MATH 3012 Quiz 1, February 10, 2009, WTT

1. Consider the 16-element set consisting of the ten digits \(\{0, 1, 2, \ldots, 9\} \) and the six capital letters \(\{A, B, C, D, E, F\} \).

a. How many strings of length 11 can be formed if repetition of symbols is permitted?

\[16^{11} \]

b. How many strings of length 11 can be formed if repetition of symbols is not permitted?

\[P(16, 11) \]

c. How many strings of length 11 can be formed using exactly three 5's, six A's and two D's?

\[\binom{11}{3, 6, 2} = \frac{11!}{3! 6! 2!} \]

d. How many strings of length 11 can be formed if exactly three characters are digits and exactly five of the remaining characters are B's?

\[\binom{11}{3}(8)^3 5^3 \]

2. How many lattice paths from (3, 2) to (23, 17) pass through (9, 6)?

\[\frac{\binom{9}{6} \cdot \binom{23}{17}}{\binom{4}{17}} \]

3. How many integer valued solutions to the following equations and inequalities:

a. \(x_1 + x_2 + x_3 + x_4 = 59, \) all \(x_i \geq 0. \)

\[\binom{62}{3} \]

b. \(x_1 + x_2 + x_3 + x_4 = 59, \) all \(x_i > 0. \)

\[\binom{58}{3} \]

c. \(x_1 + x_2 + x_3 + x_4 < 59, \) all \(x_i \geq 0. \)

\[\binom{62}{4} \]

d. \(x_1 + x_2 + x_3 + x_4 \leq 59, \) all \(x_i > 0. \)

\[\binom{59}{4} \]

e. \(x_1 + x_2 + x_3 + x_4 \leq 59, \) all \(x_i > 0, x_2 \geq 7. \)

\[\binom{53}{4} \]

f. \(x_1 + x_2 + x_3 + x_4 + x_5 \leq 59, \) all \(x_i > 0, x_2 \leq 6. \)

Note: I meant the correct answer to be

\[\binom{59}{4} - \binom{51}{4} \]

But actually it's

\[\frac{59!}{5!} - \frac{53!}{5!} \].

Either answer accepted.

Page Total: \(\boxed{28} \)
4. Use the Euclidean algorithm to find $d = \text{gcd}(17160, 168)$.

\[
\begin{array}{c|cccc}
 & 102 & 17160 & 24 & 168 \\
\hline
168 & 17160 & 168 & & \\
360 & 24 & & \hline
336 & & & 24 & 0 \\
\end{array}
\]

\[\text{gcd}(17160, 168) = 24\]

5. Use your work in the preceding problem to find integers a and b so that $d = 17160a + 168b$.

\[17160 = 102 \cdot 168 + 24\]
\[168 = 7 \cdot 24\]

\[24 = 1 \cdot 17160 - 102 \cdot 168\]

so

\[a = 1 \quad b = -102\]

6. For a positive integer n, let t_n count the number of ways to tile a $2 \times n$ checkerboard with figures of five types:

1. A horizontal strip of height 1 and width 2, i.e. a block of size 1×2, one row and two columns. Such strips can only be oriented horizontally, and not vertically.

2. An “L” shaped region consisting of three 1×1 squares. This figure can be oriented in any of the four possible ways (see drawing on the board).

Find a recurrence equation satisfied by t_n and use it to calculate t_8.

\[t_1 = 0 \quad \text{when} \quad n \geq 5\]
\[t_2 = 1\]
\[t_3 = 2\]
\[t_4 = 3\]
\[t_5 = 2 + 2t_3 + 2t_2 = 2 + 2 \cdot 2 + 2 = 6\]
\[t_6 = t_4 + 2t_3 + 2t_2 + 2 = 3 + 2 \cdot 2 + 2 + 2 = 11\]
\[t_7 = t_5 + 2t_4 + 2t_3 + 2t_2 + 2 = 6 + 2 \cdot 3 + 2 \cdot 2 + 2 + 2 = 20\]
\[t_8 = t_6 + 2t_5 + 2t_4 + 2t_3 + 2t_2 + 2 = 11 + 2 \cdot 6 + 2 \cdot 3 + 2 \cdot 2 + 2 = 37\]
7. Use the algorithm developed in class to find an Euler circuit in the following graph:

8. Consider the following graph:

 a. Explain why this graph does not have an Euler circuit. It has vertices of odd degree such as 6 and 4.
 b. Provide a listing of the vertices that constitutes a Hamiltonian cycle.
 c. Find a set of vertices that forms a maximal clique but not a maximum clique. Many correct answers, e.g., 5, 1, 2, 3.
 d. What is $\omega(G)$ for this graph? 4
 e. Find a set of vertices which forms a maximum clique in this graph. 5, 3, 4, 8, 9
 f. Show that $\chi(G) = \omega(G)$ for this graph by providing an optimum coloring. You may write directly on the figure.
9. Prove the following identity by Mathematical Induction:

\[7 + 11 + 15 + \ldots + 4n + 3 = 2n^2 + 5n \]

Note: We intend that the expression on the left is just the integer 7 when \(n = 1 \). Furthermore, when \(n \geq 2 \), we intend that we are summing up the first \(n \) terms in the sequence which begins with \(s_1 = 7 \) and satisfies \(s_n = s_{n-1} + 4 \).

Proof. When \(n = 1 \), LHS = 7 while RHS = \(2 \cdot 1^2 + 1 = 7 \) so the formula is valid when \(n = 1 \).

Now assume the formula holds when \(n = k \) where \(k \geq 1 \), i.e., we assume

\[7 + 11 + 15 + \ldots + 4k + 3 = 2k^2 + 5k \]

Then

\[7 + 11 + 15 + \ldots + 4k + 3 + 4(k + 1) + 3 = \frac{2}{2} + 5k + [4(k+1) + 3] \]

\[= 2k^2 + 9k + 7 \]

This shows that the formula also holds when \(n = k+1 \). Therefore, by the principle of mathematical induction, it holds for all \(n \geq 1 \).

Page total 15