November 14, 2017

15 - Inclusion/Exclusion

William T. Trotter
trotter@math.gatech.edu
Question: In the “Venn Diagram” shown below, the universe X contains 23 elements. There are 8 in the set A and 11 in B. If there are 5 in $A \cap B$, then how many elements of X belong to neither A nor B?
Question In the “Venn Diagram” shown below, the universe X contains 2307 elements. We want to determine the number of elements of X that don’t belong to any of A, B and C. If we know the number of elements in the following sets, can we do this? A, B, C, $A \cap B$, $B \cap C$, $A \cap C$, $A \cap B \cap C$.

![Venn Diagram]
Notation Let X be a set of objects and suppose that for every element i in $\{1, 2, \ldots, n\}$, we have a property P_i so that for all x in X, the statement “x satisfies property P_i” is either true or false ... but never ambiguous. Then for a subset S of $\{1, 2, \ldots, n\}$, let $N(S)$ be the subset of X consisting of all x in X which satisfy property P_i for all i in S. Note that $N(\emptyset) = X$.

Notation Let N_0 be the subset of X consisting of those objects which satisfy none of the properties.
Theorem Let X be a set of objects and let P_i be a property for X for each $i = 1, 2, \ldots, n$. Then:

$$N_0 = \sum_{S \subseteq \{1,2,\ldots,n\}} (-1)^{|S|} N(S)$$

Example When $n = 2$,

$$N_0 = N(\emptyset) - N(1) - N(2) + N(1).$$
Theorem Let X be a set of objects and let P_i be a property for X for each $i = 1, 2, \ldots, n$. Then:

$$N_0 = \sum_{S \subseteq \{1,2,\ldots,n\}} (-1)^{|S|} N(S)$$

Example When $n = 3$,

$$N_0 = N(\emptyset) - N(1) - N(2) - N(3) + N(12) + N(13) + N(23) - N(123).$$
Example When \(n = 4 \),

\[
N_0 = N(\emptyset)
- N(1) - N(2) - N(3) - N(4)
- N(123) - N(124) - N(134) - N(234)
+ N(1234).
\]
Observation In general, there are 2^n terms in the inclusion/exclusion formula. How can this possibly be of use?

Conclusion Inclusion/Exclusion may be of value when $|N(S)|$ depends only on $|S|$. Also, it may be of value when there is some other form of “collapsing” among the exponentially many terms in the formula.
Derangements

Definition A permutation σ of $\{1, 2, \ldots, n\}$ is called a derangement if $\sigma(i) \neq i$ for all $i = 1, 2, \ldots, n$.

Example 38754126 and 21436587 are derangements but 57314682 and 75318642 are not.

Exercise Write all derangements of $\{1, 2, 3, 4, 5\}$.

Notation Let d_n denote the number of derangements of $\{1, 2, \ldots, n\}$.
Derangements (2)

Inclusion/Exclusion Formula for Derangements

\[d_n = \sum_{S \subseteq \{1,2,\ldots,n\}} (-1)^{|S|} N(S) \]

\[= \sum_{0 \leq k \leq n} (-1)^k \binom{n}{k} (n - k)! \]

Explanation When \(S \) is a subset of \(\{1, 2, \ldots, n\} \) and \(|S| = k\), \(|N(S)| = (n - k)!\). To see this, note that if \(\sigma \) satisfies \(P_i \) and \(i \) belongs to \(S \), then \(\sigma(i) = i \). So the positions corresponding to elements of \(S \) are determined, and the other \(n - k \) positions are an arbitrary permutation of the remaining elements.
Notation For an integer \(n \), let \([n]\) denote \(\{1, 2, \ldots, n\}\). Also, let \(S(n, m)\) denote the number of surjections from \([n]\) to \([m]\).

Exercise Determine \(S(5, 3)\) by hand.
Surjections (2)

Inclusion/Exclusion Formula for Surjections

\[S(n, m) = \sum_{S \subseteq \{1, 2, \ldots, n\}} (-1)^{|S|} N(S) \]

\[= \sum_{0 \leq k \leq m} (-1)^k C(m, k) (m - k)^n \]

Explanation When \(S \) is a subset of \(\{1, 2, \ldots, m\} \) and \(|S| = k\), \(|N(S)| = (m - k)^n\). To see this, note that if \(f \) satisfies \(P_i \) and \(i \) belongs to \(S \), then \(i \) is not in the range of \(f \). In other words, \(f \) is an function whose domain is \([n] \) and whose range is a set of size \(m - k \).
The Euler φ-function

Notation For an integer $n \geq 2$, let $\varphi(n)$ denote the number of elements in $[n]$ which are relatively prime to n.

Example $\varphi(12) = 4$ since $1, 5, 7$ and 11 are relatively prime to 12.

Exercise Compute $\varphi(144)$.

Exercise Compute $\varphi(324481700624)$.
The Euler φ-function

Inclusion/Exclusion Formula for Euler φ-Function

Suppose the prime factors of n are: p_1, p_2, \ldots, p_k.

Then

$$\varphi(n) = n \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) \ldots \left(1 - \frac{1}{p_k}\right)$$

Explanation
When m has the common prime factors p_3, p_7 and p_8 with n, then the number of such m is $n/p_3p_7p_8$.
The Euler φ-function

Example Compute $\varphi(324481700624)$

Maple reports that

$$324481700624 = 2^4(109)(727)(255923)$$

Therefore

$$\varphi(324481700624) = 324481700624(1-1/2)(1-1/109)$$

$$\quad (1 - 1/727)(1 - 1/255923)$$

$$= 2^3(108)(726)(255922)$$

$$= 160530657408.$$