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What are Ascent
Sequences?

Definition: A sequence a1, Az, «.; Qn isan

ascent sequence if a1 = © and each

ai € [0, asclay, w.,ai-1)+1].
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What are Ascent
Sequences?

Theorem: (Bousquet-Melou, Claesson, Dukes, Kitaev ‘10)

The ascent sequences &1, &z, «., Qn are equinumerous via

Y with the unlabeled interval orders on A elements.
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Bijection W
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Enumeration via W

Theorem: (Kitaev, Remmel ‘I I)
Let Gr{bu,v,z,%) = FCijuim Euwvz%™ where €ijiim
is the number of unlabelled interval orders in canonical form
on t elements with endpoints {0,.“J§, where D&%,Jj is the

longest maximal interval, there are L minimal elements, and
m copies of the interval [ 6,0,
then 3{bu,v,z,x) = 1 + zt + (uvax+z2)E? +
(avzxrutvizx+uzix+uvzixi+z3)E3 + -
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Restricted Bijection

Ascenk Sequ@.b«ces —t Inkerval Orders
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Theorem: (Kitaey, Remmel ‘I I) The ascent sequences

0\1, 0\2.; e O\M Where QLL ?-: MQX(QI; «u;&{,wl)“l
(restricted ascent sequences) are equinumerous with
semiorders.
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Restricted Bijection

Ascenk Sequemces —t Inkerval Orders
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Theorem: (Kitaey, Remmel ‘I I) The ascent sequences

0\1; QZ, ey O\M Whel"e QLE, Z MQ\X(QI; «1«;9\{,-—»1)‘“1
(restricted ascent sequences) are equinumerous with
semiorders.
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Hereditary Semiorders

Definition: A semiorder $ is hereditary if the associated

ascent sequence A1, Az, «., &n has the property that

Y{a1, 0z, ., Q) isasemiorder for all i<.
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Near Sewiorders
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Near Sewiorders

Observation I: A interval order in cannoncial form I is

not a semiorder if and only if there are if there are
a<a €b «bsuchthatlab] [a’'b’] e 1.
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Near Sewiorders

Observation 2: A interval order in cannoncial form I is

not near semiorder if t

hereisa < o’ € b < b

such that [a,b], [a’,b’] € Iandeithera’ = b’ or

[&,b] IS

not maximal.
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Near Sewiorders

Observation 2: A interval order in cannoncial form I is

not near semiorder if t

hereisa < o’ € b < b

such that [a,b], [a’,b’] € Iandeithera’ = b’ or
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Near Sewiorders

Observation 2: A interval order in cannoncial form 1 is
not near semiorder if thereisa < a’ € b' 4 b
such that {&,b], {&',b": e Iandeithera’ = b’ or

[&,b] is not maximal.
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Near Sewiorders

Observation 2: A interval order in cannoncial form 1 is
not near semiorder if thereisa < a’ € b' 4 b
such that {&,b], {&',b": e Iandeithera’ = b’ or

[&,b] is not maximal.

)

I
|
I
I
i A




Near Sewiorders
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Near Sewiorders
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Hereditary Semiorders

Definition: For an integer x a block of size I is a
collection of intervals of the form [ %, x+i ], [ x+i+1 x+k].
If the interval [x,xﬂf’] is present, this is a closed block.
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Hereditary Semiorders

Definition: Two blocks 3. and 3; are said to have a
strong boundary between them if they share the trivial
element. The two blocks are said to share a weak boundary
if the trivial element is missing.
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Hereditary Semiorders

Theorem: (Remmel andY. ‘12+) The collection of
hereditary semiorders can be described by an list of blocks
together with a collection of strong and weak boundaries™.
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Furthermore the generating function for the number of

hereditary semiorders is:
X(EXE=2 PR E+ 4 F Xt~ 4 EX3+2EX2-Fx+1)
(1) Ex -3 F X T+LEXF~6OX3+32x2-Ox +1 )
and the number of hereditary semiorders on

I elements is approximately
3. 3704,




Hereditary Semiorders
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Hereditary Semiorders

Corollary: (Remmel andY. ‘12+) The collection

of hereditary semiorders can be described by an

list of meta-blocks™ together with a collection of
strong and weak boundaries®.

Meta-blocks




Hereditary Semiorders

Corollary: (Remmel andY. ‘12+) The collection

of hereditary semiorders can be described by an

list of meta-blocks™ together with a collection of
strong and weak boundaries”.
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Hereditary Semiorders
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Remaining Sewiorders




Open Questions
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