MATH 3012 Quiz 2, October 12, 2004, WTT

1. Note that $67375 = 5^3 \times 7^2 \times 11$. Compute $\phi(67375)$.

\[
\phi(67375) = 67375 \left(1 - \frac{1}{5}\right)\left(1 - \frac{1}{7}\right)\left(1 - \frac{1}{11}\right)
= 5^3 \cdot 7^2 \cdot 11 \cdot \frac{4}{5} \cdot \frac{6}{7} \cdot \frac{10}{11}
= 5^2 \cdot 7 \cdot 4 \cdot 6 \cdot 10
= 42000
\]

2. (a) Write all the partitions of the integer 8;

\begin{align*}
8 & = 8 \text{ distinct parts} \\
& = 7 + 1 \text{ distinct parts, odd parts} \\
& = 6 + 2 \text{ distinct parts} \\
& = 6 + 1 + 1 \\
& = 5 + 3 \text{ distinct parts, odd parts} \\
& = 5 + 2 + 1 \text{ distinct parts} \\
& = 5 + 1 + 1 + 1 \text{ odd parts} \\
& = 4 + 4 \\
& = 4 + 3 + 1 \text{ distinct parts} \\
& = 4 + 2 + 2 \\
& = 4 + 2 + 1 + 1 \\
& = 4 + 1 + 1 + 1 + 1 \\
& = 3 + 3 + 2 \\
& = 3 + 3 + 1 + 1 \text{ odd parts} \\
& = 3 + 2 + 2 + 1 \\
& = 3 + 2 + 1 + 1 + 1 \\
& = 3 + 1 + 1 + 1 + 1 + 1 \text{ odd parts} \\
& = 2 + 2 + 2 + 2 \\
& = 2 + 2 + 2 + 1 + 1 \\
& = 2 + 2 + 1 + 1 + 1 + 1 \\
& = 2 + 1 + 1 + 1 + 1 + 1 + 1 \\
& = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 \text{ odd parts}
\end{align*}
(b) Of the partitions listed in part (a), how many use distinct parts?

There are 6 partitions of the integer 8 into distinct parts.

(c) Of the partitions listed in part (a), how many use odd parts?

There are 6 partitions of the integer 8 into odd parts. More generally, for every integer \(n \), the number of partitions of \(n \) into odd parts equals the number of partitions of \(n \) into distinct parts.

3. Write the inclusion/exclusion formula for the number of onto functions from \(\{1, 2, \ldots, m\} \) to \(\{1, 2, \ldots, n\} \).

\[
\sum_{i=0}^{n} (-1)^i \binom{n}{i} (n - i)^m
\]

4. Write the inclusion/exclusion formula for the number of derangements of \(\{1, 2, \ldots, n\} \).

\[
\sum_{i=0}^{n} (-1)^i \binom{n}{i} (n - i)!
\]

5. Let \(A \) denote the advancement operator, i.e., \(Af(n) = f(n + 1) \). Find the general solution of the following equation:

\[
(2A^2 + 7A - 15)f(n) = 0
\]

Note that we can factor the quadratic \(2A^2 + 7A - 15 \) as \((2A - 3)(A + 5) \) so the roots are \(\frac{3}{2} \) and \(-5\). Therefore the general solution is \(c_1 \left(\frac{3}{2} \right)^n + c_2 (-5)^n \).

6. For the equation in the preceding problem, find the particular solution given \(f(0) = 6 \) and \(f(1) = -4 \).

Substituting \(n = 0 \) and \(n = 1 \) in the formula for the general solution, we obtain the following two equations for \(c_1 \) and \(c_2 \):

\[
\begin{align*}
c_1 + c_2 &= 6 \\
\frac{3}{2} c_1 - 5c_2 &= -4
\end{align*}
\]

The solution to this system is \(c_1 = 4 \) and \(c_2 = 2 \). So the answer is then \(4 \left(\frac{3}{2} \right)^n + 2 (-5)^n \).

7. Find the general solution of the following equation:

\[
(A - 1)^2 (A - 3)^4 (A - 4 + i)^3 f(n) = 0
\]

\[
f(n) = c_1 + c_2 n + c_3 3^n + c_4 n 3^n + c_5 n^2 3^n + c_6 n^3 3^n + c_7 (4 - i)^n + c_8 n (4 - i)^n + c_9 n^2 (4 - i)^n
\]
8. Let r_n denote the number of regions in the plane determined by n circles—provided each pair of circles intersects in exactly two points. (a) Write a recurrence equation for r_n.

Label the n circles as C_1, C_2, \ldots, C_n. Circle C_n intersects each other circle in exactly two points, so there are $2(n-1)$ points of intersection on C_n. These points divide circle C_n into $2(n-1)$ arcs, and each of these arcs divides an “old” region into two “new” ones. So the recursion is

$$r_n = r_{n-1} + 2(n-1)$$

(b) Solve the recurrence equation in part (a).

The general solution to the homogeneous equation $r_n = r_{n-1}$ is $f(n) = c$. We look for a particular solution to the non-homogeneous equation of the form $f(n) = An + Bn^2$. Substituting, we obtain:

$$An + Bn^2 = A(n-1) + B(n-1)^2 + 2(n-1)$$

$$= An - A + Bn^2 - 2Bn + B + 2n - 2$$

Equating coefficients, we obtain the two equations:

$$2 - 2B = 0$$
$$-A + B = 2$$

Thus $B = 1$ and $A = -1$. So the solution is $f(n) = n^2 - n + c$. Substituting $n = 1$ and noting that $r_1 = 2$, we obtain $2 = f(1) = 1^2 - 1 + c = c$. It follows that the final answer is $f(n) = n^2 - n + 2$.

9. (Extra Credit) Explain how the principle of inclusion/exclusion is used to derive the formula in Problem 3 for the number of onto functions.

Consider the set X of all functions from $\{1, 2, \ldots, m\}$ to $\{1, 2, \ldots, n\}$. For each $j = 1, 2, \ldots, n$, we say that a function $f \in X$ satisfies property P_j if j is NOT in the range of f. Now let S be a set of i properties. Then the number of functions from X which satisfy the properties in S is $(n-i)^m$. By the principle of inclusion/exclusion, the number of onto functions is then:

$$\sum_{i=0}^{n} (-1)^i \binom{n}{i} (n-i)^m$$