NOTE

POSET BOXICITY OF GRAPHS

W.T. TROTTER, Jr.*
University of South Carolina, Columbia, SC 29208, U.S.A.

Douglas B. WEST**
University of Illinois, Urbana, IL 61801, U.S.A.

Received 1 October 1985
Revised 8 April 1986

A t-box representation of a graph encodes each vertex as a box in t-space determined by the (integer) coordinates of its lower and upper corner, such that vertices are adjacent if and only if the corresponding boxes intersect. The boxicity of a graph G is the minimum t for which this can be done; equivalently, it is the minimum t such that G can be expressed as the intersection graph of intervals in the t-dimensional poset that is the product of t chains. Scheinerman defined the poset boxicity of a graph G to be the minimum t such that G is the intersection graph of intervals in some t-dimensional poset. In this paper, a special class of posets is used to show that the poset boxicity of a graph on n points is at most O(log log n). Furthermore, Ramsey's theorem is used to show the existence of graphs with arbitrarily large poset boxicity.

1. Introduction

"Boxicity" is a representation parameter of graphs introduced by Roberts [2] and Cohen [1]. It is the minimum dimension in which the graph can be represented as an intersection graph of boxes with sides parallel to the axes. More precisely, a t-box representation of a graph encodes each vertex as a box in t-space determined by the (integer) coordinates of its lower and upper corner, such that vertices are adjacent if and only if the corresponding boxes intersect. The boxicity of a graph G is the minimum t for which this can be done. Since it can be assumed that the upper and lower coordinates are all integers, a t-box representation expresses G as an intersection graph of intervals in the t-dimensional poset that is the product of t chains. Scheinerman [3] defined the poset boxicity of a graph G to be the minimum t such that G is the intersection graph of intervals in a t-dimensional poset. (A general discussion of representation parameters of graphs, included the results mentioned here, appears in [6].)

* Research supported by NSF grant DMS 84-01281.
** Research supported by ONR grant N00014-85-K0570 and by NSF grant DMS 85-04322.
In this paper, we consider how large the poset boxicity can be for a graph on \(n \) points. The best possible upper bound for boxicity is \(\lfloor \frac{1}{2} n \rfloor \) [2], with the extremal graphs characterized in [5]. The only graph achieving boxicity \(\frac{1}{2} n \) is \(K_{2 \ldots 2} \), but the poset boxicity of this graph is always at most 4. We will construct a family of graphs whose poset boxicity cannot be bounded by any constant, which we show by repeated application of Ramsey's Theorem. First, we use a special class of posets to show that the poset boxicity of a graph on \(n \) points is always at most \(O(\log \log n) \).

2. The upper bound

Theorem 1. The poset boxicity of a graph on \(n \) vertices is at most \(O(\log \log n) \).

Proof. Given \(G \) on \(n \) vertices, we define a poset \(p(G) \) of height 2. \(p(G) \) has a maximal element \(a_i \) and a minimal element \(b_i \) for each vertex \(v_i \) in \(G \). \(p(G) \) has a middle element \(c_e \) for each edge \(e \) in \(G \), and the relations are defined by \(a_i > c_e \) and \(b_i < c_e \) if and only if \(i \in e \). For simplicity, we also have \(a_i > b_j \) for all \(i, j \).

Clearly \(G \) is the intersection graph of the intervals \(\{ (a_i, b_i) \} \) in \(p(G) \); the intervals intersect if and only if \(G \) has the edge \(v_i v_j \).

The dimension of \(p(G) \) is at most twice the dimension of the poset \(Q \) induced by its middle and bottom levels, because any realizer \(L \) for \(Q \) can be extended to a realizer for \(P \) by taking two copies \(L_1 \) and \(L_2 \), upside-down, replacing each appearance of \(b_i \) in \(L_2 \) by \(a_i \), adding \(a_1, \ldots, a_n \) at the top of each chain of \(L_1 \), and adding \(b_1, \ldots, b_n \) at the bottom of each chain of the modified \(L_2 \). Hence we consider \(Q \). For any \(G \), the resulting \(Q \) is a subposet of the poset induced by the sets of size 1 and 2 among the lattice of all subsets of an \(n \)-set. Hence its dimension is at most the dimension of that poset. Spencer [4] showed that the dimension of that poset is \(O(\log \log n) \). \(\square \)

3. The lower bound

Theorem 2. For any integer \(t \), there exists a graph whose poset boxicity exceeds \(t \).

Proof. Suppose that every graph can be represented in a \(t \)-dimensional poset. Consider a graph \(G_n \) defined on the 2-element subsets of \(\{1, \ldots, n\} \) by creating an edge between \(\{i, j\} \) and \(\{j, k\} \) for each triple \(i < j < k \). Let \(P \) be a poset of dimension at most \(t \) in which \(G \) has an interval representation, and let \(I(i, j) \) be the interval of \(P \) assigned to the vertex \(\{i, j\} \) by the representation. Let \(a(i, j) \) and \(b(i, j) \) be the top and bottom elements of \(I(i, j) \). For each triple \(i < j < k \), choose an element \(p(i, j, k) \in I(i, j) \cap I(j, k) \).
Now we define a 2-coloring on the 5-subsets of \{1, \ldots, n\}. Given a 5-set \(i_1 < i_2 < i_3 < i_4 < i_5\), note that \(p(i_1, i_3, i_5)\) cannot belong to \(I(i_2, i_4)\), since there is no edge from \(\{i_2, i_4\}\) to \(\{i_1, i_3\}\) or \(\{i_3, i_5\}\) in \(G_n\). Hence \(p(i_1, i_3, i_5)\) is not greater than \(b(i_2, i_4)\) or is not less than \(a(i_2, i_4)\). Color the 5-set “bottom” if \(p(i_1, i_3, i_5)\) is not greater than \(b(i_2, i_4)\); otherwise, color it “top”. If \(n\) is sufficiently large, we can guarantee as large a set \(H\) as we desire all of whose 5-sets get the same color. By symmetry, we may suppose this color is “bottom”.

Now we \(t\)-color the 5-sets of \(H\). For each \(\{i_1 < i_2 < i_3 < i_4 < i_5\}\) we know \(p(i_1, i_3, i_5)\) is not greater than \(b(i_2, i_4)\), so there is some extension \(L_j\) in the \(t\)-realizer for \(P\) such that \(b(i_2, i_4)\) lies above \(p(i_1, i_3, i_5)\) in \(L_j\); give the 5-set a color corresponding to such an extension. If \(H\) is sufficiently large, then it has some 6-set \(\{i_1 < i_2 < i_3 < i_4 < i_5 < i_6\}\) whose 5-sets all get the same color \(j\). Applying the defining condition for color \(j\) to the 5-sets \(\{i_1 < i_2 < i_3 < i_4 < i_5\}\) and \(\{i_2 < i_3 < i_4 < i_5 < i_6\}\) yields \(b(i_2, i_4) > p(i_1, i_3, i_5) > b(i_3, i_5) > p(i_2, i_4, i_6) > b(i_2, i_4)\) in \(L_j\). This contradiction means that \(G_n\) cannot have an interval representation in a \(t\)-dimensional poset if \(n\) is sufficiently large. \(\square\)

Let \(R_s(k, \ldots, k)\) denote the Ramsey number for \(t\)-coloring \(s\)-sets to force a set of size \(k\) whose \(s\)-sets all get the same color. We have shown that if \(n > R_5(M, M)\), where \(M = R_5(6, \ldots, 6)\) \((t\) colors), then the poset boxicity of \(G_n\), a graph on \(\binom{2}{s}\) vertices, exceeds \(t\). This lower bound for worst-case poset boxicity of a graph on \(N\) vertices grows unimaginably slowly.

References