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Abstract. It has been known for more than 40 years that there are posets with planar cover
graphs and arbitrarily large dimension. Recently, Streib and Trotter proved that such posets
must have large height. In fact, all known constructions of such posets have two large disjoint
chains with all points in one chain incomparable with all points in the other. Gutowski and
Krawczyk conjectured that this feature is necessary. More formally, they conjectured that for
every k > 1, there is a constant d such that if P is a poset with planar cover graph and P

excludes k + k, then dim(P ) 6 d. We settle their conjecture in the affirmative. The proof
involves some intermediate results that we believe are of independent interest.

1. Introduction

We assume that the reader is familiar with basic notation and terminology for partially
ordered sets (here we use the short term posets), including subposets, chains and antichains,
minimal and maximal elements, linear extensions, order diagrams, and cover graphs. Extensive
background information on the combinatorics of posets can be found in [18, 19]. We will also
assume that the reader is familiar with basic concepts of graph theory, including subgraphs,
induced subgraphs, paths and cycles, and planar graphs.

Here are some related concepts for posets. A subposet Q of P is convex if y ∈ Q whenever
x, z ∈ Q and x < y < z in P . When Q is a convex subposet of P , the cover graph of Q is an
induced subgraph of the cover graph of P . Traditionally, the elements of a poset are called
points, and this is what we do in this paper.

Dushnik and Miller [5] defined the dimension of a poset P , denoted by dim(P ), as the least
positive integer d for which there is a family R = {L1, . . . , Ld} of linear extensions of P such
that x 6 y in P if and only if x 6 y in all L1, . . . , Ld. Clearly, if Q is a subposet of P , then
dim(Q) 6 dim(P ). A poset has dimension 1 if and only it is a chain.

For d > 2, the standard example Sd is the poset of height 2 consisting of d minimal elements
a1, . . . , ad and dmaximal elements b1, . . . , bd with ai < bj in Sd if and only if i 6= j. As noted in [5],
dim(Sd) = d for every d > 2. So every poset that contains a large standard example has large
dimension. On the other hand, it is well known that there are posets that have large dimension
but do not contain the standard example S2 (see the more comprehensive discussion in [2]).

In recent years, there have been a series of research papers exploring connections between
the dimension of a poset P and graph-theoretic properties of the cover graph of P . This paper
continues with that theme. A poset P is planar if it has a drawing with no edge crossings in
its order diagram. A planar poset has planar cover graph, but it is well known that there are
non-planar posets with planar cover graphs (see [18], page 67).

It is an easy exercise to show that the standard example Sd is a planar poset when 2 6 d 6 4,
while the cover graph of Sd is non-planar when d > 5. However, in [17], it is shown that for every
d > 5, the non-planar poset Sd is a subposet of a poset with planar cover graph. Subsequently,
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Figure 1. Kelly’s example of a planar poset containing the standard example
S5 as a subposet

Kelly [14] proved the stronger result: for every d > 5, the non-planar poset Sd is a subposet of a
planar poset P with dim(P ) = d (see Figure 1).

In this paper, we do not distinguish between isomorphic posets, and we say that P contains
Q when there is a subposet of P that is isomorphic to Q. Also, we say P excludes Q when P
does not contain Q. For a positive integer k, let k denote a k-element chain. Also, let k + k
denote a poset consisting of two chains of size k with all points in one chain incomparable with
all points in the other. The above-mentioned constructions of posets with planar cover graphs
and arbitrarily large dimension raise the following questions.

Question 1.1. Which of the following statements are true for every poset P with planar cover
graph and sufficiently large dimension?
(1) P has many minimal elements,
(2) P has large height, that is, P contains k for some large value of k,
(3) P contains k + k for some large value of k,
(4) P contains Sk for some large value of k.

The construction in [17] shows that for every d > 2, there is a poset P satisfying the following
conditions: (a) the dimension of P is d; (b) P has a unique minimal element and a unique
maximal element; and (c) the cover graph of P is planar. On the other hand, in [22], the
following result is proved for planar posets.

Theorem 1.2. For every t > 1, if P is a planar poset with t minimal elements, then dim(P ) 6
2t+ 1.

Furthermore, it is shown in [22] that this inequality is tight when t = 1 and t = 2. However,
when t > 3, it is only known that there are planar posets with t minimal elements that have
dimension t + 3. Since a poset and its dual have the same dimension, entirely analogous
statements can be made about maximal elements.

The second question was answered in the affirmative in [16], where the following theorem
(restated in a form consistent with the results of this paper) is proved.

Theorem 1.3. For every k > 2, there is a constant d such that if P is a poset with planar
cover graph and P excludes k, then dim(P ) 6 d.

The bound on d from [16] is very weak, due to extensive use of Ramsey theory in the proof;
however, greatly improved bounds are available via [15].
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Gutowski and Krawczyk [9] posed the third question and conjectured that it should also have
affirmative answer. In this paper, we will settle their conjecture in the affirmative by proving
the following theorem, which is the main result of this paper.

Theorem 1.4. For every positive integer k, there is an integer d such that if P is a poset with
planar cover graph and P excludes k + k, then dim(P ) 6 d.

While the Gutowski-Krawczyk conjecture might seem entirely natural just from reflecting
on the properties of the Kelly construction, it was also motivated by the results of [3, 4, 6, 13],
where combinatorial properties of posets excluding k + k played a central role.

The fourth question, which was apparently first raised in [18] (see the comment on page 119),
remains open, and we consider it one of the most central challenges in this area of research. Most
researchers feel that the answer is again “yes”. Formally, we can state the following conjecture.

Conjecture 1.5. For every k > 2, there exists an integer d such that if P is a poset with
planar cover graph and P excludes the standard example Sk, then dim(P ) 6 d.

The remainder of this paper is organized as follows. In the next section, we provide a brief
summary of notation, terminology, and background material. This discussion would apply to
any research problem involving dimension. Then, in Section 3, we develop some properties of the
class of posets that exclude k + k. As these results may find application to other combinatorial
problems for posets, the results of that section are presented for posets in general—with no
assumption that the cover graph is planar. The proof of our main theorem is given in the next
three sections. We conclude in Section 7 with a brief discussion of some open problems.

2. Notation, terminology, and background material

Let P be a poset. A family R = {L1, . . . , Ld} of linear extensions of P is called a realizer of
P when the following holds: x 6 y in P if and only if x 6 y in all L1, . . . , Ld. Thus dim(P )
is the least positive integer d such that P has a realizer of size d. Accordingly, to establish
an upper bound of the form dim(P ) 6 d, the most natural approach is simply to construct a
realizer of size d for P . However, in recent papers [7, 8, 10, 11, 15, 16, 21, 23], another approach
has been taken. Clearly, a family R of linear extensions of P is a realizer of P if and only if for
every (x, y) ∈ Inc(P ), there is L ∈ R with x > y in L. In this case, we say that L reverses the
incomparable pair (x, y). More generally, when S is a set of incomparable pairs of P , a linear
extension L reverses S when x > y in L for every (x, y) ∈ S. A set S ⊆ Inc(P ) is reversible
when there is a linear extension L of P that reverses S, and a family R of linear extensions
reverses S when for every (x, y) ∈ S, there is L ∈ R that reverses (x, y). With these ideas in
hand, when S ⊆ Inc(P ), we can define the dimension of S, denoted by dim(S), as the least
positive integer d for which there is a family of d linear extensions of P that reverses S. Clearly,
dim(P ) = dim(Inc(P )), so we can also say that dim(P ) is the least positive integer d for which
there is a partition of Inc(P ) into d reversible sets.

An indexed family {(xα, yα)}sα=1 of incomparable pairs of P with s > 2 is called an alternating
cycle when xα 6 yα+1 in P for every index α considered cyclically in {1, . . . , s} (that is,
ys+1 = y1). An alternating cycle is strict when there are no other comparabilities, that is,
xi 6 yj in P if and only if j ≡ i+ 1 (mod s). The following elementary lemma, proved in [20],
provides a convenient test to determine whether a subset of Inc(P ) is reversible.

Lemma 2.1. If P is a poset and S ⊆ Inc(P ), then the following statements are equivalent:
(1) S is not reversible,
(2) S contains an alternating cycle,
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(3) S contains a strict alternating cycle.

A typical approach to show that the set Inc(P ) can be partitioned into d reversible sets is by
defining a d-coloring of the pairs in Inc(P ) with the property that no (strict) alternating cycle
is monochromatic. However, the rules for assigning colors can be quite complicated (see e.g.
[10, 15, 16]), and that will certainly be the case here.

3. Posets that exclude two long incomparable chains

In this section, we present some general considerations on posets excluding two long incompa-
rable chains. If a poset P excludes 1 + 1, then P is a chain, so dim(P ) = 1. For the rest of this
section, we fix an integer k > 2 and a poset P that excludes k + k. We make no assumption on
the structure of the cover graph of P .

Let h denote the height of P , and let C = {c1 < · · · < ch} be a chain in P of size h. For each
point z ∈ P − C, define integers dn(z) and up(z) as follows:

dn(z) =

0 if z is incomparable with c1 in P ,
i otherwise, where i is greatest in {1, . . . , h} such that z > ci in P ,

up(z) =

h+ 1 if z is incomparable with ch in P ,
j otherwise, where j is least in {1, . . . , h} such that z < cj in P ,

Note that 0 6 dn(z) 6 h− 1 and 2 6 up(z) 6 h+ 1 for every point z ∈ P − C, by maximality
of the chain C. Define

Dn(i) = {z ∈ P − C : dn(z) = i} for 0 6 i 6 h− 1,
Up(j) = {z ∈ P − C : up(z) = j} for 2 6 j 6 h+ 1.

Lemma 3.1. For 0 6 i 6 h − 1, the subposet Dn(i) of P is convex and has height at most
2k − 2. More generally, for 0 6 i 6 i+m 6 h− 1, the subposet Dn(i,m) of P defined by

Dn(i,m) =
i+m⋃
α=i

Dn(α) ∪ {ci+1, . . . , ci+m}

is convex and has height at most m+ 2k − 2.
Dually, for 2 6 j 6 h+ 1, the subposet Up(j) of P is convex and has height at most 2k − 2.

More generally, for 2 6 j 6 j +m 6 h+ 1, the subposet Up(j,m) of P defined by

Up(j,m) =
j+m⋃
α=j

Up(α) ∪ {cj , . . . , cj+m−1}

is convex and has height at most m+ 2k − 2.

Proof. We only show the proof of the first part, as the second is dual. It is clear that the
subposet Dn(i,m) is convex. The fact that C is a maximum chain implies that the height of
Dn(i,m) is at most h − i, so the desired inequality follows if h − i 6 m + 2k − 2. Suppose
h > i+m+ 2k− 1 > i+m+ k. Let Q = {z ∈ Dn(i,m) : up(z) 6 ci+m+k}. The fact that C is a
maximum chain forces the height of Q to be at most m+ k − 1. Furthermore, the height of the
subposet Dn(i,m)−Q is at most k − 1, because all points of Dn(i,m)−Q are incomparable
with the k-element chain {ci+m+1 < · · · < ci+m+k}. Hence the height of Dn(i,m) is at most
(m+ k − 1) + (k − 1) = m+ 2k − 2. �

For 0 6 i 6 h, define Ar(i, i + 1) = {z ∈ P − C : dn(z) 6 i and up(z) > i + 1}. Here, Ar
stands for “around”.
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Lemma 3.2. For 0 6 i 6 h, the subposet Ar(i, i+1) of P is convex and has height at most 4k−4.

Proof. It is clear that the subposet Ar(i, i+1) is convex. Let Q = {z ∈ Ar(i, i+1): up(z) 6 i+k}.
Thus Q ⊆ Up(i+1)∪· · ·∪Up(i+k) ⊆ Up(i+1, k−1). It follows from Lemma 3.1 that the height
of Q is at most (k−1)+2k−2 = 3k−3. Furthermore, the height of the subposet Ar(i, i+1)−Q
is at most k− 1, because all points of Ar(i, i+ 1)−Q are incomparable with the k-element chain
{ci+1 < · · · < ci+k}. Hence the height of Ar(i, i+ 1) is at most (3k − 3) + (k − 1) = 4k − 4. �

Lemma 3.3. Let z, w ∈ P − C, dn(z) < up(w), and w 6 z in P . If C ′ is a chain in P − C
with least element w and greatest element z, then |C ′| 6 4k − 4.

Proof. We have z, w ∈ Ar(dn(z),dn(z) + 1), which implies C ′ ⊆ Ar(dn(z), dn(z) + 1). We apply
Lemma 3.2 to conclude that |C ′| 6 4k − 4. �

Every incomparable pair (x, y) of P satisfies dn(y) < up(x). We call an incomparable pair
(x, y) of P dangerous if dn(x) < dn(y) < up(x) < up(y), otherwise the pair (x, y) is safe.

Lemma 3.4. If every convex subposet Q of P of height at most 2k − 2 satisfies dim(Q) 6 d0,
then there is a set of at most 2d0 linear extensions of P that reverses all the safe incomparable
pairs of P .

Proof. It follows from Lemma 3.1 that dim(Dn(i)) 6 d0 for 0 6 i 6 h− 1 and dim(Up(j)) 6 d0
for 2 6 j 6 h+ 1. First, consider d0 linear extensions of P that
• have block form Dn(0) < c1 < Dn(1) < · · · < ch−1 < Dn(h− 1) < ch,
• induce d0 linear extensions of Dn(i) witnessing dim(Dn(i)) 6 d0, for 0 6 i 6 h− 1.
These linear extensions reverse all incomparable pairs (x, y) of P such that x, y ∈ Dn(i) for some
i with 0 6 i 6 h− 1, and all incomparable pairs (x, y) of P with y ∈ C. Then, consider d0 more
linear extensions of P that
• have block form c1 < Up(2) < c2 < · · · < Up(h) < ch < Up(h+ 1),
• induce d0 linear extensions of Up(i) witnessing dim(Up(i)) 6 d0, for 2 6 i 6 h+ 1.
These linear extensions reverse all incomparable pairs (x, y) of P such that x, y ∈ Up(i) for some
i with 2 6 i 6 h+ 1, and all incomparable pairs (x, y) of P with x ∈ C. The block form of the
2d0 linear extensions implies that any other incomparable pair (x, y) of P is also reversed unless
dn(x) < dn(y) < up(x) < up(y), that is, the pair (x, y) is dangerous. �

In view of Lemma 3.4, we can focus on reversing only the dangerous incomparable pairs when
attempting for a bound on dim(P ). This is the starting point of the proof of Theorem 1.4 in the
next sections. We conclude this section with two results that will not be used further in the
paper: one asserting that dim(P ) = O(h) whenever the convex subposets of P with bounded
height have bounded dimension, and the other asserting that linear dependence on h is necessary.

Proposition 3.5. If every convex subposet Q of P of height at most 4k−4 satisfies dim(Q) 6 d1,
then dim(P ) 6 (h+ 1)d1.

Proof. We apply Lemma 3.4 to reverse all the safe incomparable pairs of P using at most 2d1 linear
extensions. For every dangerous incomparable pair (x, y) of P , we have x, y ∈ Ar(dn(y),dn(y)+1),
where 1 6 dn(y) 6 h−1. For 1 6 i 6 h−1, it follows from Lemma 3.2 that dim(Ar(i, i+1)) 6 d1,
and we can extend any linear extension of Ar(i, i + 1) witnessing the dimension to a linear
extension of P . This way, we obtain a set of at most (h− 1)d1 linear extensions of P reversing
all the dangerous incomparable pairs of P , and the proof is complete. �
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Proposition 3.6. For every n > 2, there is a poset P excluding 3+3 such that dim(P ) > n and
every convex subposet Q of P satisfies dim(Q) 6 h(Q) + 1, where h(Q) denotes the height of Q.

Proof. The poset P consists of points a1, . . . , an, b1, . . . , bn, c0, . . . , cn with the following cover
relations: c0 < · · · < cn, ai < ci and ci−1 < bi for 1 6 i 6 n, and ai < bj for 1 6 j < i 6 n. Every
chain in P of size at least 3 contains a point of the form ci, so P excludes 3 + 3. The subposet
of P induced on a1, . . . , an, b1, . . . , bn is isomorphic to the standard example Sn, so dim(P ) > n.
Every convex subposet of P of height 1 is an antichain and therefore has dimension at most 2.
Now, let h > 2, and let Q be a convex subposet of P of height h. To prove dim(Q) 6 h+1, we can
assume without loss of generality that Q is a maximal subposet of P of height h. It follows that
Q is comprised of points ai+1, . . . , an, b1, . . . , bi+h−1, ci, . . . , ci+h−1 for some i ∈ {0, . . . , n−h+1}.
It is easy to check that the following h+ 1 linear extensions of Q form a realizer of Q:

ai+1 < · · · < an < bi < · · · < b1 < ci < bi+1 < ci+1 < · · · < bi+h−1 < ci+h−1,

ci < ai+1 < ci+1 < · · · < ai+j−1 < ci+j−1 < ai+j+1 < · · · < an < bi+j < ai+j

< b1 < · · · < bi+j−1 < ci+j < bi+j+1 < ci+j+1 < · · · < bi+h−1 < ci+h−1 for 1 6 j 6 h− 1,
ci < ai+1 < ci+1 < · · · < ai+h−1 < ci+h−1 < an < · · · < ai+h < b1 < · · · < bi+1. �

4. Proof of the main theorem

For the proof of Theorem 1.4, we fix a poset P that excludes k + k, where k > 2, and has
planar cover graph, and we attempt to partition the set Inc(P ) of incomparable pairs of P into a
bounded number of reversible subsets, where the bound depends only on k. Following the notation
and terminology of the preceding section, let h be the height of P , and let C = {c1 < · · · < ch}
be a chain in P of size h. We use operators Dn, Up, and Ar as in the preceding section to denote
appropriate convex subposets of P − C. We use operators dn and up in a different way than in
the preceding section, namely, to refer to points of the chain C rather than integer numbers:
• for z ∈ P , we let dn(z) = ci if ci 6 z and i is greatest in {1, . . . , h} with this property,
• for z ∈ P , we let up(z) = ci if z 6 ci and i is least in {1, . . . , h} with this property.
We can write dn(z) or up(z) only for points z ∈ P for which the respective point in C exists.

By Theorem 1.3, there is an integer d1 such that every poset P ′ with planar cover graph and
with height at most 4k − 4 satisfies dim(P ′) 6 d1. It follows that every convex subposet of P of
height at most 4k − 4 has dimension at most d1. For 1 6 i 6 h− 1, in particular, Lemma 3.2
yields dim(Ar(i, i+ 1)) 6 d1, so there is a coloring φi : Inc(Ar(i, i+ 1))→ {1, . . . , d1} such that
for each color γ ∈ {1, . . . , d1}, the set of incomparable pairs of Ar(i, i+ 1) that are assigned color
γ by φi is reversible. We fix the integer d1 and the colorings φi for 1 6 i 6 h− 1 for this and
the following sections.

By Lemma 3.4, we can reverse all the safe incomparable pairs of P using at most 2d1 linear
extensions, and the remaining challenge is to reverse the dangerous incomparable pairs of P . For
every dangerous incomparable pair (a, b) of P , we have c1 < b and a < ch in P , so the points
dn(b) and up(a) of the chain C are defined. For any set S of dangerous incomparable pairs of P ,
let A(S) denote the set of points a ∈ P for which there is a point b ∈ P with (a, b) ∈ S, and let
B(S) denote the set of points b ∈ P for which there is a point a ∈ P with (a, b) ∈ S.

Recall from the preceding section that for every dangerous incomparable pair (a, b) of P , we
have a, b ∈ Ar(i, i+ 1) ∩ · · · ∩Ar(j − 1, j), where ci = dn(b) and cj = up(a). In particular, the
dangerous incomparable pairs (a, b) of P with dn(b) = c1 belong to Inc(Ar(1, 2)) and thus can
be reversed using d1 linear extensions. Similarly, the dangerous incomparable pairs (a, b) of P
with up(a) = ch can be reversed using d1 linear extensions.
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Let S0 be the set of dangerous incomparable pairs (a, b) of P with dn(b) > c1 and up(a) < ch in
P . It remains to partition the set S0 into a bounded number of reversible subsets. By convention,
we will write S only to denote some subset of the set S0, we will write a, a′, aα, etc. only to
denote a point from A(S), and we will write b, b′, bα, etc. only to denote a point from B(S).

For a set S ⊆ S0, we call a pair (a, b) ∈ S left-safe with respect to S if there is no point
b′ ∈ B(S) with a 6 b′ and dn(b′) < dn(b) in P . The following lemma plays an important role in
our argument.
Lemma 4.1. For a set S ⊆ S0, if S′ is the set of pairs in S that are left-safe with respect to S,
then dim(S′) 6 d1.
Proof. For a color γ ∈ {1, . . . , d1}, let S′(γ) be the subset of S′ consisting of all pairs (a, b) ∈ S′
such that φi(a, b) = γ, where ci = dn(b). It is enough to prove that the set S′(γ) is reversible
for every γ ∈ {1, . . . , d1}. Suppose to the contrary that the set S′(γ) is not reversible for
some γ ∈ {1, . . . , d1}. This means that S′(γ) contains an alternating cycle {(aα, bα)}sα=1, where
s > 2. For every α ∈ {1, . . . , s}, we have aα 6 bα+1 and therefore dn(bα) 6 dn(bα+1) in P ,
because the pair (aα, bα) is left-safe with respect to S. Since the latter inequality holds for
every α ∈ {1, . . . , s}, there is a point ci ∈ C with 1 6 i 6 h − 1 such that ci = dn(bα) for
every α ∈ {1, . . . , s}. This implies that {(aα, bα)}sα=1 is a monochromatic alternating cycle in
Inc(Ar(i, i+ 1)), which is a contradiction. �

Let G denote the cover graph of P , which is a planar graph. We fix a plane straight-line
drawing of G, that is, a drawing of G in the plane using non-crossing straight-line segments for
edges. We assume, without loss of generality, that the least point c1 of the maximum chain C
lies on the outer face of the drawing.

A witnessing path for a pair (x, y) with x 6 y in P is a path u0 · · ·ur in G such that
x = u0 < · · · < ur = y in P (in particular, ui is covered by ui+1 in P for 0 6 i 6 r − 1). It is
clear that every comparable pair (x, y) with x 6 y in P has at least one witnessing path. For the
purpose of our proof, it is convenient to fix one witnessing path, to be denoted by W (x, y), for
each pair (x, y) with x 6 y in P . However, we need to choose the paths W (x, y) in a consistent
way, which is achieved in the following proposition.
Proposition 4.2. There is a function (x, y) 7→W (x, y) that maps each pair (x, y) with x 6 y
in P to a witnessing path W (x, y) for (x, y) in such a way that the following holds:
(1) if x 6 c 6 y in P and c ∈ C, then W (x, y) passes through c; in particular, if up(x) and

dn(y) are defined and up(x) 6 dn(y) in P , then W (x, y) passes through up(x) and dn(y);
(2) if x1 6 x2 6 y2 6 y1 in P and W (x1, y1) passes through x2 and y2, then W (x2, y2) is the

subpath of W (x1, y1) from x2 to y2.
Proof. Assume some (arbitrary) total order ≺ on the points of P . The order ≺ extends naturally
to a lexicographic total order ≺lex on finite sequences of points of P as follows:
• the empty sequence is the least element in ≺lex;
• for any two non-empty sequences u0 · · ·ur and v0 · · · vs of points of P , we have u0 · · ·ur ≺lex
v0 · · · vs if and only if u0 < v0 or u0 = v0 and u1 · · ·ur ≺lex v1 · · · vs.

For every pair (x, y) with x 6 y in P , let W (x, y) be the ≺lex-minimum witnessing path among
all witnessing paths for (x, y) passing through all points c ∈ C with x 6 c 6 y in P . It is clear
that the paths W (x, y) so defined satisfy both conditions of the proposition. �

The length of a witnessing path W (x, y), denoted by ‖W (x, y)‖, is the number of edges in
W (x, y). It follows from Lemmas 3.1 and 3.2 that the following kinds of witnessing paths have
bounded size:
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• ‖W (dn(z), z)‖ 6 2k − 2 for any z ∈ P ,
• ‖W (z, up(z))‖ 6 2k − 2 for any z ∈ P ,
• ‖W (z, w)‖ 6 4k − 5 for any z, w ∈ P − C with dn(w) < up(z).
For i ∈ {2, . . . , h− 1}, we classify every edge of the form ciz of G, where z /∈ C, as a
• left-edge if the edges cici−1, ciz, cici+1 occur in this order clockwise around ci,
• right-edge if the edges cici−1, ciz, cici+1 occur in this order counterclockwise around ci.
Since c2 6 dn(b) < up(a) 6 ch−1 in P for any (a, b) ∈ S0, the above yields a partition of S0 into
four classes SLL, SLR, SRL, and SRR according to how the last edge of W (a,up(a)) and the first
edge of W (dn(b), b) are classified. That is, for every (a, b) ∈ S0, we have
• (a, b) ∈ SLL ∪ SLR if the last edge of W (a,up(a)) is a left-edge,
• (a, b) ∈ SRL ∪ SRR if the last edge of W (a,up(a)) is a right-edge,
• (a, b) ∈ SLL ∪ SRL if the first edge of W (dn(b), b) is a left-edge,
• (a, b) ∈ SLR ∪ SRR if the first edge of W (dn(b), b) is a right-edge.
To complete the proof of Theorem 1.4, we will establish the following:
• dim(SLL) = O(k3d1) and dim(SRR) = O(k3d1), in the next section,
• dim(SLR) = O(k3 + k2d1) and dim(SRL) = O(k3 + k2d1), in Section 6.
This allows us to conclude that dim(S0) = O(k3d1) and thus dim(P ) = O(k3d1).

5. Same-side dangerous pairs

In this section, we show that dim(SLL) = O(k3d1) and dim(SRR) = O(k3d1). We present the
argument only for SLL, and the argument for SRR is symmetric. To simplify the notation used
in this portion of the proof, we (temporarily) set S = SLL.

Recall that c2 < b in P for every b ∈ B(S), as S contains only dangerous pairs with dn(b) > c1
in P . Furthermore, the choice of the witnessing paths guarantees that
• for any b ∈ B(S), the common part of W (c1, b) with W (c1, ch) is W (c1,dn(b)),
• for any b, b′ ∈ B(S), the common part of W (c1, b) and W (c1, b

′) is W (c1, z) for some z ∈ P .
Therefore, the union of W (c1, ch) and the witnessing paths W (c1, b) over all b ∈ B(S) forms a
tree, which we call the blue tree and denote by BT. The points, edges, and paths in BT are
called blue points, blue edges, and blue paths. For any two blue points u and v, let BT(u, v)
denote the unique path in BT (made of blue points and blue edges) between u and v.

Let ≺ be the total order on the blue points determined by carrying out a clockwise-oriented
depth-first search of BT from c1 and setting u ≺ v when u is visited before v for the first time.
In other words, for any two blue points u and v such that v /∈ W (c1, u), if the common part
of W (c1, u) and W (c1, v) is W (c1, z) (where z 6= c1, v) and either u ∈ W (c1, v) or the blue
paths BT(z, c1) (which is opposite to W (c1, z)), W (z, u), and W (z, v) go out of z in this order
clockwise, then we declare u ≺ v. It follows that u ≺ v for any two blue points u and v such
that dn(u) < dn(v) in P . The greatest point in this order is ch. Figure 2 illustrates how the
blue tree might appear.

Let a ∈ A(S). Following [16], we call a blue point v special for a if the following holds:
• a 6 v in P ,
• a 66 u in P whenever u ∈W (c1, v) and u 6= v.
Let Spec(a) denote the set of all blue points v that are special for a (see Figure 2). Any two
distinct points v, v′ ∈ Spec(a) satisfy v′ /∈ W (c1, v) and v /∈ W (c1, v

′), although they may be
comparable in P . The set Spec(a) inherits the order ≺ from BT. Since up(a) ∈ Spec(a), we
have Spec(a) 6= ∅. In fact, up(a) is the greatest point in the order ≺ on Spec(a).
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c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

u1

u2

u3

u4

a
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x

y

t

R(t, x, y)

Figure 2. Illustration for the concepts introduced in Section 5; arrows on the
cover graph edges point according to the increasing direction of P ; Spec(a) =
{u1 ≺ u2 ≺ u3 ≺ t ≺ x ≺ u4 ≺ y ≺ c11}; Spec′(a) = {u1 ≺ x ≺ y ≺ c11}

The following straightforward property is stated for emphasis.

Proposition 5.1. If a ∈ A(S), b ∈ B(S), and a 6 b in P , then there is v ∈ Spec(a) with
v ∈W (c1, b) and v 6 b in P .

Now, suppose a ∈ A(S), x, y ∈ Spec(a), and x ≺ y in BT. Every point t ∈ P such that
a 6 t 6 x, y in P and t is the only common point of W (t, x) and W (t, y) gives rise to a region
in the plane, denoted by R(t, x, y), whose boundary is the simple closed curve formed by the
paths BT(x, y), W (t, x), and W (t, y). The boundary of R(t, x, y) traversed counterclockwise
goes from t to x along W (t, x), then to y along BT(x, y), and then back to t along W (t, y) in
the reverse direction (see Figure 2). It is possible that t = x or t = y. If a 6= t, then a can lie
either in the interior or in the exterior of R(t, x, y). Any region of the form R(t, x, y) where
x, y ∈ Spec(a) and a 6 t in P is called an a-region. (For such an a-region, it is not required that
t lies on the paths W (a, x) and W (a, y).)

Let T0 denote the subset of S consisting of all pairs that are left-safe with respect to S. By
Lemma 4.1, we have dim(T0) 6 d1. To complete the proof, we will show that dim(S − T0) 6(2k−1

2
)
(4k − 4)d1 by partitioning S − T0 into reversible subsets of the form T (h1, h2, n, γ), where

the four parameters are integers with 0 6 h1 < h2 6 2k − 2, 0 6 n 6 4k − 5, and 1 6 γ 6 d1.
Membership in these sets will be determined in two stages. In the first stage, we will partition
S − T0 into subsets of the form T (h1, h2) where 0 6 h1 < h2 6 2k − 2. In the second stage, for
each pair (h1, h2) with 0 6 h1 < h2 6 2k − 2, we will further partition T (h1, h2) into reversible
subsets of the form T (h1, h2, n, γ), where 0 6 n 6 4k − 5 and 1 6 γ 6 d1.

To describe the first partition, we need some more definitions. For a blue point v, let
h(v) = ‖W (dn(v), v)‖. We have 0 6 h(v) 6 2k − 2 for every blue point v, and we have h(v) = 0
if and only if v ∈ C. For a point a ∈ A(S − T0), let

Spec′(a) = {u ∈ Spec(a) : for every v ∈ Spec(a), if v ≺ u in BT, then h(v) > h(u)}

(see Figure 2). The set Spec′(a) inherits the order ≺ from Spec(a). The sequence of numbers
h(v) for the points v ∈ Spec′(a) considered in the order ≺ is strictly decreasing. The first point
in Spec′(a) is the first point in Spec(a), and the last point in Spec′(a) is up(a).

Now, let (a, b) ∈ S − T0. Since (a, b) is not left-safe with respect to S, there is a point
u ∈ Spec(a) with dn(u) < dn(b) in P . Consequently, there is a point u ∈ Spec′(a) with
dn(u) < dn(b) in P and thus u ≺ b in BT. We also have b ≺ up(a) ∈ Spec′(a) and b /∈ Spec′(a).
If follows that there are two points x, y ∈ Spec′(a) consecutive in the order ≺ on Spec′(a) such
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that x ≺ b ≺ y in BT. Let h1 = h(y) and h2 = h(x), so that 0 6 h1 < h2 6 2k − 2. We put the
pair (a, b) to the set T (h1, h2) of the first partition.

To complete the proof, it remains to show that dim(T (h1, h2)) 6 (4k − 4)d1 for each pair of
integers (h1, h2) with 0 6 h1 < h2 6 2k− 2. To this end, we fix an arbitrary pair (h1, h2) of this
form and show that dim(T (h1, h2)) 6 (4k− 4)d1 by explaining how T (h1, h2) can be partitioned
into reversible sets of the form T (h1, h2, n, γ), where 0 6 n 6 4k − 5 and 1 6 γ 6 d1. This task
will require some preliminary work.

In the reasoning used above to put a pair (a, b) in T (h1, h2), the points x and y have been
defined depending on both a and b. Now, however, for any point a ∈ A(T (h1, h2)), there are a
unique point y ∈ Spec′(a) with h(y) = h1 and a unique point x ∈ Spec′(a) with h(x) = h2. Let
y(a) and x(a) denote these points, respectively, for any a ∈ A(T (h1, h2)).

Lemma 5.2. Let (a, b), (a′, b′) ∈ T (h1, h2) be such that a′ 6 b and dn(y(a)) < dn(y(a′)) in
P . Then, for every a-region of the form R(x(a), y(a), t), there is an a′-region of the form
R(x(a′), y(a′), t′) such that ‖W (t′, x(a′))‖ < ‖W (t, x(a))‖.

Proof. Fix an a-region R(t, x(a), y(a)), where a 6 t in P . For simplicity of notation, let x = x(a),
y = y(a), R = R(t, x(a), y(a)), x′ = x(a′), and y′ = y(a′). We prove the lemma in several steps,
establishing the following claims:

(1) y′ lies in the exterior of R,
(2) b lies in the interior or on the boundary of R,
(3) a′ 66 y in P ,
(4) if a′ 6 u in P and u ∈W (c1, x), then u = x,
(5) a′ lies in the interior of R,
(6) there is a point t′ on W (t, x) such that a′ 6 t 6 x, y′ in P , t′ 6= t, and t′ is the only common

point of W (t′, x) and W (t′, y′),
(7) x′ = x.

The conclusion of the lemma then follows directly from (6) and (7).
For the proof of (1), suppose y′ does not lie in the exterior of R. Since dn(y) < dn(y′) in P , the

first edge of the path W (dn(y), y′) is part of the chain C and lies in the exterior of R. Therefore,
the path W (dn(y), y′) crosses the boundary of R at some point u other than dn(y). It follows
that u 6 x or u 6 y in P , which contradicts the fact that dn(x) 6 dn(y) < dn(y′) = dn(u) in P .

For the proof of (2), suppose b lies in the exterior of R. Since x ≺ b ≺ y in BT, the blue path
W (dn(b), b) enters the interior of R with the first edge that is not common with W (dn(x), x) nor
W (dn(y), y). Therefore, it must exit the interior of R through a point u on W (t, x) or W (t, y).
It follows that a 6 u 6 b in P , which is a contradiction.

For the proof of (3), suppose a′ 6 y in P . It follows that a′ has a special point u on the blue path
W (c1, y). We have h(u) 6 h(y) = h1 = h(y′). However, we also have dn(u) 6 dn(y) < dn(y′) in
P and thus u ≺ y′ in BT. This is a contradiction with y′ ∈ Spec′(a′).

For the proof of (4), suppose a′ 6 u in P , u ∈ W (c1, x), and u 6= x. Assume without loss
of generality that u is a special point for a′. We have h(u) < h(x) = h2 = h(x′). We also
have dn(u) 6 dn(y) < dn(y′) in P and thus u ≺ y′ in BT, which implies h(u) > h(y′), as
y′ ∈ Spec′(a′). However, since x′ and y′ are consecutive in the order ≺ on Spec′(a′), no point
u ∈ Spec(a′) can satisfy h(x′) > h(u) > h(y′), which is a contradiction.

For the proof of (5), suppose a′ does not lie in the interior of R. By (2), b is not in the exterior
of R, so the path W (a′, b) intersects the boundary of R at some point u. Since a′ 6 u in P , it
follows from (3) and (4) that u lies onW (t, x). Thus a 6 t 6 u 6 b in P , which is a contradiction.
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By (5) and (1), a′ is in the interior and y′ is in the exterior of R, so the path W (a′, y′) crosses
the boundary of R. For the proof of (6), let t′ be the last common point of W (a′, y′) with the
boundary of R in the order along W (a′, y′). Since a′ 6 t′ in P , it follows from (3) and (4) that
t′ lies on W (t, x) and t′ 6= t. Furthermore, it follows from the choice of t′ that it is the only
common point of W (t′, x) and W (t′, y′). Therefore, t′ satisfies all the conditions of (6).

It remains to prove (7). Suppose x′ 6= x. The fact that a′ 6 t′ 6 x in P and (4) imply that
x ∈ Spec(a′). Since h(x) = h2 = h(x′) and x′ ∈ Spec′(a′), we have x′ ≺ x in BT. Therefore,
the first edge of the path W (c1, x

′) that is not common with W (c1, x) lies in the exterior of R.
If x′ is not in the exterior of R, then the path W (c1, x

′) crosses W (t, x) or W (t, y) and thus
a 6 t 6 x′ in P . If x′ is not in the interior of R, then the path W (a′, x′) crosses the boundary
of R at some point u; again, since a′ 6 u in P , it follows from (3) and (4) that u lies on W (t, x)
and thus a 6 t 6 u 6 x′ in P . In either case, we have concluded that a 6 x′ in P . Consequently,
there is a point v ∈ Spec(a) on the path W (c1, x

′). It follows that v ≺ x′ ≺ x in BT and
h(v) 6 h(x′) = h(x), which is a contradiction to x ∈ Spec′(a). Thus x′ = x. �

For incomparable pairs (a, b), (a′, b′) ∈ T (h1, h2), let (a, b)→ (a′, b′) denote that a′ 6 b and
dn(y(a)) < dn(y(a′)) in P . For a pair (a, b) ∈ T (h1, h2), let `(a, b) denote the greatest integer s for
which there is a sequence {(aα, bα)}sα=0 ⊆ T (h1, h2) such that (a0, b0)→ · · · → (as, bs) = (a, b).

Proposition 5.3. For every incomparable pair (a, b) ∈ T (h1, h2), the following holds:
(1) 0 6 `(a, b) 6 4k − 5,
(2) if (a, b)→ (a′, b′) ∈ T (h1, h2), then `(a, b) < `(a′, b′).

Proof. Fix a sequence {(aα, bα)}sα=0 ⊆ T (h1, h2) such that (a0, b0) → · · · → (as, bs) = (a, b),
where s = `(a, b). To see (1), choose any a0-region of the form R(t0, x(a0), y(a0)), and apply
Lemma 5.2 repeatedly to obtain a sequence of regions {R(tα, x(aα), y(aα))}sα=0 such that
‖W (t0, x(a0))‖ > · · · > ‖W (ts, x(as))‖ > 0; these inequalities are possible only when s 6
‖W (t0, x(a0))‖ 6 4k − 5, where the latter inequality follows from the fact that dn(x(a0)) <
up(a0) 6 up(t0). To see (2), set (as+1, bs+1) = (a′, b′) and observe that the sequence {(aα, bα)}s+1

α=0
witnesses `(a′, b′) > s+ 1. �

We partition the set T (h1, h2) into subsets of the form T (h1, h2, n, γ), putting every pair
(a, b) ∈ T (h1, h2) into the set T (h1, h2, n, γ) such that n = `(a, b) and γ is determined as follows:
• if h1 > 0, then dn(b) 6 dn(y(a)) < up(a) in P , so (a, b) is an incomparable pair of Ar(i, i+ 1),

where ci = dn(y(a)), and we let γ = φi(a, b);
• if h1 = 0, then y(a) = up(a), so (a, b) is an incomparable pair of Ar(j−1, j), where cj = up(a),

and we let γ = φj−1(a, b).
It follows that 0 6 n 6 4k − 5 (by Proposition 5.3 (1)) and 1 6 γ 6 d1. To complete the proof,
it remains to show the following.

Proposition 5.4. Every set T (h1, h2, n, γ) is reversible.

Proof. Suppose not. Pick an alternating cycle {(aα, bα)}sα=1 contained in T (h1, h2, n, γ), where
s > 2. For 1 6 α 6 s, since `(aα, bα) = `(aα+1, bα+1), it follows from Proposition 5.3 (2) that
(aα, bα) 6→ (aα+1, bα+1). This and aα+1 < bα in P yield dn(y(aα)) 6 dn(y(aα+1)) in P , for
1 6 α 6 s. This implies that there is c ∈ C with dn(y(aα)) = c for 1 6 α 6 s. If h1 > 0 and
ci = c, then {(aα, bα)}sα=1 is an alternating cycle in Ar(i, i+ 1), and φi(aα, bα) = γ for 1 6 α 6 s,
which is a contradiction. If h1 = 0 and cj = c, then {(aα, bα)}sα=1 is an alternating cycle in
Ar(j − 1, j), and φj−1(aα, bα) = γ for 1 6 α 6 s, which is again a contradiction. �
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We have partitioned S into O(k3d1) reversible subsets of the form T (h1, h2, n, γ) with 0 6
h1 < h2 6 2k − 2, 0 6 n 6 4k − 5, and 1 6 γ 6 d1, thus proving that dim(S) = O(k3d1).

6. Opposite-side dangerous pairs

In this section, we show that dim(SLR) = O(k2d1 + k3) and dim(SRL) = O(k2d1 + k3). We
present the argument only for SRL, and the argument for SLR is symmetric. Recall that the set
SRL contains only dangerous incomparable pairs (a, b) of P with dn(b) > c1 and up(a) < ch in
P . We begin by setting S = SRL. As the argument proceeds, the meaning of S changes, but
the “new” set S is always a subset of the “old” set S. Each time the meaning of S changes, the
target upper bound on dim(S) is adjusted accordingly.

In the argument given thus far, our main emphasis has been on classifying incomparable pairs.
Now, we want to pay attention to comparable pairs. When a ∈ A(S), b ∈ B(S), and a 6 b in P ,
we call (a, b) a strong comparable pair if up(a) 6 dn(b) in P , and we call (a, b) a weak comparable
pair if up(a) > dn(b) in P . When a comparable pair (a, b) is weak, the witnessing path W (a, b)
has length at most 4k − 5 and does not intersect the chain C.

Proposition 6.1. For every strict alternating cycle {(aα, bα)}sα=1 in S, where s > 2, there is
at most one index α ∈ {1, . . . , s} such that (aα, bα+1) is a strong comparable pair.

Proof. Suppose there are two distinct indices α, β ∈ {1, . . . , s} such that the comparable pairs
(aα, bα+1) and (aβ, bβ+1) are strong. Without loss of generality, we have up(aα) 6 up(aβ) in P .
It follows that aα < up(aα) 6 up(aβ) 6 dn(bβ+1) < bβ+1 in P , which contradicts the assumption
that the alternating cycle {(aα, bα)}sα=1 is strict. �

When T ⊆ S, let Q(T ) denote the set of weak comparable pairs (a, b) such that a ∈ A(T ) and
b ∈ B(T ). By Proposition 6.1, if Q(T ) = ∅, then there is no strict alternating cycle in T and
hence T is reversible. In particular, we can assume for the rest of this section that Q(S) 6= ∅.

For every weak comparable pair (a, b) ∈ Q(S), the choice of the witnessing paths W (a,up(a))
(which ends with a right-edge),W (dn(b), b) (which starts with a left-edge), andW (a, b) guarantees
the following:
• the common part of W (a,up(a)) and W (a, b) is W (a, v) for some point v,
• the common part of W (dn(b), b) and W (a, b) is W (w, b) for some point w.
This yields a region D(a, b) in the plane whose boundary is a simple closed curve formed by the
following four paths (see Figure 3):
• W (dn(b), up(a)), called the middle of D(a, b),
• W (v,up(a)), called the bottom of D(a, b),
• W (dn(b), w), called the top of D(a, b),
• W (v, w), called the right side of D(a, b).
Next, we determine a positive integer n and a sequence of weak comparable pairs {(ai, bi)}n−1

i=1
using the following “greedy” procedure. We start by choosing (a1, b1) ∈ Q(S) so as to maximize
dn(b1). Then, for i > 2, after (ai−1, bi−1) has been determined, we consider all pairs (a, b) ∈ Q(S)
such that the region D(ai−1, bi−1) is contained in the interior of the region D(a, b), that is,
dn(b) < up(a) < dn(bi−1) in P and the boundaries of D(a, b) and D(ai−1, bi−1) are disjoint. If
there is no such pair (a, b), then we set n = i and the construction terminates. Otherwise, from
all such pairs (a, b), we choose (ai, bi) so as to maximize dn(bi) (see Figure 3).

For 1 6 i 6 n− 1, let ui = dn(bi) and Di = D(ai, bi). Furthermore, let u0 = ch and un = c1.
It follows from the construction that un < un−1 < · · · < u1 < u0 in P . Define functions
M : A(S)→ {1, . . . , n} and N : B(S)→ {1, . . . , n} as follows:
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Figure 3. Illustration for the concepts used in Section 6; D1 = D(a1, b1) and
D2 = D(a2, b2)

• for a ∈ A(S), M(a) is the least positive integer j such that uj 6 up(a);
• for b ∈ B(S), N(b) is the least positive integer j such that uj 6 dn(b).
Let q = 8k − 9.

Proposition 6.2. If (a, b) ∈ Q(S), then N(b) 6M(a) + q.

Proof. Let i = M(a) and j = N(b). The graph G contains a path W0 from up(a) to dn(b) which
is formed by the bottom, the right side, and the top of D(a, b). The bottom and the top of
D(a, b) have length at most 2k − 2, while the right side has length at most 4k − 5, so W0 has
length at most (2k − 2) + (2k − 2) + (4k − 5) = 8k − 9. In particular, there are at most 8k − 10
points on W0 distinct from up(a) and dn(b).

The path W0 starts at the point up(a), which is in the interior of all Di+1, . . . ,Dj−1, and
ends at the point dn(b), which is in the exterior of all Di+1, . . . ,Dj−1. Therefore, it must
cross the boundaries of the regions Di+1, . . . ,Dj−1 in j − i − 1 distinct points. This requires
j − i− 1 6 8k − 10, so that j 6 i+ 8k − 9 = i+ q. �

For every r ∈ {0, . . . , q−1}, let S(r) = {(a, b) ∈ S : M(a) ≡ r (mod q)}. Thus S =
⋃q−1
r=0 S(r).

Since q = O(k), it suffices to show that dim(S(r)) = O(kd1 + k2) for every r ∈ {0, . . . , q − 1} to
complete the proof. So we fix a value of r and update the meaning of S by setting S = S(r).
For every m ∈ {1, . . . , n} with m ≡ r (mod q), let Sm = {(a, b) ∈ S : M(a) = N(b) = m}.

Proposition 6.3. We have dim(S) 6 d1 + max{dim(Sm) : 1 6 m 6 n, m ≡ r (mod M)}.

Proof. Let d2 = max{dim(Sm) : 1 6 m 6 n, m ≡ r (mod q)}. For every m ∈ {1, . . . , n} with
m ≡ r (mod q), there is a coloring ψm that assigns a color ψm(a, b) ∈ {d1 + 1, . . . , d1 + d2} to
every incomparable pair (a, b) ∈ Sm so that the set {(a, b) ∈ Sm : ψm(a, b) = γ} is reversible for
every color γ ∈ {d1 + 1, . . . , d1 + d2}.

Every pair (a, b) ∈ S with N(b) > M(a) is an incomparable pair of Ar(j − 1, j), where
cj = uM(a). Recall that φj−1 is a coloring of Inc(Ar(j − 1, j)) that uses colors {1, . . . , d1} and
avoids monochromatic alternating cycles. For every γ ∈ {1, . . . , d1}, let S(γ) be the subset of S
consisting of all pairs (a, b) such that N(b) > M(a) and φj−1(a, b) = γ, where cj = uM(a). For
every γ ∈ {d1 + 1, . . . , d1 + d2}, let S(γ) be the subset of S consisting of all pairs (a, b) such that
N(b) = M(a) and ψM(a)(a, b) = γ. Thus S =

⋃d1+d2
γ=1 S(γ).

We claim that the set S(γ) is reversible for every γ ∈ {1, . . . , d1 + d2}. Suppose not.
Let {(aα, bα)}sα=1 be an alternating cycle contained in S(γ), where s > 2. Suppose there
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is α ∈ {1, . . . , s} with M(aα+1) > M(aα). Then N(bα+1) > M(aα+1) > M(aα) + q, as
M(aα+1) ≡M(aα) (mod q). It follows that (aα, bα+1) is a weak comparable pair, but it violates
Proposition 6.2. This shows thatM(a1), . . . ,M(as) are all equal. Letm = M(a1) = · · · = M(as).
Consequently, {(aα, bα)}sα=1 is an alternating cycle either in Ar(j − 1, j), when γ ∈ {1, . . . , d1}
and cj = um, or in Sm, when γ ∈ {d1 + 1, . . . , d1 +d2}. In both cases, this is a contradiction. �

It remains to show that dim(Sm) = O(kd1 + k2) for 1 6 m 6 n. So we fix a value of m and
update the meaning of S by setting S = Sm. It follows that
• um < up(a) < um−1 in P for every a ∈ A(S),
• um 6 dn(b) < um−1 in P for every b ∈ B(S).
If m > 2, then let D denote the set of points x on the boundary of Dm−1 such that um−1 66 x in
P ; that is, D is the union of the bottom and the right side of Dm−1 except for their topmost
points. If m = 1, then let D = ∅. It follows that |D| 6 (2k − 2) + (4k − 5)− 1 = O(k).

Proposition 6.4. Every pair (a, b) ∈ Q(S) satisfies at least one of the following:
(1) dn(b) = um,
(2) the top of D(a, b) intersects D,
(3) the right side of D(a, b) intersects D.

Proof. Let (a, b) ∈ Q(S). Suppose dn(b) 6= um, so that um < dn(b) < up(a) < um−1 in P . The
“greedy” construction of the sequence {(ai, bi)}n−1

i=1 rejected the pair (a, b), so m > 2 and Dm−1 is
not contained in the interior of D(a, b). Since the middle of Dm−1 lies in the interior of D(a, b),
it follows that the top, the bottom, or the right side of D(a, b) intersects the boundary of Dm−1.

If the bottom of D(a, b) intersects the top of Dm−1 at a point x, then x 6 up(a) < um−1 =
dn(bm−1) 6 x in P , which is a contradiction. If the bottom of D(a, b) intersects the bottom or the
right side of Dm−1 at a point x, then am−1 6 x 6 up(a) < um−1 < up(am−1) in P , which shows
that up(a) is a better candidate for up(am−1). If the top or the right side of D(a, b) intersects
the boundary of Dm−1 at a point x such that um−1 6 x in P , then dn(b) < um−1 6 x 6 b in P ,
which shows that um−1 is a better candidate for dn(b). We conclude that the top or the right
side of D(a, b) intersects D. �

Let R be the subset of the maximum chain C consisting of um and all points of the form dn(x)
such that x ∈ D and um < dn(x) < um−1. It follows that |R| 6 1+|D| = O(k). Let S′ = {(a, b) ∈
S : dn(b) ∈ R}. For every pair (a, b) ∈ S with dn(b) = ci, we have (a, b) ∈ Inc(Ar(i, i+ 1)) and
thus dim({(a, b) ∈ S : dn(b) = ci}) 6 d1. It follows that dim(S′) 6 |R|d1 = O(kd1).

Proposition 6.5. For every pair (a, b) ∈ Q(S − S′), the right side of D(a, b) intersects D.

Proof. Let (a, b) ∈ Q(S−S′). Since b ∈ B(S−S′), there is a′ ∈ A(S−S′) such that (a′, b) ∈ S−S′.
If dn(b) = um, then (a′, b) ∈ S′ (as um ∈ R), which is a contradiction. Now, suppose the top
of D(a, b) intersects D at a point x. Since x ∈ W (dn(b), b), we have dn(b) = dn(x) ∈ R, so
(a′, b) ∈ S′, which is a contradiction. We have excluded the cases (1) and (2) from Proposition 6.4,
so the case (3) must hold. �

We update the meaning of S once again by setting S = S − S′, and we prove that dim(S) =
O(k2). Let X denote the family of subsets X of D that are downward-closed in D, that is,
such that y ∈ X whenever x ∈ X, y ∈ D, and y 6 x in P . Every nonempty set X ∈ X is
characterized by the pair of points (x, y) such that x is the topmost point of X on the bottom
of Dm−1 and y is the topmost point of X on the right side of Dm−1. It follows that there are at
most (2k − 2)(4k − 5) nonempty sets in X , so |X | 6 (2k − 2)(4k − 5) + 1 = O(k2).
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For a point b ∈ B(S), let ↓b = {x ∈ P : x 6 b in P}. For every b ∈ B(S), we have ↓b∩D ∈ X .
For every X ∈ X , let SX = {(a, b) ∈ S : ↓b ∩D = X}.

Proposition 6.6. Q(SX) = ∅ for every X ∈ X .

Proof. Suppose there is a pair (a, b) ∈ Q(SX). By Proposition 6.5, the right side of D(a, b)
intersects D, so there is x ∈ D such that a 6 x 6 b in P . Since b ∈ B(SX), we have ↓b∩D = X,
so x ∈ X. Since a ∈ A(SX), there is b′ ∈ B(SX) such that (a, b′) ∈ SX . It follows that
↓b′ ∩D = X and thus a 6 x 6 b′ in P , which is a contradiction. �

The last proposition and Proposition 6.1 imply that the set of incomparable pairs SX is
reversible for every X ∈ X . Since S =

⋃
X∈X SX , it follows that dim(S) 6 |X | = O(k2). This

completes the proof that dim(SRL) = O(k2d1 + k3).

7. Concluding remarks

Recently, a number of important results connecting dimension with structural graph theory
have been proved [1, 10, 11, 12, 15, 23]. Based on these results, it is natural to make the following
conjectures, the first of which is also made in [15].

Conjecture 7.1. For every pair (k, n) of positive integers, there exists an integer d such that
if P is a poset excluding k + k and the cover graph of P does not contain a Kn-minor, then
dim(P ) 6 d.

Conjecture 7.2. For every pair (k, n) of positive integers with k > 2, there exists an integer d
such that if P is a poset excluding the standard example Sk and the cover graph of P does not
contain a Kn-minor, then dim(P ) 6 d.

One technical detail from Section 3 should be noted. In that section, we showed that if P
excludes k + k and every convex subposet of P of height at most 4k − 4 has dimension at
most d1, then the dimension of P is bounded in terms of its height. In fact, we showed that
dim(P ) 6 d1(h + 1), where h is the height of P . A natural question is whether the 4k − 4 is
tight. We suspect not, and it might be enough just to assume that the convex subposets of P of
height k − 1 have bounded dimension.
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