Ascent Sequences and Semiorders

Jeff Remmel, UCSD

Stephen J. Young, UCSD/University of Louisville

$$
\begin{aligned}
& \text { SIAM DM12 } \\
& \text { June 20, } 2012
\end{aligned}
$$

What are Ascent Sequences?
Definition: A sequence $a_{1}, a_{2}, \ldots, a_{n}$ is an ascent sequence if $a_{1}=0$ and each $a_{i} \in\left[0, \operatorname{asc}\left(a_{1}, \ldots, a_{i-1}\right)+1\right]$.
sequence: \square 0 \square O (1) \square 4) 3 24 ascents: 0 1 1 2 2 3 4 45 5

What are Ascent Sequences?

Theorem: (Bousquet-Mélou, Claesson, Dukes, Kitaev ‘IO)
The ascent sequences $a_{1}, a_{2}, \ldots, a_{n}$ are equinumerous via
ψ with the unlabeled interval orders on h elements.

Bijection Ψ
sequence: $0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1 \quad 4 \quad 3 \quad 2$

$$
\begin{aligned}
& l=0 \\
& l^{*}=0 \\
& \hline
\end{aligned}
$$

Bijection Ψ
sequence:

$$
\begin{aligned}
\ell= & 1 \\
e^{*}= & 1
\end{aligned}
$$

Bijection Ψ
$\begin{array}{ccccccccccc}\text { sequence: } & 0 & 1 & 0 & 1 & 0 & 1 & 4 & 3 & 2 & 4 \\ \begin{array}{l}\ell=1 \\ e^{*}=\end{array} & \uparrow & \uparrow & \uparrow & & & & & & & \end{array}$

3
4
5

Bijection Ψ
sequence:

$$
\begin{array}{r}
\ell=2 \\
e^{*}= \\
\hline
\end{array}
$$

Bijection Ψ
sequence:

$$
\begin{array}{r}
\ell=2 \\
e^{*}=0
\end{array}
$$

$\begin{array}{lllll}0 & 1 & 0 & 1 & 0 \\ \uparrow & \uparrow & \uparrow & \uparrow & \uparrow\end{array}$

4
5

Bijection Ψ
sequence:

$$
\begin{array}{r}
\ell=3 \\
e^{*}= \\
\hline
\end{array}
$$

Bijection Ψ
sequence:

$$
\begin{array}{r}
\ell=4 \\
e^{*}=4
\end{array}
$$

Bijection Ψ
sequence:

$$
\begin{array}{r}
\ell=4 \\
e^{*}=3
\end{array}
$$

Bijection Ψ
sequence:

$$
\begin{array}{r}
\ell=4 \\
e^{*}=2
\end{array}
$$

Bijection Ψ

Bijection Ψ

Bijection Ψ

$$
\begin{aligned}
\ell & =0 \\
\ell^{*} & =0
\end{aligned} \quad \mathscr{T}=[0,0]
$$

$$
\overline{l \longleftarrow a_{i}}
$$

$$
a_{i}=\ell+1 \quad \mathscr{T} \longleftarrow\left[a_{i}, a_{i}\right]
$$

$$
a_{i} \leq \ell^{*} \quad \ell^{*} \leftarrow a_{i} \quad \mathscr{T} \leftarrow\left[a_{i}, \ell\right]
$$

$\ell^{*}<a \leq \ell \quad l \longleftarrow \ell+1$
$a_{i} \leq b<\ell$ $[a, b+1] \leftarrow[a, b]$

$$
\ell^{*} \longleftarrow a_{i}
$$

$$
[a+1, b+1] \longleftarrow[a, b]
$$

$$
\left[a, a_{i}\right] \leftarrow[a, l]
$$

$$
\mathscr{I} \leftarrow\left[a_{i}, \ell+1\right]
$$

Enumeration via Ψ

Theorem: (Kitaev, Remmel'II)
 is the number of unlabelled interval orders in canonical form on i elements with endpoints $\{0, \ldots j\}$, where $[k j]$ is the longest maximal interval, there are L minimal elements, and m copies of the interval $[0,0]$, then $E(b, u, v, z, x)=1+z k+\left(u v z x+z^{2}\right) b^{2}+$

$$
\left(u v z x+u^{2} v^{2} z x+u z^{2} x+u v z^{2} x^{2}+z^{3}\right) e^{3}+\cdots
$$

height? width? dimension???

Restricted Bijection

 Ascent Sequences $\stackrel{\psi}{\longleftrightarrow}$ Interval Orders\cup

Restricted Ascent
Semiorders Sequences?

Theorem: (Kitaev, Remmel'II) The ascent sequences
$a_{1}, a_{2}, \ldots, a_{n}$ where $a_{i} \geq \max \left(a_{1}, \ldots, a_{i-1}\right)-1$ (restricted ascent sequences) are equinumerous with semiorders.

Restricted Bijection

0101012

01010

Restricted Bijection

 Ascent Sequences $\longleftrightarrow \psi$ Inkerval Orders\cup

Semiorders

Theorem: (Kitaev, Remmel'II) The ascent sequences
$a_{1}, a_{2}, \ldots, a_{n}$ where $a_{i} \geq \max \left(a_{1}, \ldots, a_{i-1}\right)-1$ (restricted ascent sequences) are equinumerous with semiorders.

Restricted Bijection

0101202

Restricted Bijection

0101202

0101202

Restricted Bijection

0101202

0101202

Restricted Bijection

0101202

Hereditary Semiorders
Definition: A semiorder S is hereditary if the associated ascent sequence $a_{1}, a_{2}, \ldots, a_{n}$ has the property that $\Psi\left(a_{1}, a_{2}, \ldots, a_{k}\right)$ is a semiorder for all K.
collapse?

Near Semiorders

Near Semiorders

Observation I: A interval order in cannoncial form I is not a semiorder if and only if there are if there are
$a<a^{\prime} \leq b^{\prime}<b$ such that $[a, b],\left[a^{\prime}, b^{\prime}\right] \in I$.

Near Semiorders

Observation 2: A interval order in cannoncial form I is not near semiorder if there is $a<a^{\prime} \leq b^{\prime}<b$ such that $[a, b],\left[a^{\prime}, b^{\prime}\right] \in I$ and either $a^{\prime}=b^{\prime}$ or $[a, b]$ is not maximal.

Bijection Ψ

$\mathrm{a}_{0}=0 \quad \begin{array}{ll}\ell & =0 \\ e^{*} & =0\end{array}$	$\mathscr{T}=[0,0]$
$a_{i}=\ell+1$ $l \begin{aligned} & \text { a }\end{aligned}$ $\ell^{*} \leftarrow a_{i}$	$\mathscr{J} \leftarrow\left[\mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{i}}\right]$
$a_{i} \leq \ell^{*} \quad \ell^{*} \leftarrow a_{i}$	$\mathscr{T} \leftarrow\left[\mathrm{a}_{\mathrm{i}}, \ell\right]$
$\begin{aligned} & \ell^{*}<a_{i} \leq \ell \quad \ell \longleftarrow \ell+1 \\ & \ell^{*} \longleftarrow a_{i} \end{aligned}$	$\begin{array}{r} a_{i} \leq b<l^{*} \\ {[a, b+1]} \\ {[a+1, b+1]} \\ {[a, b][a, b]} \\ {\left[a, a_{i}\right]} \\ \mathscr{I} \leftarrow\left[a, l^{*}\right] \\ \leftarrow\left[a_{i}, l+1\right] \end{array}$

Near Semiorders

Observation 2: A interval order in cannoncial form I is not near semiorder if there is $a<a^{\prime} \leq b^{\prime}<b$ such that $[a, b],\left[a^{\prime}, b^{\prime}\right] \in I$ and either $a^{\prime}=b^{\prime}$ or $[a, b]$ is not maximal.

Bijection Ψ

$\mathrm{a}_{0}=0 \quad \begin{array}{ll}\ell & =0 \\ e^{*} & =0\end{array}$	$\mathscr{T}=[0,0]$
$a_{i}=\ell+1$ $l \begin{aligned} & \text { a }\end{aligned}$ $\ell^{*} \leftarrow a_{i}$	$\mathscr{J} \leftarrow\left[\mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{i}}\right]$
$a_{i} \leq \ell^{*} \quad \ell^{*} \leftarrow a_{i}$	$\mathscr{T} \leftarrow\left[\mathrm{a}_{\mathrm{i}}, \ell\right]$
$\begin{aligned} & \ell^{*}<a_{i} \leq \ell \quad \ell \longleftarrow \ell+1 \\ & \ell^{*} \longleftarrow a_{i} \end{aligned}$	$\begin{array}{r} a_{i} \leq b<l^{*} \\ {[a, b+1]} \\ {[a+1, b+1]} \\ {[a, b][a, b]} \\ {\left[a, a_{i}\right]} \\ \mathscr{I} \leftarrow\left[a, l^{*}\right] \\ \leftarrow\left[a_{i}, l+1\right] \end{array}$

Near Semiorders

Observation 2: A interval order in cannoncial form I is not near semiorder if there is $a<a^{\prime} \leq b^{\prime}<b$ such that $[a, b],\left[a^{\prime}, b^{\prime}\right] \in I$ and either $a^{\prime}=b^{\prime}$ or $[a, b]$ is not maximal.

Near Semiorders

Observation 2: A interval order in cannoncial form I is not near semiorder if there is $a<a^{\prime} \leq b^{\prime}<b$ such that $[a, b],\left[a^{\prime}, b^{\prime}\right] \in I$ and either $a^{\prime}=b^{\prime}$ or $[a, b]$ is not maximal.

Near Semiorders

Observation 2: A interval order in cannoncial form I is not near semiorder if there is $a<a^{\prime} \leq b^{\prime}<b$ such that $[a, b],\left[a^{\prime}, b^{\prime}\right] \in I$ and either $a^{\prime}=b^{\prime}$ or $[a, b]$ is not maximal.

Near Semiorders

Hereditary Semiorders

Definition: For an integer x a block of size k is a collection of intervals of the form $[x, x+i],[x+i+1, x+k]$. If the interval $[x, x+k]$ is present, this is a closed block.

$\overline{=\square \longrightarrow}$

Hereditary Semiorders

Definition: Two blocks B_{k} and B_{i} are said to have a strong boundary between them if they share the trivial element. The two blocks are said to share a weak boundary if the trivial element is missing.

strong boundary

Hereditary Semiorders

Theorem: (Remmel andY. ' $12+$) The collection of hereditary semiorders can be described by an list of blocks together with a collection of strong and weak boundaries*.

$$
U_{3}\left|C_{4}: U_{6}\right| U_{3}\left|C_{8}\right| C_{3}: U_{2}
$$

Furthermore the generating function for the number of hereditary semiorders is:

$$
\frac{x\left(5 x^{6}-27 x^{5}+48 x^{4}-46 x^{3}+26 x^{2}-8 x+1\right)}{(1-x)\left(6 x^{6}-38 x^{5}+65 x^{4}-60 x^{3}+32 x^{2}-9 x+1\right)}
$$

and the number of hereditary semiorders on
h elements is approximately

$$
3.3704^{n} .
$$

Hereditary Semiorders

$$
\begin{aligned}
& \text { c:c: }: u_{2}: u_{2}: c: c: c: u_{2}: c: c, C_{1}
\end{aligned}
$$

Hereditary Semiorders

Corollary: (Remmel andY. '12+) The collection of hereditary semiorders can be described by an list of meta-blocks* together with a collection of strong and weak boundaries*.

Meta-blocks

Hereditary Semiorders

Corollary: (Remmel andY. '12+) The collection of hereditary semiorders can be described by an list of meta-blocks* together with a collection of strong and weak boundaries*.

Hereditary Semiorders

$$
\begin{array}{lllll}
t_{1} / 2 & 2 & t_{2} / 2 & 2 & t_{3} / 2
\end{array}
$$

Remaining Semiorders

Open Questions
height?
width?
dimension?
maximal elements?

Is Ψ even the right bijection?

