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Abstract. A posetP= (X,P ) is asplit semiorderwhen there exists a functionI that assigns to each
x ∈ X a closed intervalI (x) = [ax, ax + 1] of the real lineR and a setF = {fx : x ∈ X} of real
numbers, withax ≤ fx ≤ ax +1, such thatx < y in P if and only if fx < ay andax +1< fy in R.
Every semiorder is a split semiorder, and there are split semiorders which are not interval orders. It
is well known that the dimension of a semiorder is at most 3. We prove that the dimension of a split
semiorder is at most 6. We note also that some split semiorders have semiorder dimension at least 3,
and that every split semiorder has interval dimension at most 2.
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1. Introduction

We assume throughout thatP = (X, P ) is a poset (partially ordered set) with
finite ground setX and order relationP on X that is reflexive, antisymmetric
and transitive. The notationsx ≤ y in P , y ≥ x in P and(x, y) ∈ P are used
interchangeably. We writex < y in P and y > x in P when x ≤ y in P

andx 6= y. Whenx, y ∈ X, (x, y) /∈ P and (y, x) /∈ P , we sayx andy are
incomparableand denote this byx‖y in P . The set of all incomparable ordered
pairs is inc(P) = {(x, y) ∈ X ×X : x‖y in P }.

Our main result is that a split semiorder has dimension at most 6. This result has
the same flavor as Rabinovitch’s theorem [18] that a semiorder has dimension at
most 3. Our proof is preceded by constructions and lemmas that begin in the next
section with definitions of split orders and their representations. We then comment
on dimensionality in Section 3 and incomparable pairs in Section 4. Section 5
approaches the main result with lemmas on split semiorders and linear extensions,
then proves the result. Section 6 discusses semiorder dimensions and interval order
dimensions of split semiorders and includes some open problems.
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172 P. C. FISHBURN AND W. T. TROTTER

2. Intervals and Split Orders

We recall thatP = (X, P ) is aninterval order if there is a functionI that assigns
a closed real intervalI (x) = [ax, bx] to eachx ∈ X such thatx < y in P if and
only if bx < ay in R. We callI aninterval representationof P. An interval order is
asemiorderif it has an interval representation in which all assigned intervals have
length 1. End points of intervals assigned by a representation need not be distinct,
but any interval representation can be modified to make all intervals non-degenerate
and all end points distinct. We refer to such anI as adistinguishinginterval rep-
resentation. Additional background material on interval orders and semiorders is
given in Fishburn [11] and Trotter [20, 21].

A posetP = (X, P ) is a split interval order if there exists a functionI that
assigns a closed real intervalI (x) = [ax, bx] to eachx ∈ X and a setF = {fx :
x ∈ X} of real numbers such that:

1. For allx ∈ X, ax ≤ fx ≤ bx , and
2. For allx, y ∈ X, x < y in P if and only if fx < ay andbx < fy in R.

We call (I, F ) a representationof P in this case. WhenP = (X, P ) is a split
interval order, it has adistinguishingrepresentation(I, F ) for which |{ax : x ∈
X} ∪ {bx : x ∈ X} ∪ {fx : x ∈ X}| = 3|X| (see Fishburn and Trotter [14]).

Bogart and Isaak [4] refer to a representation(I, F ) as aFishburn represen-
tation following informal correspondence with that author in 1989. They prove
that the class of split interval orders equals the class of proper unit bitolerance
orders discussed previously in Langley [16] and Bogart and Trenk [8]. We say that
P= (X, P ) is aproper unit bitolerance orderif there is a functionU that assigns a
closed unit intervalU(x) = [ax, ax + 1] to eachx ∈ X and setsG = {gx : x ∈ X}
andH = {hx : x ∈ X} of real numbers so that:

1. For allx ∈ X, ax ≤ gx, hx ≤ ax + 1, and
2. For allx, y ∈ X, x < y in P if and only if hx < ay andax + 1< gy in R.

The Bogart–Isaak equivalence proof shows how this unit interval representation
with two special points in each interval can be transformed into an(I, F ) repre-
sentation with general length intervals and one special point in each interval, and
conversely, while preservingP. The following representation for split semiorders
is an obvious specialization of the(I, F ) and(U,G,H) representations.

A posetP = (X, P ) is a split semiorderwhen there exists a functionU that
assigns a closed real intervalU(x) = [ax, ax + 1] to eachx ∈ X and a setF =
{fx : x ∈ X} of real numbers so that:

1. For allx ∈ X, ax ≤ fx ≤ ax + 1, and
2. For allx, y ∈ X, x < y in P if and only if fx < ay andax + 1< fy in R.

We call(U, F) arepresentationof P in this case. When|{ax : x ∈ X}∪{ax+1 : x ∈
X} ∪F | = 3|X|, the representation isdistinguishing. It is again an easy exercise to
show that a split semiorder has a distinguishing representation.
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It is easily seen that the class of all semiorders is properly included in the class of
all split semiorders, the classes of interval orders and split semiorders are properly
included in the class of split interval orders, and the class of split semiorders is
neither included in nor includes the class of interval orders. These and many other
comparisons between special posets are discussed in Bogart and Trenk [8] and
Fishburn [12]. See also Bogart [1, 2], Bogart, Fishburn, Isaak and Langley [3],
Doignon, Monjardet, Roubens and Vincke [9] and Roubens and Vincke [19].

3. Dimensions and Linear Extensions

A linear orderL onX is a complete order relation onX, so that for allx, y ∈ X,
x ≤ y in L or y ≤ x in L. Let C(X) denote a class of order relations onX. We
may then define theC-dimensionof P = (X, P ) as the minimum cardinality of a
subset ofC(X) whose members haveP as their intersection. Some posets may not
have a representation as an intersection of posets fromC, and in this case we say
that theirC-dimension is infinite. To discuss alternative formulations of dimension,
we refer to the original Dushnik and Miller [10] definition of dimension as “linear
dimension”. WhenC is the class of interval orders, we haveinterval dimension,
and whenC is the class of semiorders, we havesemiorder dimension. We denote
the interval dimension of a posetP by Idim(P) and the semiorder dimension ofP
by Sdim(P). These two parameters were first introduced in [6], and the concept
of interval dimension has been studied extensively in the interim (see [15] and
[7], for example). Other families which have been studied include angle order
dimension [13] and series parallel dimension [15].

For now, we concentrate on linear dimension, returning to the other concepts
in Section 6. Alinear extensionof P is a linear orderL onX for whichP ⊆ L.
A setR of linear extensions ofP is called arealizer of P whenP = ⋂R. Thus
the linear dimensionality ofP, denoted by dim(P), is the minimum cardinality of
a realizer ofP. Although interval orders can have large dimensions [5, 20], this is
not true for semiorders [17, 18].

THEOREM 3.1. If P= (X, P ) is a semiorder, thendim(P) ≤ 3.

Because the class of split semiorders is neither included in nor includes the class
of interval orders, it is conceivable that some split semiorders have large dimen-
sions. However, our main result says otherwise. We continue towards its proof by
recalling a result on reversals of incomparable pairs.

4. Reversals of Incomparable Pairs

A family R of linear extensions ofP is obviously a realizer ofP if and only if for
every(x, y) ∈ inc(P), there is anL ∈ R for whichx > y in L. We sayL reverses
the incomparable pair(x, y) whenx > y in L. Similarly, we say thatL reverses
a setS ⊆ inc(P) if for every (x, y) ∈ S, x > y in L for at least oneL ∈ L. So
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dim(P) is simply the minimum cardinality of a family of linear extensions ofP
which reverses inc(P).

We find it useful to have a convenient test which tells when there is a linear
extension which reverses a given set of incomparable pairs. Given an integerk ≥ 2,
a subsetS = {(xi, yi) : 1 ≤ i ≤ k} ⊆ inc(P) is called analternating cyclewhen
xi ≤ yi+1 in P , for all i = 1,2, . . . , k. In this definition, and in arguments to follow,
the subscripts on elements of an alternating cycle are interpreted cyclically, so that
the conditionxk ≤ yk+1 in P meansxk ≤ y1 in P . The following elementary result
is due to Trotter and Moore [22]. A short proof and applications appear in [20].

THEOREM 4.1. SupposeP = (X, P ) and S ⊆ inc(P). Then the following
statements are equivalent.

1. There is a linear extensionL of P which reversesS.
2. S does not include an alternating cycle.

5. The Principal Theorem

We continue towards the proof of our main result with a few lemmas for split
interval orders and an observation for arbitrary posets.

Let (I, F ) be a representation of a split interval orderP = (X, P ). Given
(x, y) ∈ inc(P), we say thatx capturesy if bx ≥ fy , andy capturesx if ay ≤ fx.
Becausex < y in P if and only if fx < ay and bx < fy , exactly one of the
following three statements holds for every(x, y) ∈ inc(P):

1. x capturesy, buty does not capturex.
2. y capturesx, butx does not capturey.
3. x capturesy, andy capturesx.

Accordingly, we partition the pairs in inc(P) into Type 1, Type 2 and Type 3,
respectively. Note that the classification of incomparable pairs depends on the
representation.

LEMMA 5.1. Suppose(I, F ) is a representation of a split interval orderP =
(X, P ), andX1 andX2 are disjoint subsets ofX. Then there exists a linear ex-
tensionL of P which reverses all the Type1 and Type3 pairs in inc(P) ∩ (X1 ×
X2).

Proof.Let S denote the set of all Type 1 and Type 3 pairs in inc(P)∩ (X1×X2).
Suppose there is no linear extension which reversesS. Then by Theorem 4.1, there
is somek ≥ 2 and an alternating cycle{(xi, yi) : 1 ≤ i ≤ k} contained inS.
Sincexi capturesyi , for eachi = 1,2, . . . , k, we know thatfyi ≤ bxi , for each
i = 1,2, . . . , k. Also, xi ≤ yi+1 in P andX1 ∩ X2 = ∅ imply xi < yi+1 in P , for
i = 1,2, . . . , k. We conclude thatbxi < fyi+1, for eachi = 1,2, . . . , k, hence that
fyi < fyi+1, for i = 1,2, . . . , k. This is impossible, and the contradiction shows
the existence of a linear extension reversing all pairs inS. 2
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The dual version is also valid.

LEMMA 5.2. Suppose(I, F ) is a representation of a split interval orderP =
(X, P ), andX1 andX2 are disjoint subsets ofX. Then there exists a linear ex-
tensionL of P which reverses all the Type2 and Type3 pairs in inc(P) ∩ (X1 ×
X2).

The next lemma bounds the height of a split interval order when all the intervals
used in the representation have a common point. Recall that theheightof P is the
maximum cardinality of a chain inP.

LEMMA 5.3. Suppose(I, F ) is a representation of a split interval orderP =
(X, P ), and thatax ≤ f ≤ bx , for all x ∈ X, for a fixedf ∈ R. ThenP has height
at most2.

Proof.Given the hypothesis, letB = {x ∈ X : fx < f } and letT = X−B. We
claim (1)B andT are antichains, and (2) ifx < y in P , thenx ∈ B (Bottom) and
y ∈ T (Top). Suppose thatx < y in P . If x ∈ T , thenay ≤ f ≤ fx < ay , which
is impossible; ify ∈ B, thenbx < fy < f ≤ bx , which is impossible. 2

We conclude our preliminaries with an elementary lemma valid for all posets. Its
proof is left as an exercise.

LEMMA 5.4. Suppose thatP = (X, P ) and letX = A1 ∪ A2 ∪ · · · ∪ Am be a
partition ofX so that, for allx, y ∈ X, [x ∈ Ai, y ∈ Aj , x < y in P ] ⇒ i ≤ j .
LetLi be a linear extension ofP(Ai), for eachi = 1,2, . . . ,m. Then there is a
linear extensionL of P so thatLi = L(Ai), for eachi = 1,2, . . . ,m.

We now prove our main theorem.

THEOREM 5.5. If P= (X, P ) is a split semiorder, thendim(P) ≤ 6.
Proof. Let (U, F) be a distinguishing representation of a split semiorderP =

(X, P ) with

U(x) = [ax, ax + 1] and fx ∈ U(x) ∩ F.
We define a partitionX = A1∪A2∪ · · · ∪Am recursively left to right alongR. Set
X1 = X. WheneverXi 6= ∅, let zi be the unique element ofXi that minimizesaz,
for z ∈ Xi , and let

gi = azi + 1.

DefineAi = {x ∈ Xi : ax ≤ gi ≤ ax + 1} andXi+1 = Xi − Ai (see Figure 1).
Suppose that the procedure halts with a partitionX = A1 ∪ A2 ∪ · · · ∪ Am. Then
for all x, y ∈ X, [x ∈ Ai, y ∈ Aj , x < y in P ] ⇒ i ≤ j . Also, note that for each
i = 1,2, . . . ,m− 1, gi + 1< gi+1.

For eachi = 1,2, . . . ,m, let Ai be the subposet ofP induced byAi . Also, let
Bi = {x ∈ Ai : fx < gi} andTi = Ai−Bi. We know from the proof of Lemma 5.3
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Figure 1.

thatAi has height at most 2, the members ofBi are minimal inAi, and those inTi
are maximal inAi. Note that for eachi = 1,2, . . . ,m, fzi < azi + 1= gi ≤ azi+1,
sozi ∈ Bi andBi 6= ∅. However, it may happen thatTi = ∅.

CLAIM 1. If i, j ∈ {1,2, . . . ,m}, x ∈ Ai , y ∈ Aj and j ≥ i + 2, thenx < y

in P .
Proof. The hypotheses implyax ≤ gi, gj ≤ ay + 1 andgi + 2 < gj in R, so

ax + 1< ay in R. Thusx < y in P . 2

CLAIM 2. If i ∈ {1,2, . . . ,m− 1}, x ∈ Bi andy ∈ Ti+1, thenx < y in P .
Proof.The hypotheses implyfx < gi andgi+1 ≤ fy. Sincegi + 1 < gi+1, we

conclude thatx < y in P . 2

The preceding claims coupled with a left-to-right perspective in the lower part of
Figure 1 show the crucial reversals for inc(P) in constructing a realizerR of P are
those within eachAi, namelyBi × Bi, Ti × Ti andBi × Ti, and those between
consecutiveAi, namelyBi × Bi+1, Ti × Ti+1 andTi × Bi+1. The latter are also
the incomparable pairs inTi × Ai+1, where Type 1 and Type 3 can occur, and in
Ai × Bi+1, where Type 2 and Type 3 can occur. Reversals in the dual sense, apart
fromBi ×Bi andTi ×Ti , i.e., those for which< adheres to the natural left-to-right
sense of Figure 1, are accounted for in piecing together the parts of realizing linear
extensions that we construct for the crucial reversals. We therefore focus on the
crucial reversals.

We denote our realizer ofP by R = {L1, L2, . . . , L6}. The construction of the
Lj begins with reversals forBi × Ti , Ai × Bi+1 andTi × Ai+1 according to the
following prescriptions.

S1. If 1≤ i ≤ m andi ≡ j mod 6, thenLj reverses all Type 1 and Type 3 pairs
in inc(P) ∩ (Bi × Ti).
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S2. If 1≤ i < m andi ≡ j + 1 mod 6, thenLj reverses Type 2 and Type 3 pairs
in inc(P) ∩ (Ai × Bi+1).

S3. If 1≤ i ≤ m andi ≡ j + 3 mod 6, thenLj reverses Type 2 and Type 3 pairs
in inc(P) ∩ (Bi × Ti).

S4. If 1≤ i < m andi ≡ j + 4 mod 6, thenLj reverses Type 1 and Type 3 pairs
in inc(P) ∩ (Ti × Ai+1).

The reversals in each case are validated by Lemmas 5.1 and 5.2. Note that these
four rules do not specify orders on the antichains in{Ti : i ≡ j + 2 mod 6} and
{Bi : i ≡ j + 4 mod 6}. We use two more prescriptions for this purpose, which
are applied after S1–S4 because these can affect the dualLd parts of S5 and S6.

S5. If 1≤ i ≤ m andi ≡ j + 2 mod 6, thenLj(Ti) = Ldj+1(Ti).

S6. If 1≤ i ≤ m andi ≡ j + 4 mod 6, thenLj(Bi) = Ldj+1(Bi).

In applying S5 and S6, the subscripts on the linear extensions inR are interpreted
cyclically.

We now apply Lemma 5.4 for eachLj in our six prescriptions. For example,
the parts of the partition forL1 are the nonempty setsA1, A2∪B3, T3, A4, B5, T5∪
A6, A7, A8 ∪ B9, T9, . . . , and these are taken in the listed order to specifyL1

entirely. Because eachLj is a linear extension ofP andR reverses inc(P), we
conclude thatR is a realizer and that dim(P) ≤ 6.

6. Discussion

It is obvious from our definitions in Section 3 that

Idim(P) ≤ Sdim(P) ≤ dim(P),

for every posetP. WhenP is a split semiorder, Idim(P) ≤ 2. Indeed, Idim(P) ≤ 2
for every split interval order, as is evident fromx < y in P if and only if fx < ay
andbx < fy, and the observation thatP1 andP2 are interval orders when we take
x < y in P1 if and only if fx < ay andx < y in P2 if and only if bx < fy . On
the other hand, the semiorder dimension of a split interval order can be arbitrarily
large [6], whereas

3≤ max{Sdim(P) : P is a split semiorder} ≤ 6.

The upper bound is by Theorem 5.5, and the lower bound is demonstrated by the
fact [12] that there exists a split semiorder that is not the intersection of any two
semiorders.

Rabinovitch [17, 18] gives examples of semiorders of linear dimension 3, but
we do not know whether there are split semiorders of linear dimension 6. The
maximum value of the linear dimension of a split semiorder and the maximum
value of the interval dimension of a split semiorder remain open.
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A related issue is whether there are “interesting” classes of posets in which the
maximum value of interval dimension is less than the maximum value of semiorder
dimension which is in turn less than the maximum value of linear dimension.
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