mathbf{P} = \bigcap_{L \in R} L$

$$R = \{L_1, \dots, L_k\}$$
 is called a *realizer* of **P** if $\mathbf{P} = \bigcap_{L \in R} L$

Theorem (Baker, Fishburn, Roberts '71) If **P** is planar and has a zero and a one, then

$\dim(\textbf{P}) \leq 2$

Theorem (Trotter, Moore '77) If **P** is planar and has a zero, then

 $\dim(\boldsymbol{\mathsf{P}}) \leq 3$

Kelly's example '81

Kelly's example '81

Kelly's example '81

Which Conditions bound the Dimension?

Theorem (Felsner, Li, Trotter 2010) If P has a planar cover graph and $h(P) \le 2$ then $\dim(P) \le 4$ Which Conditions bound the Dimension?

Theorem (Felsner, Li, Trotter 2010) If P has a planar cover graph and $h(P) \le 2$ then $\dim(P) \le 4$

Note: inequality is best possible since S_4 is planar

Which Conditions bound the Dimension?

Theorem (Felsner, Li, Trotter 2010) If P has a planar cover graph and $h(P) \le 2$ then $\dim(P) \le 4$

Note: inequality is best possible since S_4 is planar

Theorem (Streib, Trotter 2011)

For every h there exist a constant $c_h,$ s.t. if P has height h and a planar cover graph, then

 $\dim(\mathbf{P}) \leq c_{\mathbf{h}}$

 $box(G) := \min k$ such that $\exists k$ -box representation of G.

box(G) := min k such that $\exists k$ -box representation of G. Theorem (Thomassen '86) If **G** is planar, then

 $\mathrm{box}(\boldsymbol{G}) \leq 3$

box(G) := min k such that \exists k-box representation of G. Theorem (Thomassen '86) If **G** is planar, then

 $box(\mathbf{G}) \leq 3$

Theorem (Adiga, Bhowmick, Chandran 2010) If G_P is the comparability graph of P, then

 $\dim(\mathbf{P}) \leq 2\mathrm{box}(G_{\mathbf{P}})$

box(G) := min k such that \exists k-box representation of G. Theorem (Thomassen '86) If **G** is planar, then

 $box(\mathbf{G}) \leq 3$

Theorem (Adiga, Bhowmick, Chandran 2010) If G_P is the comparability graph of P, then

 $\dim(\mathbf{P}) \leq 2\mathrm{box}(G_{\mathbf{P}})$

Corollary If $G_{\mathbf{P}}$ is planar, then

 $\dim(\textbf{P}) \leq 6$

Theorem If G_P is planar, then

 $\dim(\boldsymbol{\mathsf{P}}) \leq 4$

Theorem If G_P is planar, then

$\dim(\textbf{P}) \leq 4$

• case $h(\mathbf{P}) > 4$: $G_{\mathbf{P}}$ can not be planar

Theorem If G_P is planar, then

 $\dim(\textbf{P}) \leq 4$

• case $h(\mathbf{P}) > 4$: $G_{\mathbf{P}}$ can not be planar

• case $h(\mathbf{P}) \leq 2$: Apply (Felsner, Li, Trotter)

Theorem If G_P is planar, then

 $\dim(\textbf{P}) \leq 4$

• case $h(\mathbf{P}) > 4$: $G_{\mathbf{P}}$ can not be planar

► case h(P) ≤ 2: Apply (Felsner, Li, Trotter)

► case h(P) = 3 or 4:

 $|\mathrm{Down}(s)| = 1$

 $|\mathrm{Down}(s)| = 1$

► G_{P'} is planar

 $|\mathrm{Down}(s)| = 1$

- ► G_{P'} is planar
- ▶ dim(\mathbf{P}) ≤ dim(\mathbf{P}')

 $|\mathrm{Down}(s)| = 1$

- ▶ G_{P'} is planar
- ▶ dim(\mathbf{P}) ≤ dim(\mathbf{P}')
- similar for the case: $|\mathrm{Up}(s)| = 1$

 $|\mathrm{Down}(s)| = 1$

- ▶ G_{P'} is planar
- ▶ $\dim(\mathbf{P}) \leq \dim(\mathbf{P}')$
- similar for the case: |Up(s)| = 1
- this leads to the case:

 $|\mathrm{Down}(s)| \ge 2$ and $|\mathrm{Up}(s)| \ge 2$ for every $s \in S$

Final Case

|Down(s)| = |Up(s)| = 2 for every $s \in S$

 P_G

we showed: $\mathbf{P} \cong \mathbf{P}'$ where \mathbf{P}' is subposet of \mathbf{P}_G

we showed: $\mathbf{P} \cong \mathbf{P}'$ where \mathbf{P}' is subposet of \mathbf{P}_G

$$\Rightarrow \dim(\mathbf{P}) = \dim(\mathbf{P}') \le \dim(\mathbf{P}_G) \le 4$$
(BTT)

Theorem If **P** has an outerplanar cover graph, then

 $\dim(\textbf{P}) \leq 4$

Theorem If **P** has an outerplanar cover graph, then

 $\dim(\boldsymbol{\mathsf{P}}) \leq 4$

Theorem If **P** has an outerplanar cover graph and $h(\mathbf{P}) \leq 2$, then

 $\dim(\mathbf{P}) \leq 3$

Theorem If **P** has an outerplanar cover graph, then

 $\dim(\boldsymbol{\mathsf{P}}) \leq 4$

Theorem

If **P** has an outerplanar cover graph and $h(\mathbf{P}) \leq 2$, then

 $\dim(\mathbf{P}) \leq 3$

Fact: Both inequalities are best possible

Outerplanar Cover Graph and $h(\textbf{P}) \leq 2$

Outerplanar Cover Graph and $h(\textbf{P}) \leq 2$

Outerplanar Cover Graph and $h(\textbf{P}) \leq 2$

Lower Bound

Lower Bound

• If $n \ge 17$ then $\dim(P_n) = 4$

Lower Bound

- If $n \ge 17$ then $\dim(P_n) = 4$
- ▶ applied (Erdős, Szekeres) 17 = 4² + 1 and 5 = 2² + 1

▶ better bounds for $\dim(\mathbf{P})$ when \mathbf{P} is planar and $h(\mathbf{P}) \leq k$

Open Problems

- ▶ better bounds for $\dim(\mathbf{P})$ when \mathbf{P} is planar and $\operatorname{h}(\mathbf{P}) \leq k$
- is it NP-complete to decide whether P is a subposet of a poset with a planar cover graph?

Open Problems

- ▶ better bounds for $\dim(\mathbf{P})$ when \mathbf{P} is planar and $h(\mathbf{P}) \leq k$
- is it NP-complete to decide whether P is a subposet of a poset with a planar cover graph?
- ► Are there t_n s.t. if P is planar with dim(P) ≥ t_n then P contains S_n as a subposet?

Thank you for your attention

Bonusmaterial: nonplanar Poset with outerplanar Cover Graph

