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Abstract. A posetP = (X, P) is asplit semiordemhen there exists a functianthat assigns to each

x € X aclosed interval (x) = [ax, ax + 1] of the real lineR and a sef = {fy : x € X} of real
numbers, withi, < fy < ay+1,suchthat < yin Pifandonlyif fy < ay anda, +1 < fy inR.

Every semiorder is a split semiorder, and there are split semiorders which are not interval orders. It
is well known that the dimension of a semiorder is at most 3. We prove that the dimension of a split
semiorder is at most 6. We note also that some split semiorders have semiorder dimension at least 3,
and that every split semiorder has interval dimension at most 2.
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1. Introduction

We assume throughout thBt = (X, P) is a poset (partially ordered set) with
finite ground setX and order relationP on X that is reflexive, antisymmetric
and transitive. The notations < y in P, y > x in P and(x, y) € P are used
interchangeably. We write < y in P andy > x in P whenx < yin P
andx # y. Whenx,y € X, (x,y) ¢ P and(y,x) ¢ P, we sayx andy are
incomparableand denote this by|y in P. The set of all incomparable ordered
pairsisingP) = {(x,y) € X x X : x|y in P}.

Our main result is that a split semiorder has dimension at most 6. This result has
the same flavor as Rabinovitch’s theorem [18] that a semiorder has dimension at
most 3. Our proof is preceded by constructions and lemmas that begin in the next
section with definitions of split orders and their representations. We then comment
on dimensionality in Section 3 and incomparable pairs in Section 4. Section 5
approaches the main result with lemmas on split semiorders and linear extensions,
then proves the result. Section 6 discusses semiorder dimensions and interval order
dimensions of split semiorders and includes some open problems.
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2. Intervals and Split Orders

We recall that® = (X, P) is aninterval orderif there is a function/ that assigns
a closed real interval (x) = [a,, b,] to eachx € X such thatx < y in P if and
only if b, < a, in R. We calll aninterval representatioof P. An interval order is
asemiorderif it has an interval representation in which all assigned intervals have
length 1. End points of intervals assigned by a representation need not be distinct,
but any interval representation can be modified to make all intervals non-degenerate
and all end points distinct. We refer to such laas adistinguishinginterval rep-
resentation. Additional background material on interval orders and semiorders is
given in Fishburn [11] and Trotter [20, 21].

A posetP = (X, P) is asplit interval orderif there exists a functiorl that
assigns a closed real intervAlx) = [a,, b,] to eachx € X and a setF = {Jf, :
x € X} of real numbers such that:

1. Forallx € X, a, < f, <b,,and
2. Forallx,y € X,x < yin Pifand only if f, <a, andb, < f, inR.

We call (I, F) a representationof P in this case. Whe® = (X, P) is a split
interval order, it has distinguishingrepresentatioril, F) for which |{a, : x €
X}U{b, :x € X}U{f, : x € X}| = 3|X]| (see Fishburn and Trotter [14]).

Bogart and Isaak [4] refer to a representatidnF) as aFishburn represen-
tation following informal correspondence with that author in 1989. They prove
that the class of split interval orders equals the class of proper unit bitolerance
orders discussed previously in Langley [16] and Bogart and Trenk [8]. We say that
P = (X, P) is aproper unit bitolerance ordeif there is a functior that assigns a
closed unitintervall (x) = [a,, a, + 1] to eachx € X and sets; = {g, : x € X}
andH = {h, : x € X} of real numbers so that:

1. Forallx € X,a, <g,,h, <a,+1,and
2. Forallx,y € X,x <yin Pifand only ifh, <a, anda, +1 < g, inR.

The Bogart-Isaak equivalence proof shows how this unit interval representation
with two special points in each interval can be transformed into/a#’) repre-
sentation with general length intervals and one special point in each interval, and
conversely, while preserving. The following representation for split semiorders
is an obvious specialization of thié, F) and(U, G, H) representations.

A posetP = (X, P) is asplit semiorderwhen there exists a functiobi that
assigns a closed real intenidl(x) = [a,, a, + 1] to eachx € X and a setf’ =
{fx : x € X} of real numbers so that:

1. Forallx € X,a, < f, <a,+1,and
2. Forallx,y € X,x < yin Pifand only if f, <a, anda, +1 < f, inR.

We call(U, F) arepresentatiorof P in this case. Whef{a, : x € X}U{a,+1:x €
X} U F| = 3|X]|, the representation @istinguishing It is again an easy exercise to
show that a split semiorder has a distinguishing representation.
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Itis easily seen that the class of all semiorders is properly included in the class of
all split semiorders, the classes of interval orders and split semiorders are properly
included in the class of split interval orders, and the class of split semiorders is
neither included in nor includes the class of interval orders. These and many other
comparisons between special posets are discussed in Bogart and Trenk [8] and
Fishburn [12]. See also Bogart [1, 2], Bogart, Fishburn, Isaak and Langley [3],
Doignon, Monjardet, Roubens and Vincke [9] and Roubens and Vincke [19].

3. Dimensions and Linear Extensions

A linear order L on X is a complete order relation aXi, so that for allx, y € X,
x <yinLory < xin L. Let G(X) denote a class of order relations &nWe
may then define th€-dimensionof P = (X, P) as the minimum cardinality of a
subset of¢ (X) whose members hawve as their intersection. Some posets may not
have a representation as an intersection of posets frpand in this case we say
that theirC-dimension is infinite. To discuss alternative formulations of dimension,
we refer to the original Dushnik and Miller [10] definition of dimension as “linear
dimension”. Whene is the class of interval orders, we haweerval dimension
and whene is the class of semiorders, we hasemiorder dimensioniVe denote
the interval dimension of a posBtby Idim(P) and the semiorder dimension Bf
by SdimP). These two parameters were first introduced in [6], and the concept
of interval dimension has been studied extensively in the interim (see [15] and
[7], for example). Other families which have been studied include angle order
dimension [13] and series parallel dimension [15].

For now, we concentrate on linear dimension, returning to the other concepts
in Section 6. Alinear extensiorof P is a linear order. on X for whichP C L.
A set R of linear extensions oP is called arealizer of P whenP = (| R. Thus
the linear dimensionality dP, denoted by dinP), is the minimum cardinality of
a realizer ofP. Although interval orders can have large dimensions [5, 20], this is
not true for semiorders [17, 18].

THEOREM 3.1. If P = (X, P) is a semiorder, thedim(P) < 3.

Because the class of split semiorders is neither included in nor includes the class
of interval orders, it is conceivable that some split semiorders have large dimen-
sions. However, our main result says otherwise. We continue towards its proof by
recalling a result on reversals of incomparable pairs.

4. Reversals of Incomparable Pairs

A family R of linear extensions oP is obviously a realizer oP if and only if for
every(x, y) € inc(P), there is an.. € R for whichx > y in L. We sayL reverses
the incomparable paitx, y) whenx > y in L. Similarly, we say thatf reverses
a setS C inc(P) if for every (x,y) € §,x > yin L for at least ond. € L. So
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dim(P) is simply the minimum cardinality of a family of linear extensions pf
which reverses in®).

We find it useful to have a convenient test which tells when there is a linear
extension which reverses a given set of incomparable pairs. Given an ikteg2r
asubsetS = {(x;,y;) : 1 <i <k} C inc(P) is called amalternating cyclewhen
xi <yuin P, foralli =1,2, ...,k. Inthis definition, and in arguments to follow,
the subscripts on elements of an alternating cycle are interpreted cyclically, so that
the conditiony; < y,,1in P meansy, < y; in P. The following elementary result
is due to Trotter and Moore [22]. A short proof and applications appear in [20].

THEOREM 4.1. SupposeP = (X, P) and S C inc(P). Then the following
statements are equivalent.

1. There is a linear extensioh of P which reverses.
2. S does not include an alternating cycle.

5. The Principal Theorem

We continue towards the proof of our main result with a few lemmas for split
interval orders and an observation for arbitrary posets.

Let (I, F) be a representation of a split interval order= (X, P). Given
(x,y) € inc(P), we say that capturesy if b, > f,, andy capturesx if a, < f,.
Becausexr < y in P if and only if f, < a, andb, < f,, exactly one of the
following three statements holds for every; y) € inc(P):

1. x capturesy, but y does not capture.
2. y capturesy, butx does not capture.
3. x capturesy, andy capturesx.

Accordingly, we partition the pairs in i) into Type 1, Type 2 and Type 3,
respectively. Note that the classification of incomparable pairs depends on the
representation.

LEMMAS.1. Supposgl, F) is a representation of a split interval ordét =
(X, P), and X, and X, are disjoint subsets ok. Then there exists a linear ex-
tensionL of P which reverses all the Typkand Type3 pairs ininc(P) N (X1 x
X5).

Proof. Let S denote the set of all Type 1 and Type 3 pairs i (X, x X5).
Suppose there is no linear extension which revess@hen by Theorem 4.1, there
is somek > 2 and an alternating cyclgx;, y;) : 1 < i < k} contained inS.
Sincex; capturesy;, for eachi = 1,2, ..., k, we know thatf,, < b,,, for each
i=12...,k.Also,x; < yiy1in PandX,; N X, = @imply x; < y;.1in P, for
i =12 ..., k. We conclude that,, < f,,,,, foreachi = 1,2, ..., k, hence that
fy < fysn fori =1,2,... k. This is impossible, and the contradiction shows
the existence of a linear extension reversing all pait$.in O
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The dual version is also valid.

LEMMAGS.2. Supposgl, F) is a representation of a split interval ordét =
(X, P), and X, and X, are disjoint subsets ok. Then there exists a linear ex-
tensionL of P which reverses all the Typgand Type3 pairs ininc(P) N (X1 x
X5).

The next lemma bounds the height of a split interval order when all the intervals
used in the representation have a common point. Recall thagigatof P is the
maximum cardinality of a chain iR.

LEMMAS.3. Supposgl, F) is a representation of a split interval ordét =
(X, P),and thata, < f < b,, forall x € X, for afixedf € R. ThenP has height
at most2.

Proof. Given the hypothesis, |&# = {x € X : f. < f} andletT = X — B. We
claim (1) B andT are antichains, and (2) iff < y in P, thenx € B (Bottom) and
y € T (Top). Suppose that < y in P. If x € T, thena, < f < f, < a,, which
is impossible; ify € B, thenb, < f, < f < b,, which is impossible. O

We conclude our preliminaries with an elementary lemma valid for all posets. Its
proof is left as an exercise.

LEMMA5.4. Suppose thaP = (X, P)andletX = A;UA,U---UA,, bea
partition of X so that, forallx,y € X, [x € A;,y € Aj,x <yinP] =i < j.
Let L; be a linear extension aP(A;), for eachi = 1,2,..., m. Then there is a
linear extensiorL of P so thatL; = L(A;),foreachi =1,2,..., m.

We now prove our main theorem.

THEOREMG5.5. If P = (X, P) is a split semiorder, thedim(P) < 6.
Proof. Let (U, F) be a distinguishing representation of a split semioflet
(X, P) with

Ukx)=lac,a,+1] and f, eUKx)NF.

We define a partitiok = A; U A,U---U A, recursively left to right alondR. Set
X, = X. WheneverX; # @, let z; be the unique element &f; that minimizess,,
for z € X;, and let

8i = a4y + 1

DefineA; = {x € X; :a, < g <a, +1} andX,;;; = X; — A; (see Figure 1).
Suppose that the procedure halts with a partifioa- A; U A, U ---U A,,. Then
forallx,y e X,[x € A;,y € Aj,x < yin P] =i < j. Also, note that for each
i=12...m—-1 g+1<g.

Foreach = 1,2, ...,m, letA; be the subposet & induced byA;. Also, let
B, ={x € A;: f, < g}andT; = A; — B;. We know from the proof of Lemma 5.3
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] 1 | L ] 1

L 1 | 1 | 1 1

e el M e e I W e

firstinA; lastinA; firstin Ay lastin A, firstin A; lastin A,
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f(B)<>1(5) |
Figure 1.

thatA; has height at most 2, the membersBafare minimal inA;, and those ir¥;
are maximal inA;. Note that foreach = 1,2, ... ,m, f,, <a, +1=g <a,,,
sS0z; € B; andB; # @. However, it may happen thd = @.

CLAIM1. Ifi,j ef{l,2,...,m},x € A,y € Ajandj > i+ 2 thenx <y
in P.

Proof. The hypotheses imply, < g;,g; < a,+1andg, +2 < g; inR, so
ay+1<a,inR.Thusx < yin P. O

CLAIM2. Ifie{1,2,...,m —1},x € B; andy € T;,1, thenx < yin P.
Proof. The hypotheses imply, < g; andg;;1 < f,. Sinceg; +1 < g; 41, we
conclude thak < y in P. O

The preceding claims coupled with a left-to-right perspective in the lower part of
Figure 1 show the crucial reversals for {Rg in constructing a realizer of P are
those within eaclA;, namelyB; x B;, T; x T; and B; x T;, and those between
consecutiveA;, namelyB; x B;1, T; x T;;1 andT; x B;,1. The latter are also
the incomparable pairs ifii x A;.1, where Type 1 and Type 3 can occur, and in
A; X Bj,1, Where Type 2 and Type 3 can occur. Reversals in the dual sense, apart
from B; x B; andT; x T;, i.e., those for which< adheres to the natural left-to-right
sense of Figure 1, are accounted for in piecing together the parts of realizing linear
extensions that we construct for the crucial reversals. We therefore focus on the
crucial reversals.

We denote our realizer # by R = {Lq, Lo, ..., Lg}. The construction of the
L; begins with reversals foB; x T;, A; x B;y1 andT; x A;;1 according to the
following prescriptions.

S1. If1<i <mandi = j mod 6, thenL; reverses all Type 1 and Type 3 pairs
ininc(P)N (B; x T;).
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S2. If1<i <mandi = j + 1 mod 6, then_; reverses Type 2 and Type 3 pairs
ininc(P) N (A; x Biy1).

S3. If1<i <mandi = j 4+ 3 mod 6, thern’; reverses Type 2 and Type 3 pairs
ininc(P)N (B; x T;).

S4. If1<i <mandi = j +4 mod 6, ther_; reverses Type 1 and Type 3 pairs
ininc(P) N (T; x A;j41).

The reversals in each case are validated by Lemmas 5.1 and 5.2. Note that these
four rules do not specify orders on the antichaingZin: i = j + 2 mod g and

{B; : i = j+4 mod §. We use two more prescriptions for this purpose, which
are applied after S1-S4 because these can affect the dyalrts of S5 and S6.

S5.If1<i <mandi = j+2mod 6, therL ;(T;) = L;?H(T,-).

S6.If1<i <mandi = j +4mod 6, thernL;(B;) = L4, (B)).

In applying S5 and S6, the subscripts on the linear extensiofsdre interpreted
cyclically.

We now apply Lemma 5.4 for eadh; in our six prescriptions. For example,
the parts of the partition fak; are the nonempty sets;, A, U Bz, T3, Ay, Bs, T5U
Ag, A7, Ag U Bg, Ty, ..., and these are taken in the listed order to spectify
entirely. Because each; is a linear extension of and R reverses in®), we
conclude thatr is a realizer and that di®) < 6.

6. Discussion

It is obvious from our definitions in Section 3 that
Idim(P) < Sdim(P) < dim(P),

for every poseP. WhenP is a split semiorder, IdifP) < 2. Indeed, IdiniP) < 2

for every split interval order, as is evident from< y in P if and only if f; < a,
andb, < fy, and the observation th#@ and P, are interval orders when we take

x < yin Pyifand only if f; < a, andx < y in P, ifand only if b, < f,. On

the other hand, the semiorder dimension of a split interval order can be arbitrarily
large [6], whereas

3 < max{Sdim(P) : P is a split semiordgr=< 6.

The upper bound is by Theorem 5.5, and the lower bound is demonstrated by the
fact [12] that there exists a split semiorder that is not the intersection of any two
semiorders.

Rabinovitch [17, 18] gives examples of semiorders of linear dimension 3, but
we do not know whether there are split semiorders of linear dimension 6. The
maximum value of the linear dimension of a split semiorder and the maximum
value of the interval dimension of a split semiorder remain open.
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A related issue is whether there are “interesting” classes of posets in which the
maximum value of interval dimension is less than the maximum value of semiorder
dimension which is in turn less than the maximum value of linear dimension.
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