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Abstract. A partially ordered set(X,≺) is a geometric containment order of a particular type if
there is a mapping fromX into similarly shaped objects in a finite-dimensional Euclidean space
that preserves≺ by proper inclusion. This survey describes most of what is presently known about
geometric containment orders. Highlighted shapes include angular regions, convex polygons and
circles in the plane, and spheres of all dimensions. Containment orders are also related to incidence
orders for vertices, edges and faces of graphs, hypergraphs, planar graphs and convex polytopes.
Three measures of poset complexity are featured: order dimension, crossing number, and degrees of
freedom.
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1. Introduction

In their seminal paper on dimensions of partial orders, Dushnik and Miller (1941)
observed that for every posetP = (X,≺) there is a familyS of subsets of a given
setS and a mappingf fromX into S such that

∀x, y ∈ X, x ≺ y ⇔ f (x) ⊂ f (y). (1.1)

When this holds for somef : X → S, we say thatP is S-representable. Dushnik
and Miller also proved for order dimension that dim(P ) ≤ 2 if and only if S can
be chosen as a family of intervals in a linearly ordered set. A restricted-cardinality
version of their result for order dimension at most 2 is

THEOREM 1. SupposeP = (X,≺) is a poset for whichX is countable. Then
dim(P ) ≤ 2 if and only ifP is S-representable whenS is the family of closed and
bounded intervals inR.

Theorem 1 qualifies as the first significant result in the theory of geometric con-
tainment orders. Apart from questions of cardinality and end-point restrictions, it is
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168 P. C. FISHBURN AND W. T. TROTTER

the preeminent geometric containment theorem forR. In R2, a host of interesting
new possibilities arise forS, including circular disks, convex polygons, regular
n-gons similarly oriented, and angular wedges. Attractive candidates for higher-
dimensional Euclidean spaces are spheres, polyhedra, boxes, and translations of
cones.

Our aim is to describe much of what is presently known about geometric con-
tainment orders. As a working definition that circumscribes our topic, we refer to
(S,⊂) as ageometric containment orderwhen S is a nonempty and countable
family of connected subsets of a finite-dimensional Euclidean spaceRm. The sym-
bol⊂ denotesproper inclusion. For all specific cases of interest in the survey, the
members ofS have similar shapes (circles, spheres, convexn-gons,. . .) and are
closed in the usual topology ofRm. With the exception of angle orders, the objects
in S for particular cases are convex and compact.

Interesting classes of geometric containment orders are often named by the
shape of the objects in their orders. For example,(S,⊂) is acircle order if every
member ofS is a closed circular disk inR2, (S,⊂) is ann-gon order if every
member ofS is a convex polygon withn vertices inR2, and(S,⊂) is abox order
in m dimensionsif every object inS is a box[a1, b1] × [a2, b2] × · · · × [am, bm]
(ai ≤ bi) in Rm with edges parallel to the axes. An exception to this naming
convention is the notion of an interval order (Fishburn, 1985; Trotter, 1992), which
representsP by ordered intervals rather than by containment.

We denote by 2n the set of all subsets of{1,2, . . . , n} ordered by proper in-
clusion, and bySn the subposet of 2n for which S is the set of all singletons and
their complements.Sn is often referred to as thestandard posetof order dimension
n. Figure 1 pictures the Hasse diagram ofS4 at the top along with containment
representations for angular regions, squares, and circular disks.

Questions addressed in the survey for a classC of geometric containment orders
include:

1. Are there interesting characterizations of the orders inC in terms of properties
of posetsP = (X,≺) that do not refer directly to the geometry of its objects?

2. Are all posetsP = (X,≺) of a specific type members ofC?
3. What minimal posetsP = (X,≺) are not inC?
4. Are all members ofC contained in another classC ′ of geometric containment

orders?
5. What are the order dimensions of members ofC?
6. What are the crossing numbers of members ofC?
7. Is C closed under order composition, order duality, or the addition of a new

minimum element to each order?

Definitions of terms used in the questions appear in the next few paragraphs. We
then comment briefly on the history of our topic and conclude the introduction with
an outline of ensuing sections. It should be remarked that a posetP is regarded as
a geometric containment order of a specific type if it is representable as that type
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Figure 1. Standard poset of order dimension 4.
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by (1.1). Although the mappingf used there need not be a bijection because order-
equivalent members ofX might be mapped into the same object inS, bijective
mappings can be presumed either by removing order-equivalent duplicates from
X or by expandingS by adding perturbed copies of objects that are inclusion-
equivalent to original objects.

We useP or (X,≺) throughout to denote aposetor order for which≺ is an
irreflexive and transitive binary relation onground setX. It is assumed that|X| ≥ 3
and thatX is countable. The poset isfinite if X is finite. Thedual of (X,≺) is
(X,≺d), wherex ≺d y if y ≺ x, and thezero-augmentationof (X,≺) is (X ∪
{0},≺′) where 0 6∈ X, 0 ≺′ x for all x ∈ X, and the restriction of≺′ toX equals
≺. A classC of posets is closed under duality, orinvertible, if the dual of every
order inC is in C, and it is closed under the addition of 0, orzero-augmentable, if
the zero-augmentation of every order inC is in C. Theorder compositionof posets
P = (X,≺) andQ = (Y,≺′) is the poset with ground setX×Y and order relation
≺0 defined by(x, y) ≺0 (x

∗, y∗) if x ≺ x∗ andy ≺′ y∗. ClassC is closed under
order compositionif the order composition ofP andQ is in C wheneverP,Q ∈
C. TheCartesian productP × Q of P andQ is defined like order composition
except that(x, y) ≺0 (x

∗, y∗) if x � x∗ and y �′ y∗ with = for at most one
component. TheCartesian product of ordersP1 = (X1,≺1), . . . , PK = (XK,≺K)
is the poset×Pk with ground setX1× · · · ×XK and order relation≺0 defined by
(x1, . . . , xK) ≺0 (y1, . . . , yK) if xk �k yk for k = 1, . . . ,K andxk ≺k yk for at
least onek.

We say that(X,≺) is aninterval order if {a ≺ x, b ≺ y} ⇒ {a ≺ y or b ≺ x}
for all a, b, x, y ∈ X, which is true (Fishburn, 1970, 1985) if and only if there is a
mappingI fromX onto a set of closed and bounded real intervals such that

∀x, y ∈ X, x ≺ y ⇔ supI (x) < inf I (y). (1.2)

Tanenbaum (1996) characterizes thepairs of finite posets{(X,≺1), (X,≺2)} for
which the sameI mapping satisfies (1.1) for(X,≺1) by interval inclusion and
satisfies (1.2) for(X,≺2) by interval precedence. Related results for so-called
codominance pairs of posets are in Tanenbaum and Whitesides (1996).

Poset(X,≺) is a linear order (or chain) if x ≺ y or y ≺ x for all distinct x
andy in X. A linear order(X,≺′) is a linear extensionof (X,≺) if ≺⊆≺′. The
order dimensiondim(P ) of P = (X,≺) is the minimum cardinality of a set of
linear extensions ofP the intersection of whose order relations equals≺. Because
every(x, y) ∈ X × X whose components areincomparable{x 6= y, not(x ≺ y),
not(y ≺ x)} has a linear extension in whichx ≺′ y (Szpilrajn, 1930), dim(P ) is
well defined.

Order dimension is explored in depth in Trotter (1992). It is known that dim(Sn)

= dim(2n) = n (Dushnik and Miller, 1941; Komm, 1948), thatSn = (X,≺)
for n ≥ 4 is the only order with|X| ≤ 2n that has dim(X,≺) ≥ n (Bogart
and Trotter, 1973), that dim(P ) can be arbitrarily large for a finite interval order
(Bogart, Rabinovitch and Trotter, 1976), and that all posets of dim≤ 2m for
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m = 1,2, . . . are characterized by the following natural extension of Theorem 1
(Golumbic, 1984; Golumbic and Scheinerman, 1989).

THEOREM 2. dim(P ) ≤ 2m if and only ifP is S-representable whenS is the set
of boxes inRm with edges parallel to the axes.

This is conveniently abbreviated by saying that dim(P ) ≤ 2m if and only ifP is a
box order inm dimensions. Similar abbreviations are used later.

The order dimension of a poset is a measure of its nonlinearity. Our final two de-
finitions introduce other complexity measures used in studies of geometric contain-
ment orders. The first, from Golumbic, Rotem and Urrutia (1983), is the crossing
number crs(P ) of a poset.

Let P = (X,≺) be a poset withn pointsx1, x2, . . . , xn in its ground set. Let
FP be the set of all(f1, f2, . . . , fn) in which eachfi is a continuous real-valued
function on [0,1] with all fi(0) distinct and allfi(1) distinct such that, for all
distinct i andj :∣∣{λ ∈ [0,1] : fi(λ) = fj(λ)}∣∣ is finite;

fi andfj cross if they touch;
xi ≺ xj ⇔ fi(λ) < fj(λ) for all λ ∈ [0,1].

The curves forfi and fj cross if and only ifxi and xj are incomparable. The
crossing numberof P is the number of crossings for a worst-case pair with a best-
case sequence inFP :

crs(P ) = min
(f1,...,fn)∈FP

max
{{i,j}:i 6=j}

|{λ ∈ [0,1] : fi(λ) = fj(λ)}|.
Lin (1994) gives a general treatment of the crossing number. Known proper-

ties include: crs(P ) = 1 ⇔ dim(P ) = 2 (Sidney, Sidney and Urrutia, 1988);
crs(Sn) = 2 forn ≥ 3 (Golumbic, Rotem and Urrutia, 1983); crs(P ) ≤ dim(P )−1
(Golumbic, Rotem and Urrutia, 1983); for everyn ≥ 1 there is aP for which
dim(P ) = n and crs(P ) = n− 1 (Sidney, Sidney and Urrutia, 1988); and, in fact,
crs(2n) = n− 1 (Brightwell and Winkler, 1989).

The other complexity measure, due to Alon and Scheinerman (1988), is the
degrees of freedom dof(F ) of a family F of sets. We say thatF hask degrees of
freedomif k is the smallest positive integer for which there is an injectiong: F →
Rk, g(A) = (g1(A), . . . , gk(A)), and a finite listp1, p2, . . . , pt of polynomials
in 2k real variables such that, for allA,B ∈ F , A ⊂ B can be determined by
the signs of thepi(g1(A), . . . , gk(A), g1(B), . . . , gk(B)) for i = 1, . . . , t . For
example, the set of all closed and bounded real intervals has dof≤ 2 because, with
g([a, b]) = (a, b), the signs ofp1(a, b, c, d) = a − c andp2(a, b, c, d) = b − d
completely determine whether[a, b] ⊂ [c, d]. The following theorem in Alon and
Scheinerman (1988) suggests the power of their notion to identify posets that are
not certain types of containment orders.

THEOREM 3. If dof(F ) ≤ k then there is a finiteP with dim(P ) = k + 1 such
thatP is notF -representable.
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Although Dushnik and Miller (1941) foreshadowed our subject by (1.1) and
Theorem 1, geometric containment orders did not become an active area for re-
search until the early 1980s. The earliest publications of that era were Golumbic,
Rotem and Urrutia (1983), Fishburn and Trotter (1985), Santoro and Urrutia (1987),
and Santoro, Sidney, Sidney and Urrutia (1987). These were followed by half a
dozen articles in 1988, a similar number in 1989, and the first and thus far only
survey (Urrutia, 1989). Many of the people involved at that time exchanged ideas
during a two-week NATO Advanced Study Institute on Graphs and Order, orga-
nized by Ivan Rival and held in Banff, Canada in May of 1984. A principal legacy
of the Banff conference was the question

Is every finiteP with dim(P ) = 3 a circle order?

This question, which first appeared in print in Santoro and Urrutia (1987) and was
recently settled in the negative (Felsner, Fishburn and Trotter, 1999), was a prime
motivator for research on containment orders in the decade following Banff. De-
spite its resolution, very little is known about the smallest poset of order dimension
3 that is not a circle order.

The next section reviews what is known about angle orders, the only intensively
studied class of geometric containment orders whose objects are not compact and
not necessarily convex. Section 3 presents results for four classes ofn-gon orders,
Section 4 surveys a progression of results for circle orders, and Section 5 focuses
on classes of sphere orders inRm for m ≥ 3. Section 6 discusses containment
orders for vertices, edges and faces of graphs, planar graphs, and convex polytopes.
Section 7 summarizes results associated with the notions of comparability graph
invariants and dynamic isometric inclusion. We conclude in Section 8 with some
open problems.

2. Angle Orders

An angular regionA ⊆ R2 is a closed region bounded by a pair(r1, r2) of distinct
rays from a vertexv ∈ R2 that contains all points swept out by rays fromv in the
clockwise direction fromr1 to r2. Vertexv of A is unique unless the angle fromr1
to r2 is π , in which caseA is a closed half plane. We say thatA is little if its angle
from r1 to r2 is less thanπ , andbig if its angle exceedsπ . HenceA is convex if
and only if it is little or a half plane.

A containment order(S,⊂) is anangle orderif S is a set of angular regions in
R2. Because the proofs of theorems in this section presumed finiteness, we assume
that all posets referred to below are finite. The following theorem summarizes key
results in Fishburn and Trotter (1985, 1990) and Fishburn (1989a).

THEOREM 4. dim(P ) ≤ 4⇒ P is an angle order. All standard posets(Sn) and
interval orders are angle orders, and some circle orders are not angle orders. The
class of all angle orders is invertible but not zero-augmentable.
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Fishburn and Trotter (1985) also gave examples of angle orders that must use a big
angular region, and angle orders that must use a little angular region. A construc-
tion based on 27 was noted to yield a 198-pointP with dim(P ) = 7 that is not
an angle order. Santoro and Urrutia (1987) subsequently proved that angle orders
with only little angular regions have crs(P ) ≤ 4, and similarly for angle orders
with only big angular regions, then used this to give a 64-pointP with dim(P ) = 6
that is not an angle order. Trotter (1987) used a similar procedure with two disjoint
copies of 25 to obtain a 64-pointP with dim(P ) = 5 that is not an angle order,
and Alon and Scheinerman (1988) observed that Theorem 3 for degrees of freedom
also implies that some posets of order dimension 5 are not angle orders.

THEOREM 5. SomeP with dim(P ) = 5 are not angle orders.

Because the standard posets are angle orders, there are angle orders of arbitrarily
large order dimension.

3. Convex Polygon Orders

Let Pn denote the set of all convex polygons in the plane withn vertices andn
sides,n ≥ 3. We refer to members ofPn asn-gonsand consider four types of
n-gon orders for eachn. GivenS ⊆ Pn, (S,⊂) is:

1. A regular n-gon order if every member ofS is a regularn-gon with a side
between two lowest vertices parallel to the abscissa;

2. A weak regularn-gon orderif every member ofS is a regularn-gon;
3. A θ n-gon order if θ = (θ1, θ2, . . . , θn) with 0 < θi < π for eachi and∑

θi = (n − 2)π , and every member ofS has a lowest side parallel to the
abscissa with interior corner angles, beginning at the right vertex of the lowest
side and proceeding counterclockwise, ofθ1, θ2, . . . , θn radians;

4. Ann-gon orderif every member ofS is ann-gon.

For n = 3, objects for type 1 are equilateral triangles (including interiors) with
horizontal bases, objects of type 2 are equilateral triangles oriented arbitrarily,
objects for type 3 are triangles with horizontal lowest sides and equal interior-angle
sequences, and those for type 4 are all triangles. Givenθ , and going counter-
clockwise from the horizontal base side 1, thekth sides of alln-gons for type 3
are mutually parallel,k = 1,2, . . . , n. For containment orders, it turns out that
the only thing that matters for type 3 is the parallel-sides feature, not the parti-
cularθ .

As in the preceding section, the results of the present section were proved under
finiteness, so we assume that all posets referred to below are finite. We begin with
Rn, the class of all (finite) regularn-gon orders forn ≥ 3. The following composite
theorem summarizes regularn-gon results in Santoro and Urrutia (1987), plus a few
observations in Urrutia (1989).
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THEOREM 6. P ∈ R3 ⇔ dim(P ) ≤ 3, anddim(P ) ≤ 3 ⇒ P ∈ Rn for all
n ≥ 4. For everyn ≥ 3:

(i) Rn is invertible, zero-augmentable, and closed under order composition;
(ii) P ∈ Rn ⇒ crs(P ) ≤ 2;

(iii) P ∈ Rn ⇒ dim(P ) ≤ n;
(iv) Sn ∈ Rn.

In addition, noRn contains the14-point 4-dimensional poset24 \ {∅, {1,2,3,4}}.
Thus, whereas all order dimension 3 posets are inR3, not all order dimension
4 posets are inR4, whose objects are squares with sides parallel to the axes.
The following theorem (Fishburn, 1989b) gives a different picture when we admit
rectangles with sides parallel to the axes, which obtains forθ 4-gon orders when
θ = (π2 , π2 , π2 , π2 ).
THEOREM 7. For everyn ≥ 3 and all θ that adhere to our earlier definition,
dim(P ) ≤ n ⇔ P is a θ n-gon order, and the class of allθ n-gon orders is
invertible and zero-augmentable.

The other main result in Fishburn (1989b) says that as soon as we allow arbi-
trary orientations, even when alln-gons are regular, we lose invertibility and zero-
augmentability.

THEOREM 8. For everyn ≥ 3, neither the class of all weak regularn-gon orders
nor the class of alln-gon orders is invertible or zero-augmentable.

For our finaln-gon theorem, we denote byGn the class of alln-gon orders,n ≥ 3.

THEOREM 9. For everyn ≥ 3:

(i) P ∈ Gn ⇒ crs(P ) ≤ 2;
(ii) dim(P ) ≤ 2n⇒ P ∈ Gn;

(iii) P 6∈ Gn for someP with dim(P ) = 2n+ 1.

Parts (i) and (ii) are proved in Sidney, Sidney and Urrutia (1988), where it was also
noted thatP 6∈ Gn for someP with dim(P ) = 2n + 2. The sharper (iii) is proved
by an application of Theorem 3 in Alon and Scheinerman (1988) in view of the
fact thatn-gon orders have 2n degrees of freedom.

4. Circle Orders

Let C2 denote the set of all finite circle orders andC+2 the set of all circle orders
with countable ground sets. When(X1,<), . . . , (XK,<) are linearly ordered sets
of real numbers ordered naturally,X1 × · · · × XK denotes their Cartesian product
order: ifXk = X for all k, we write the product order asXK .
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We begin with a list of results forC2: see also Theorem 4 and Sections 6 and 7.
One new definition is needed.(S,⊂) is anup-parabola order(Scheinerman, 1992)
if A ∈ S ⇒ A = {(x, y) : y ≥ ax2 + bx + c} for somea, b, c ∈ R. All posets in
the following theorem are assumed to be finite.

THEOREM 10. C2 equals the set of up-parabola orders and contains every inter-
val order. It is invertible, zero-augmentable, closed under order composition, and
contains a poset which has no circle-containment representation in which every
minimal element is assigned a circle of radius zero. In addition:

(i) P ∈ C2⇒ crs(P ) ≤ 2;
(ii) dim(P ) ≤ 2⇒ P ∈ C2;

(iii) {1,2,3}3 ∈ C2;
(iv) P /∈ C2 for someP with dim(P ) = 3;
(v) 24 \ {∅, {1,2,3,4}} 6∈ C2;

(vi) Sn ∈ C2 for all n.

Many people have contributed here. The up-parabola equivalence from Schein-
erman (1992) notes one of several equivalent representations of the usual circle
inclusion that has

(x1, y1, r1) ⊂ (x2, y2, r2)⇔
√
(x1 − x2)2+ (y1− y2)2 ≤ r2− r1 and

r1 6= r2
when (x, y, r) denotes the circular disk with center(x, y) and radiusr. Interval
order inclusion is proved in Fishburn (1988), invertibility in Urrutia (1989) and
Scheinerman (1991), zero-augmentability in Sidney, Sidney and Urrutia (1988),
closure under order composition in Urrutia (1989), and the inability to always
shrink minimal-element circles to points in Scheinerman and Tanenbaum (1997).
Sources for the others are:

(i) Sidney, Sidney and Urrutia (1988);
(ii) obvious from Theorem 1;

(iii) Fon-Der-Flaass (1993);
(iv) Felsner, Fishburn and Trotter (1999);
(v) Sidney, Sidney and Urrutia (1988) and Brightwell and Winkler (1989);

(vi) Brightwell and Winkler (1989).

Knight (1995) discusses a nonstandard-analysis approach to (iv). Attempts to prove
(iv) led to many other results, including those for dim(P ) = 3 noted below. The
proof of (iv) uses Ramsey theory and is uninformative about the smallestP with
dim(P ) = 3 that is not a circle order. In view of (iii), we note that Brightwell and
Scheinerman (1993) say that it is not known whether{1,2,3,4}3 is a circle order.
This was resolved affirmatively by El-Zahar and Fateen (1998), but the question of
whether{1,2,3,4,5}3 is a circle order remains open.
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Theorem 1 implies that every countableP with dim(P ) = 2 is in C+2 . While
(iv) remained open, the question of whether every countableP with dim(P ) = 3 is
in C+2 was resolved negatively by Scheinerman and Wierman (1988). The tightest
results were obtained by Lin (1991). LetN denote the set of positive integers.

THEOREM 11. LetP = {(1,1), (1,2), (1,3), (2,1), (2,3)}×N. Thendim(P ) =
3, P 6∈ C+2 , and if∅ ⊂ A ⊆ R2 with |A| ≤ 4 thenA× N ∈ C+2 .

LetZ denote the set of all integers. Historically, Scheinerman and Wierman (1988)
proved thatZ3 /∈ C+2 . They noted also that{1,2, . . . , n} × {1,2, . . . , n} ×N is not
in C+2 for largen. Hurlbert (1988) then gave a shorter proof ofN3 6∈ C+2 . This was
followed by Lin’s results in Theorem 11. Independently, Fon-Der-Flaass (1993)
also proved that{1,2} × {1,2} × N ∈ C+2 and{1,2} × {1,2,3} ×N 6∈ C+2 .

5. Sphere Orders

A poset(S,⊂) is ann-sphere orderif S is a set of spheres inRn. Let Cn denote
the set of all finiten-sphere orders andC+n the set of all countablen-sphere orders.
This section summarizes results that extend ton ≥ 3 some results in the preceding
section.

Initial research on sphere orders was motivated by consideration of causality in
space-time manifolds (Bombelli, Lee, Meyer and Sorkin, 1976). A natural affinity
between causality and sphere orders is described in Brightwell and Winkler (1989),
Scheinerman (1992) and Meyer (1993). We focus here on sphere orders in their
own right.

The foundational paper on sphere orders, Brightwell and Winkler (1989), proved
that for eachn there is a poset inCn+1 that is not inCn. For eachn ≥ 1 letTn+2 be
the poset(X,≺) with ground setX = {A ⊆ {1,2, . . . , n+ 2} : 1 ≤ |A| ≤ n+ 1}
and

A ≺ B if A ⊂ B and either |A| = 1 or |B| = n+ 1 (or both).

ThusT3 = S3 andT4 = 24 \ {∅, {1,2,3,4}}. The following theorem combines
the Brightwell and Winkler results with the non-shrinkability theorem forn ≥ 3
of Scheinerman and Tanenbaum (1997) and the theorem of Felsner, Fishburn and
Trotter (1999) which says that some finite 3-dimensional posets are not sphere
orders.

THEOREM 12. For eachn ≥ 1, dim(Tn+2) = n+2, crs(Tn+2) = n+1, Tn+2 6∈ Cn
andTn+2 ∈ Cn+1. For eachn ≥ 3 there is aP ∈ Cn which has noCn representation
in which every minimal element has radius zero. There is a finiteP with dim(P ) =
3 that is in noCn.

Meyer (1993) independently proved a result similar to an implication of the Bright-
well–Winkler theorem. LetT ′n+2 = (X,≺) with X = {A : A ⊆ {1,2, . . . , n+ 2}}
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andA ≺ B if |A| = 1 andA ⊂ B. ThenT ′n+2 ∈ Cn+1 and, asn → ∞, min{k :
T ′n ∈ Ck} → ∞.

Brightwell and Winkler (1989) mention that 25 ∈ C4 and conjecture that some
finite poset is in noCn. Felsner, Fishburn and Trotter (1999) verifies this conjecture.
Fon-Der-Flaass (1993) decided the corresponding question for countable sphere
orders.

THEOREM 13. {1,2} × {1,2,3} ×N is in noC+n .

Additional results for sphere orders are discussed in the next section.

6. Incidence Orders

A simple graphG = (V,E) is a setV of vertices and a setE of edges, each of
which is a pair{u, v} of distinct vertices. We assume that|V | ≥ 3. A hypergraph
H = (V,E) is a vertex setV and an edge setE of subsets ofV . If |e| = 2 for
everye ∈ E, thenH is a simple graph. Theincidence orderPH of hypergraph
H = (V,E) has ground setV ∪ E with

x ≺ y if x ∈ V, y ∈ E and x ∈ y.
We denotePH byPG whenH is a simple graph.

The following results are due to Scheinerman (1993) forPG and Schrijver
(1993) forPH .

THEOREM 14. There are finite simple graphsG with arbitrarily large dim(PG),
butPG ∈ C3 for all such graphs. For every finite hypergraphH ,

k = max{|e| : e ∈ E} ⇒ PH ∈ C2k−1.

A graphG is planar if it can be drawn in the plane so that each vertex is a
point, each edge is a continuous noncrossing, nontouching curve between its points,
and no edges cross or touch between vertices. Scheinerman (1991) proved a nice
strengthening of Theorem 14 for planar graphs. This is joined in the following
theorem by Schnyder’s (1989) remarkable and surprising discovery that the class
of finite planar graphs equals the class of finite graphs whose incidence orders have
order dimension at most 3. The last sentence of the theorem is from Scheinerman
and Tanenbaum (1997).

THEOREM 15. The following are mutually equivalent for every finite simple
graphG:

(i) G is planar;
(ii) dim(PG) ≤ 3;

(iii) PG ∈ C2.

There is a finite simple planar graphG whosePG has no circle order representa-
tion in which all circles for vertices have radius zero.
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We conclude this section by noting relationships between and facts about certain
planar graphs and vertex-edge-face incidence orders of convex polytopes inR3 that
are developed in Brightwell and Scheinerman (1993) and Brightwell and Trotter
(1993). A few definitions are needed.

A convex polytopein R3 is the convex hull of a finite number of points inR3.
We consider the setM of convex polytopes inR3 that do not lie in planes. Aface
ofM ∈M is the intersection of a plane andM that contains noncollinear points of
M and does not intersect the interior ofM. Each two faces that intersect in a line
segment define that intersection as anedgeofM, and each two edges that intersect
in a point define that point as avertexof M. We treat vertices as singleton subsets
of R3. Thefull incidence orderof M ∈ M with vertex setV , edge setE and face
setF is the posetPM with ground setV ∪ E ∪ F and

x ≺ y if x ⊂ y.
The following theorem, from Brightwell and Trotter (1993), was motivated by
Schnyder’s (1989) striking equivalence between (i) and (ii) of Theorem 15 but is
substantially stronger than his equivalence.

THEOREM 16. dim(PM) = 4 for all M ∈ M. If any vertex or face is removed
fromPM , the remainder has order dimension3.

To connect this to planar graphs, we define afaceof a planar drawing of a finite
simple planar graphG as the closure of a maximal open region inR2 after the
points in the vertices and edges of the drawing have been removed. There is one
outer, unbounded face; the others are compact subsets of the plane. We letF denote
the set of faces for a particular drawing.

A graph is connectedif there is an overlapping sequence of edges{u, v1},
{v1, v2}, . . . , {vk, v} between any two distinct verticesu andv. A graph is 3-con-
nectedif the removal of any two vertices of the graph and their incident edges
leaves a connected graph.

Let P denote the set of all finite simple 3-connected planar graphs. It is easily
seen that the(V,E, F) inclusion structure of a particular drawing ofG ∈ P does
not depend on the drawing, in particular on which face is chosen as the outer face,
so we refer to(V,E, F) as the vertex-edge-face structure forG itself. A theorem
of Steinitz (1934) says that a triple(V,E, F) is the vertex-edge-face structure for
aG ∈ P if and only if it is inclusion isomorphic to a(V,E, F) structure for a
convex polytopeM ∈M.

The full incidence orderfor G ∈ P with structure(V,E, F) is the posetQG

with ground setV ∪ E ∪ F and x ≺ y if x ⊂ y. By Steinitz’s theorem and
Theorem 16, dim(QG) = 4, and if a face inF is deleted then the remainder
has order dimension 3. Brightwell and Trotter (1997) prove that dimensionality no
greater than 4 continues to hold when 3-connectedness is not presumed. Given 3-
connectedness, letQ−G denote the remainder when the outer face of a planar draw-
ing ofG is deleted fromF . The incidence structure ofQ−G depends on which face
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is deleted, but any such deletion produces a circle order as proved in Brightwell
and Scheinerman (1993).

THEOREM 17. Q−G ∈ C2 for all Q−G for all G ∈ P .

Brightwell and Scheinerman (1993) derive this from a beautiful generalization of a
theorem of Koebe (1935) [see also Sachs (1994)] which says that a planar graph can
be represented by nonoverlapping circles, one for each vertex, so that two vertices
form an edge of the graph if and only if their circles are tangent.

7. Dynamic Inclusion and Invariants

We conclude our survey of results with two other topics covered by Urrutia (1989)
that bear on geometric containment orders. The first, from Santoro, Sidney, Sid-
ney and Urrutia (1987, 1989), considers containment under isometric movements
that preserve objects’ shapes. The second, from Urrutia (1988), concerns invariant
properties of orders that arise from the same comparability graph.

GivenA,B ⊆ Rm, we say thatA is isometrically includedin B and writeA ⊆I
B if some isometric copy ofA, obtained by the operations of rotation, translation,
and reflection, is included inB. The main question addressed in Santoro, Sidney,
Sidney and Urrutia (1987, 1989), is whether⊆I can be characterized for a family
T of objects inRm by a finite number of real-valued functionsf1, f2, . . . , fn onT
in the dominance-order sense that, for allA,B ∈ T ,

A ⊆I B ⇔ fi(A) ≤ fi(B) for i = 1, . . . , n. (7.1)

For example, the family of all spheres inRm can be characterized by (7.1) with
n = 1 andf1(A) = Volume(A), and the family of all regular convexk-gons for
eachk ≥ 3 is characterized byf1(A) = Area(A). However, as soon as we consider
slightly less regular shapes, (7.1) can fail regardless of the value ofn.

THEOREM 18. SupposeT is one of the following: all rectangles inR2; all isoce-
les triangles inR2; all convexk-gons inR2, k ≥ 4; all right circular cylinders
in R3. Then, for everyn, there do not existf1, . . . , fn that satisfy(7.1) for all
A,B ∈ T .

The result for rectangles is proved in Santoro, Sidney, Sidney and Urrutia (1987)
where it is also noted that a denumerable number offi characterize rectangles in
the manner of (7.1). The other results in Theorem 18 are from Santoro, Sidney,
Sidney and Urrutia (1989) which has other relevant information on the topic.

We now consider comparability graph invariants. A finite simple graphG =
(V,E) is acomparability graph(Gilmore and Hoffman, 1964; Fishburn, 1985) if
there is a poset(V,≺) such that

∀u, v ∈ V, (u ≺ v or v ≺ u)⇔ {u, v} ∈ E. (7.2)
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Let P(G) be the set of all posets(V,≺) that satisfy (7.2) for a givenG. Roughly
speaking, a comparability graph invariant is a poset parameter that has the same
value for all orders inP(G), for every comparability graphG. A precise statement
of results follows.

THEOREM 19. For every finite simple comparability graphG:

(i) dim(P ) is the same for allP ∈ P(G);
(ii) crs(P ) is the same for allP ∈ P(G);

(iii) either no orders or all orders inP(G) are interval orders;
(iv) either no orders or all orders inP(G) are circle orders;
(v) for eachn ≥ 3, either no orders or all orders inP(G) are regularn-gon

orders.

Trotter (1992, p. 62) notes that several sets of authors have been credited for (i), but
attributes primary credit to Gallai (1967). Results (ii), (iv) and (v) are from Urrutia
(1988), and (iii) is noted in Möhring (1985, p. 64).

8. Open Problems

Although many questions for geometric containment orders have been answered,
interesting questions remain open for the shapes highlighted in our survey as well
as others that have not been intensively studied. Some specific questions raised by
prior work are:

1. What are the smallest posets that are not angle orders?
2. What is the smallestn for which {1,2, . . . , n}3 is not a circle order?
3. Is 24 \ {∅, {1,2,3,4}} the smallest poset that is not a circle order?
4. Is 26 a sphere order in any dimension?
5. What are the smallest posets that are not sphere orders?
6. Is 24 \ {∅, {1,2,3,4}} the smallest poset in noRn?
7. Which results noted only for finite posets also hold for countable posets?

We have seen that Theorem 3 for degrees of freedom often identifies the minimum-
dimensional poset that is not a containment order of a particular type, but it does
not do this for circle orders. Is there a condition whose addition to Theorem 3 will
distinguish between min dim= dof+ 1 and min dim< dof+ 1 for a minimum-
dimensional poset that is not a containment order of a particular type? Are there
other complexity measures besides order dimension, crossing number, and degrees
of freedom that reveal interesting facets of geometric containment orders?

An example of a simple shape that has not been intensively studied for contain-
ment orders is the ellipse. Urrutia (1989) noted that isometric inclusion of ellipses
can be characterized by two functions but not one for (7.1). Varieties of ellipses for
containment orders include those with principal axis parallel to the abscissa, those
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with either axis parallel to the abscissa, and ellipses in general position. Are there
significant differences among the corresponding ellipse orders, and how do they
relate to containment orders for other simple planar shapes?
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