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FF(k)

A first-fit coloring of a graph G is to color each vertex of G a
positive integer in a way such that each vertex with color i has a
neighbor assigned color j for every j = 1, . . . , i− 1 and has no
neighbor of color i. (This color set partition is called a "wall" in
the graph.)

The first-fit chromatic number, also called the Grundy number,
of a graph, is the maximum possible number used in a first-fit
coloring of the graph. This parameter is just the number of
colors needed in the worst case when applying the greedy
online coloring algorithm First-Fit on a graph.

When talking about a first-fit coloring of a family of intervals we
indeed refer to the first-fit coloring of its intersection graph. Let
FF(k) denote the largest first-fit chromatic number of an interval
graph whose maximum clique size is k.
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Lower bound

In 1990, Chrobak and Slusarek proved that
FF(k) ≥ 4k − 9 , when k ≥ 4, ...
http://people.math.gatech.edu/

~trotter/rprob.html
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Theorem 1
FF(k) ≥ 4k − 5 for any positive integer k.
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Upper bound

In 2003, Pemmaraju, Raman and Varadarajan
made a major breakthrough by showing that
FF(k) ≤ 10k and commented that their upper bound
might be improved but that the technique wouldn’t
yield a result better than 8k. Later in 2003, their
predictions were confirmed, and their technique was
refined by Brightwell, Kierstead and Trotter to obtain
an upper bound of 8k. In 2004, Narayansamy and
Babu found an even cleaner argument for this bound
that actually yields the slightly stronger result:
FF(k) ≤ 8k − 3. Howard has recently pointed out that
one can actually show that FF(k) ≤ 8k − 4 .

http://people.math.gatech.edu/
~trotter/rprob.html
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Theorem 2
FF(k) ≤ 8k − 9 for k ≥ 2.
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Asymptotic lower bound

Later in 2004, Kierstead and Trotter gave a
computer proof that FF(k) ≥ 4.99k − C. This technique
was subsequently refined to show that
FF(k) ≥ 4.99999k − C. And in 2009, D. Smith showed
that for every e > 0,FF(k) > (5− e)k , when k is
sufficiently large.

http://people.math.gatech.edu/
~trotter/rprob.html
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Asymptotic upper bound

Theorem 3
For every e > 0,FF(k) < 8k− (2− e) log3 k, when k is sufficiently
large.
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limk→∞ FF(k)/k = 5?

So as k goes to infinity, the ratio FF(k)/k tends to a
limit that is somewhere between 5 and 8. I will bet a
nice bottle of wine that 5 is the right answer.

http://people.math.gatech.edu/
~trotter/rprob.html
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We display a direct construction to establish Theorem 1.

We make some simple observations on the Column
Construction Method invented by Pemmaraju, Raman,
Varadarajan (2003) and these simple observations will lead to
Theorems 2 and 3.
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FF(1) = 1 > −1 = 4− 5
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FF(2) = 4 > 3 = 8− 5

Figure: M2
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FF(3) = 12− 5 = 7

Figure: M3
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FF(4) ≥ 16− 5 = 11

Figure: M4
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FF(5) ≥ 20− 5 = 15

Figure: M5
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FF(6) ≥ 24− 5 = 19

Figure: M6
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FF(n + 1) ≥ 4n− 1

Figure: Mn+1, n ≥ 6
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We basically follow N.S. Narayanaswamy and R. Subhash
Babu,

A note on first-fit coloring of interval graphs, Order 25 (2008) 49–53

to introduce the Column Construction Method invented by
Pemmaraju, Raman, Varadarajan (2003).
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Column Construction Method: Beginning Step

Let V be a family of intervals and let G be its intersection graph.
Assume that the clique number of G is k. Given a first-fit
coloring L of V using FF(k) colors, let us construct some
columns (buildings) row by row (floor by floor) each box (room)
of them is labelled by A ,B, or C .

Lay the Foundation Stone: Take a set of maximal cliques
Q1, . . . ,Qr of G such that ∪r

i=1Qi = V(G) and Qi lies to the left of
Qj for i < j; (This means that ∩T∈QiT, i = 1, . . . , r, are a set of
pairwise disjoint intervals and ∩T∈QiT lies to the left of ∩T∈QjT if
i < j). For each clique Qi we construct a basement for the
column corresponding to the clique, also denoted Qi. We view
the basement at column i and that at column i + 1 as neighbors
of each other at height 0.
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Column Construction Method: Inductive Procedure

For positive integer i, build the ith row after the (i− 1)th row is
finished. Suppose that column j reaches height i− 1.

I If there is a vertex in Qj receiving color i, then add one
A -box to column j at height i;

I If column j does not grow to height i with an A -box but at
least one of its neighbors at height i− 1 does so, we add a
B-box to column j at height i;

I Suppose column j does not grow to height i with either an
A -box or a B-box. Add a C -box to column j at height i if
there is an integer 0 < ` ≤ i− 1 such that the number of
A -boxes from height ` to i− 1 in column j is greater than
i−`+1

4 .
I After constructing the three kinds of boxes at height i, we

define column p and column q to be neighbors at height i if
there is no column growing to height i inbetween them (so
they can see each other at height i).
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Bounding Height

Following the proof of N.S. Narayanaswamy and R. Subhash
Babu, we have

{v : L(v) ≥ i} is covered by those cliques growing to the ith floor.

This shows that we can get upper bound of FF(k) by bounding
the maximum height of these columns. To get tighter bound, we
also choose an A -box on the FF(k)th floor and study how
many C -boxes can be above it.

24 / 35



Bounding Height

Following the proof of N.S. Narayanaswamy and R. Subhash
Babu, we have

{v : L(v) ≥ i} is covered by those cliques growing to the ith floor.

This shows that we can get upper bound of FF(k) by bounding
the maximum height of these columns. To get tighter bound, we
also choose an A -box on the FF(k)th floor and study how
many C -boxes can be above it.

24 / 35



Observation I

Since we cannot add a
C -box on the top of a
column, among the
consecutive highest h
boxes from this column
the number of A -boxes,
denoted #A, satisfy
#A < h+1

4 and hence,
considering that #A is an
integer, #A ≤ h

4 .
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Observation II

Among any lowest k
boxes in a column (from
floor 1 to floor k), the
number of #A-boxes and
the number of #C-boxes,
denoted by #A and #C
respectively, satisfy
#C ≤ 3#A, namely

#A +#C ≤ 4#A.
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Observation III
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Observation IV

Figure: h = (#A +#C) + #B ≤ 4#A + a1 + · · ·+ ap + a′1 + · · ·+ a′q ≤
4#A + h1−1

4 + · · · hp−1−1
4 +

hp

4 +
h′1−1

4 + · · · = 4#A + h
2 −

S0+S′0
4 − p+q−1

2
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h = Sp = S′q = (#A+#C)+#B ≤ 4#A+a1+· · ·+ap+a′1+· · ·+a′q ≤
4#A+ h1−1

4 + · · · hp−1−1
4 +

hp
4 +

h′1−1
4 + · · · = 4#A+ h

2−
S0+S′0

4 − p+q−1
2

h = (#A +#C) + #B ≤ 4#A + a1 + · · ·+ ap + a′1 + · · ·+ a′q ≤
4#A + (h1

4 − (h1
4 − a1)) + · · ·+ (

hp−1
4 − (

hp−1
4 − ap−1) + (

hp
4 − (

hp
4 −

ap)) + (
h′1
4 − (

h′1
4 − a′1)) + · · · = 4#A + h−S0

4 +
h−S′0

4 − (h1
4 − a1)−

· · · − (
hp−1

4 − ap−1)− (
hp
4 − ap))− (

h′1
4 − a′1)− · · · = 4#A + h

2 −
S0+S′0

4 − (h1
4 − a1)− · · · − (

hp−1
4 − ap−1)− (

hp
4 − ap)− (

h′1
4 − a′1)− · · ·

h ≤ 8#A− 2×something ≤ 8k − 2×something

Observations I and II determine the linear term 8.

General idea for yielding FF(k) ≤ h ≤ 8k − · · · : If any of p + q,
hi
4 − ai, hi

4 − ai, S0, S′0 is large, then "something" is large. If p + q
is very small, we can try the inequality ai ≤ k and get better
upper bound of h.
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Proof of Theorem 3

Figure:
h− Si = #B + (#A +#C) ≤ h−Si

4 + ( h−Si+hi+hi−1
4 − ai−1) + 4(k − ai)

30 / 35



Proof of Theorem 3, Contd.

Assume to the contrary that h > 8k − (2− e) log3 k.

We have hj
4 − aj−1 < C log3(k),

h′j
4 − a′j−1 < C log3(k),

4k − h
2 < C log3 k, S0 < C log3 k, S′0 < C log3 k.

We aim to show that

p > log3(k)− o(log3 k), q > log3(k)− o(log3 k),

hence arriving at a contradiction with h ≤ 8A− 2 p+q−1
2 − · · ·

when k is sufficiently large.
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Proof of Theorem 3, Fin.

h−Si ≤ h−Si
4 +(

h−Si+hi+hi−1
4 −ai−1)+4(k−ai)⇒ 4ai ≤ hi

4 +(
hi−1

4 −
ai−1)+(4k − h

2) +
Si
2 < C log3 k + Si−Si−1

4 + Si
2 = C log3 k + 3Si−Si−1

4

Substituting the above into hi
4 − ai < C log3(k), we have

C log3 k > hi
4 − ai >

hi
4 − C log3 k − 3Si−Si−1

16 = Si
16 −

3Si−1
16 − C log3 k

and so Si + C log3 k < 3(Si−1 + C log3 k).

This gives
k ≤ h = Sp < Sp + C log3 k < 3p(S0 + C log3 k) < 3p × 2× C log3 k.
Therefore, p > log3 k − o(log3 k). By symmetry, we have

q > log3 k − o(log3 k).
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Proof of Theorem 2: FF(k) ≤ 8k − 9

We only need to consider the case of k ≥ 4. Let m = FF(k) and
h be the height of a highest building.

Observation 1: There is a column which contains at least two
#A-boxes on its floors m− 3,m− 2,m− 1 and m.

This observation gives h ≥ m + 4 as the floors m + 1, . . . ,m + 4
of this same column will be occupied by #C-boxes.

Observation 2: h ≤ 8k− 4. In addition, h = m + 4 and h = 8k− 4
cannot hold simultaneously.
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To prove Observation 2, we make use of

h ≤ 4#A +
h
2
−

S0 + S′0
4

− p + q− 1
2

(1)

and distinguish several cases according to the values of (p, q).
We also make use of the fact that h is an integer and first

deduce weaker bound for h and then substitute it into the right
hand side of Eq. (1) to generate better upper bound of h itself.
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Better upper bound?

If we try to examine various possible cases for the boxes from
floors m− 4 (or even lower) to floor m in a high column, it should
be possible to get better bound for FF(k). But the analysis
along this line may be much more complicated and the
improvement in constant term may not be so attractive.

It is surely much more interesting to find some new
observations which allow us to improve the linear term 8.

� �!Thank You!
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