Journal Title: On-Line Algorithms

A Volume in the DIMACS Series in Discrete Mathematics and Theoretical Computer Science

Volume:
Issue:
Month/Year: 1992
Pages: 85 - 92

Article Author: Kierstead and Trotter

Article Title: On-line graph coloring

Call #: QA76.55 .O52 1992
Location: 3E - 7/3

William Trotter (wt48)
School of Mathematics
Georgia Tech
Atlanta, GA 30332

Faculty
Math

COPYRIGHT NOTICE:
This material may be protected by copyright law (Title 17 U.S. Code).
ON-LINE GRAPH COLORING

H. A. KIERSTEAD† and W. T. TROTTER‡

Abstract. We survey recent results concerning on-line graph coloring and announce the following Theorem: For every radius two tree T, the class $\text{Forb}(T)$ of graphs which do not induce T is on-line χ-bounded. In particular, the class of co-comparability graphs is on-line χ-bounded.

Key words. on-line, algorithm, graph, coloring

AMS(MOS) subject classifications.

1. Introduction. In this article we report on recent results concerning on-line graph coloring and suggest a few interesting problems for future research. An on-line graph is a structure $G^< = (V, E, <)$, where $G = (V, E)$ is a graph and $<$ is a linear ordering of V. We say that $G^<$ is an on-line presentation of G. We shall always assume that $V = \{v_1, \ldots, v_n\}$, where $v_i < v_j$ if and only if $i < j$. In particular, $G^<$ has $n = n(G)$ vertices. Then we let $V_i = \{v_j : j \leq i\}$ and $G^<_i = G^<[V_i]$, the on-line subgraph of $G^<$ induced by V_i. If two vertices v and w are adjacent in G, we write $v \sim w$. The neighborhood of a vertex v in G is $N(v) = N_G(v) = \{w \in V : v \sim w\}$. An algorithm for coloring the vertices of an on-line graph $G^<$ is said to be on-line if the color of a vertex v_i is determined solely by $G^<_i$. Intuitively, the algorithm colors the vertices of $G^<$ one at a time in the externally determined order v_1, \ldots, v_n, and at the time a color is irrevocably assigned to the vertex v_i, the algorithm can only see $G^<_i$. A simple, but important example of an on-line algorithm is the algorithm First-Fit, which colors the vertices of G with an initial sequence of the colors $\{1, 2, \ldots, \}$ by assigning to the vertex v_i the least possible color which is not assigned to any vertex of V_{i-1} adjacent to v_i.

The clique number and chromatic number of G are denoted by $\omega(G)$ and $\chi(G)$, respectively. For an on-line algorithm A and an on-line graph $G^<$, let $\chi_A(G^<)$ denote the number of colors A uses to color $G^<$. The performance function $\phi_A(k, n/\Gamma)$ of A over a class of graphs Γ is defined for integers k and n to be the maximum of $\chi_A(G^<)$ over all on-line presentations of k-colorable graphs $G \in \Gamma$ on n vertices. Note that $\phi(k, n/\Gamma)$ is an increasing function; we denote the limit as n goes to infinity of $\phi_A(k, n/\Gamma)$ by $\phi_A(k/\Gamma)$. When Γ is the class of all graphs, we may simply write
\(\phi_A(k, n) \). The following elementary theorem, originally phrased in terms of recursive functions, shows that the performance of an on-line coloring algorithm for an arbitrary graph \(G \) cannot be bounded above solely in terms of \(\chi(G) \).

Theorem 1.1. Bean\[1]. For every on-line algorithm \(A \) and integer \(t \), there exists an on-line tree \(T^< \) such that \(\chi_A(T^<) > t \). Moreover, \(T^< \) has only \(2^t \) vertices.

The tree is constructed using a simplification of the Zykov \[32\] construction of triangle-free \(t \)-critical graphs. Arguing inductively, one constructs disjoint on-line trees \(T_i^< \), for \(i = 1, \ldots, t-1 \), so that \(T_i^< \) has \(2^i \) vertices and the algorithm is forced to use \(i \) colors on \(T_i^< \). Then it is possible to choose a vertex \(v_i \) in \(T_i^< \) so that each \(v_i \), \(i = 1, \ldots, t-1 \), has a distinct color. The final vertex \(v_t \) is played adjacent to each \(v_i \) and must receive the \(t \)-th color.

The situation is even worse for First-Fit. Let \(B_t \) be the graph formed from the complete bipartite graph \(K_{2t} \) by removing a perfect matching \(M_t \). Then \(B_t \) has \(2t \) vertices, but the on-line presentation \(B_t^< \) of \(B_t \), where the pairs of vertices matched in \(M_t \) are ordered consecutively, forces First-Fit to use \(t \) colors.

In \$\S2\$ we consider the performance function of on-line coloring algorithms for general graphs. In \$\S3\$ we consider special classes of graphs for which there exist on-line algorithms whose performance can be bounded solely in terms of clique size. In \$\S4\$ we consider even more special classes of graphs for which the performance of First-Fit can be bounded solely in terms of clique size.

2. Performance bounds for general graphs.

Our first theorem, when combined with Theorem 1.1, shows that \(\phi(2, n) = \Theta(\log n) \).

Theorem 2.1. Lovász, Saks and Trotter\[25\]. There exists an on-line algorithm \(A \) such that for every on-line 2-colorable graph \(G^< \) on \(n \) vertices, \(\chi_A(G^<) \leq 2\log n \).

When a new point \(v_i \) is considered there is a unique partition \((I_1, I_2)\) of the component of \(v_i \) in \(G^< \) into independent sets with \(v_i \in I_1 \). The algorithm \(A \) assigns \(v_i \) the least color not assigned to any vertex of \(I_2 \). Observe that if \(A \) assigns \(v_i \) color \(k + 1 \), then \(A \) must have already assigned \(k + 1 \) to some vertex of \(I_2 \) and \(k \) to some vertex \(v_p \in I_2 \). Thus, \(A \) must have assigned \(k \) to some vertex \(v_q \in I_1 \). Since \(A \) assigns \(v_p \) and \(v_q \) the same color, \(v_p \) and \(v_q \) are in separate components of \(G^< \), where \(r = \max\{p, q\} \). Thus, by induction, each of these components must have size \(2^{k/2} \), and thus \(i > 2(2^{k/2}) = 2^{k+1} \).

Vishwanathan improved the technique used to prove Theorem 1.1 in order to show that \(\phi(k, n) = \Omega(\log^k n) \), for fixed \(k \).

Theorem 2.2. Vishwanathan\[30\]. For every on-line algorithm \(A \) and all integers \(k \) and \(n \), there exists an on-line graph \(G^< \) on \(n \) vertices such that \(\chi(G^<) \leq k \) and \((\log n/(4k))^{k-1} \leq \chi_A(G^<) \).

For a fixed algorithm, the on-line graph \(G^< \) is constructed using a primary induction on \(k \) and a secondary induction on \(n \). The key idea is to maintain the strong induction hypothesis that \(A \) can be forced to use \((\log n/(4k))^{k-1} \) colors on one part of some partition of \(G^< \) into \(k \) independent sets. Then the primary induction hypothesis can be used to attach a \(k - 1 \) colorable graph to this part so that many new colors must be used. Some additional care must be taken to maintain the strong induction hypothesis.

Using an elegant approach, we obtain

Theorem 2.3. Saks and Trotter. There exists an on-line graph \(G^< \) such that \(\chi(G^<) = 2^k - 1 \).

The only position where the analysis fails is in the iterated \(k \) times.

Theorem 2.4. Saks and Trotter. There exists an on-line graph \(G^< \) such that for every integer \(k \) and \(\alpha \), \(\chi(G^<) \leq (kn/\log^* n)(1 + \alpha(1/\log^* n)) \).

We give an overview of the proof. Let \(A \) be an on-line algorithm. Let \(X \) denote the set of vertices visited by \(A \) and \(S \) the subset consisting of \(X \) and its \(\alpha \)-neighbors. Let \(X_1, X_2, X_3, \ldots \) so that \(X_1 \) is the first \(\alpha \)-neighbor of \(X \). If \(X_1 \) is not in \(S \), then it is added to \(S \) and has its own coloring. If it is in \(S \), then it is added to \(S \) and its \(\alpha \)-neighbors are added to \(S \) and colored. We follow this procedure in \$\S \$2.2.

3. On-line \(\chi \)-bounded graphs.

In this section we consider on-line algorithms \(A \) such that \(\chi(G^<) \leq f(\omega(G)) \), for some function \(f \) called a \(\chi \)-bounding function. If \(G \) is the only graph with \(\chi(G^<) \leq f(\omega(G)) \), for all \(G \), then \(\chi(G) \leq f(\omega(G)) \).
Using an elegant construction, Szegedy proved:

Theorem 2.3. Szegedy[28]. For every on-line algorithm \(A \) and integer \(k \), there exists an on-line graph \(G^c \) on \(n \) vertices such that \(\chi(G^c) \leq k \), \(n \leq k2^k \), and \(\chi_A(G^c) \geq 2^k - 1 \).

The only positive result for all \(k \)-colorable graphs, with \(k \geq 3 \), is due to Lovász, Saks, and Trotter. They prove that \(\phi(k,n) \) is sublinear in \(n \). Here \(\lg^{(k)} \) denotes \(\lg \) iterated \(k \) times.

Theorem 2.4. Lovász, Saks and Trotter[25]. There exists an on-line algorithm \(A \) such that for every \(k \)-colorable on-line graph \(G^c \) on \(n \) vertices, \(\chi_A(G^c) = O(n \lg^{(2k-3)} n / \lg^{(2k-4)} n) \). Moreover, there exists an on-line algorithm \(B \) such that for every integer \(k \) and every on-line \(k \)-colorable graph \(G^c \) on \(n \) vertices, \(\chi_B(G^c) \leq (kn / \log^* n)(1 + o(1)) \).

We give an overview of the algorithm when \(k = 3 \). The algorithm follows the First-Fit rule as long as this results in an assignment of a color at most \(t = 100 \log \log n \). Let \(X \) denote the remaining vertices. Then \(X \subseteq X \) has in its neighborhood a subset consisting of one vertex from each of the first \(t \) color classes. Define a sequence \(\alpha_1, \alpha_2, \alpha_3, \ldots \) by \(\alpha_{i+1} = (\alpha_i/2) \). The set \(X \) is partitioned on-line into subsets \(X_1, X_2, X_3, \ldots \) so that if \(|X_j| \geq s \), then the vertices in \(X_j \) have at least \(\alpha_t \) common neighbors. Subject to this restriction, the new vertex is added to the largest possible subset. If it cannot be added to any of the existing nonempty sets in the partition, then it is added to the partition as a singleton. Each set in the partition is \(2 \)-colorable and has its own color set which consists of at most \(2 \lg |X_1| \) colors. Some details remain. First, the number of sets of size \(s \) has to be bounded. This is done automatically by the partitioning scheme when \(s \) is small. When \(s \) is large, a simple pigeon-hole argument works. Finally, the total number of colors has to be counted.

The results presented above leave the following problem on which there is considerable room for progress.

Problem 2.5. For fixed \(k \), close the gap between \(\phi(k,n) = \Omega((\lg n / (4k))^{(k-1)}) \) and \(\phi(k,n) = O(n \lg^{(2k-3)} n / \lg^{(2k-4)} n) \).

Vishwanathan has obtained interesting results using randomized on-line algorithms.

Theorem 2.6. Vishwanathan[30]. There exists a randomized on-line algorithm \(A \) such that for every \(k \)-colorable on-line graph \(G^c \) on \(n \) vertices, the expected value of \(\chi_A(G^c) = O(k^2 n^{(k-3)/(k-1)} (\lg n)^{1/(k-1)}) \). Moreover, for any randomized on-line algorithm \(B \), there exists a \(k \)-colorable on-line graph \(G^c \) on \(n \) vertices such that the expected value of \(\chi_B(G^c) = \Omega(1/(k-1)(\lg n / (12(k+1) + 1))^{(k-1)} \).

We comment that the algorithm \(A \) in Theorem 2.6 runs in polynomial time and compares well with the best off-line polynomial time approximation algorithms for graph coloring.

3. On-line \(\chi \)-bounded classes

In this section we consider classes of graphs \(\Gamma \), for which there exists an on-line algorithm \(A \) such that \(\phi_A(k/\Gamma) \) is finite for all \(k \). More precisely, we say that \(\Gamma \) is on-line \(\chi \)-bounded if and only if there exists an on-line algorithm \(A \) and a function \(g(k) \), called \(\chi \)-binding function, such that \(\chi_A(G^c) \leq g(\omega(G)) \), for any on-line presentation \(G^c \) of any \(G \in \Gamma \). Similarly, \(\Gamma \) is \(\chi \)-bounded if there exists a function \(f(k) \) such that \(\chi(G) \leq f(\omega(G)) \), for all \(G \in \Gamma \).
The results of this section have their roots in the authors’ previous work in recursive combinatorics and a beautiful graph theoretical conjecture formulated independently by Gyárfás and Sumner. The problems the authors considered in recursive combinatorics can be very roughly described as follows. Given a countably infinite graph \(G \), design an algorithm to color each vertex \(v \) of \(G \) using only certain types of local information (in particular, only finitely much information) about \(v \). Depending on the amount of information allowed, in increasing order, the graphs may be recursive, highly recursive, or decidable. Generally, results about coloring recursive graphs, such as Beineke [1], Kierstead [13], and Kierstead and Trotter[23] translate immediately to on-line results, while results on highly recursive or decidable graphs such as Kierstead[14], [15], Manaster and Rosenstein[12], and Schmerl[27] do not. The starting point for the work of this section is the following theorem. The notion of an on-line ordered set is analogues to that of an on-line graph.

Theorem 3.1. Kierstead[13]. There exists an on-line algorithm \(A \) which will partition any on-line ordered set of width at most \(w \) into \((5^w - 1)/4\) chains.

Here we use \(+ \) to denote the partial order while the linear order which specifies the order in which the points are presented is \(L \). Theorem 3.1 is proved by induction on \(w \). The algorithm \(A \) first partitions the on-line ordered set \(P^L = (X, \prec)^L \) into two parts \(C \) and \(X^* \), where \(C \) is a maximal chain. Then an auxiliary on-line ordered set \(P^* = (X^*, \prec)^L \) is defined (on-line) so that the width of \(P^* \) is at most \(w - 1 \), and each \(\prec \) chain can be partitioned on-line into four \(\prec \)-chains. By induction \(P^L \) can be covered on-line by \((5^{w-1} - 1)/4 + 1 = (5^w - 1)/4\) \(\prec \)-chains. However, the implementation of this strategy is quite complex.

Theorem 3.1 led to many new questions. One obvious problem has remained unanswered and appears to be very difficult.

Problem 3.2. Is there an on-line algorithm which will partition any on-line ordered set of width at most \(w \) into \(p(w) \) chains for some polynomial \(p \)?

Kierstead showed that the lower bound is non-linear and Szemerédi and Trotter showed that it is at least quadratic. Schmerl asked whether the order relation is necessary or is it the case that there is an on-line algorithm which partitions every on-line comparability graph \(G \) into a number of complete subgraphs bounded as a function of the independence number of \(G \). This is equivalent to asking whether the class of co-comparability graphs is on-line \(\chi \)-bounded. The problem is that Kierstead’s chain covering algorithm makes use of the order relation between two comparable points when deciding how to “color” them. We shall see later that Schmerl’s question has an affirmative answer. It is also natural to look for other classes of \(\chi \)-bounded graphs and orders. Interval graphs are the co-comparability graphs of interval orders, and for this class of graphs, it is possible to obtain an exact answer.

Theorem 3.3. Kierstead and Trotter[23]. There is an on-line coloring algorithm which will color any on-line interval graph \(G^\prec \) with at most \(3\omega(G^\prec) - 2 \) colors. Moreover, no on-line algorithm can do better.

Arguing by induction on \(\omega \), one shows that \(G^\prec \) can be partitioned on-line (just be greedy) into a maximal graph \(G^\prec \) with clique size \(\omega - 1 \) and a graph \(H^\prec \) with maximum degree 2. Thus \(G \) can be colored on-line using \((3\omega - 1) - 2 + 3 \) colors.

Next, we introduce the Gyárfás-Sumner Conjecture. For a graph \(H \), let \(\text{Forb}(H) \) be the class of all graphs which do not contain an induced copy of \(H \). Similarly, \(\text{Forb}(H_1, \ldots, H_r) \) is the intersection of the graphs \(H_1, \ldots, H_r \).

Conjecture. \(\text{Forb}(T) \) is \(\chi \)-bounded.

Erdős and Hajnal [1976] proved that \(H \) must be acyclic or \(\chi \)-bounded if and only if \(\text{Forb}(H) \) is \(\chi \)-bounded. Thus, if true, it is easy to see that \(\text{Forb}(H) \) is \(\chi \)-bounded if and only if \(\text{Forb}(H) \) is \(\chi \)-bounded. We refer to a class of graphs \(\mathcal{F} \) as having a \(\chi \)-minimal member if \(\text{Forb}(H) \) is \(\chi \)-bounded for all \(H \in \mathcal{F} \).

Theorem 3.5. Gyárfás, Szemerédi, and Trotter[1990].\(\chi \)-bounded on-line graph \(G^\prec \) is not on-line \(\chi \)-bounded.

The construction of Theorem 1.1. The graphs \(T \) and \(T^\prec \) are bipartite, and the graph \(T^\prec \).

By Theorem 2.1, \(\text{Forb}(G^\prec) \) is \(\chi \)-bounded. However, the construction is complicated and the proof of Theorem 3.5 is based on a general technique for constructing graphs which do not have induced \(T^\prec \).

Theorem 3.3. Kierstead and Trotter[23]. There is an on-line coloring algorithm which will color any on-line interval graph \(G^\prec \) with at most \(3\omega(G^\prec) - 2 \) colors. Moreover, no on-line algorithm can do better.

The proof of Theorem 3.3 uses many new structural techniques to show that the subdivision of the graph \(G^\prec \) induced by any copy of \(T^\prec \) is not \(\chi \)-bounded.

Corollary. It is worth noting that Theorem 3.3 does not prove that \(\text{Forb}(T) \) is \(\chi \)-bounded.

Thus, Problem 3.5 is still open.
Forb\((H_1, \ldots, H_t)\) is the class of graphs which do not contain an induced copy of any of the graphs \(H_1, \ldots, H_t\).

Conjecture 3.4. Gyárfás[8] and Sumner[29]. If \(T\) is a tree, then the class Forb\((T)\) is \(\chi\)-bounded.

Erdős and Hajnal [4] have shown that there exist graphs with both arbitrarily large girth and arbitrarily large chromatic number. Thus, if Forb\((H)\) is \(\chi\)-bounded, \(H\) must be acyclic. It is also not difficult to show that for a forest \(F\), Forb\((F)\) is \(\chi\)-bounded if and only if Forb\((T)\) is \(\chi\)-bounded, for each connected component (tree) of \(F\). Thus, if true, the conjecture gives a characterization of those graphs \(H\) such that Forb\((H)\) is \(\chi\)-bounded. Gyárfás[7] showed that the conjecture is true for paths \(P_n\) and a class of trees called brooms, which are paths to which extra leaves have been added to one end. Arguing by induction on both \(\omega\) and \(\eta\), one shows that if \(G\) has huge chromatic number, then either the neighborhood \(N\) of some vertex has large chromatic number (note \(\omega(N) < \omega(G)\)), or every vertex of \(G\) is the first point of an induced \(P_n\). Gyárfás, Szemerédi and Tuza[11] used a much more difficult argument to prove that Forb\((T, K_3)\) is \(\chi\)-bounded, for every tree \(T\) with radius at most two. Kierstead and Penrice[19] introduced a technique which could be used with the Gyárfás, Szemerédi, Tuza argument to show that Forb\((T)\) is \(\chi\)-bounded for trees with radius at most two.

Recently, Gyárfás and Lehel proved:

Theorem 3.5. Gyárfás and Lehel[10]. Forb\((P_3)\) is on-line \(\chi\)-bounded, but Forb\((P_5)\) is not on-line \(\chi\)-bounded. In fact, for any on-line algorithm \(A\), there exists a 2-colorable on-line graph \(G^c\) such that \(\chi_A(G^c) > \eta n\).

The construction of \(G^c\) is essentially the same as the construction for the proof of Theorem 1.1. The only difference is that the subgraphs \(T_i^c\) are only assumed to be bipartite, and the last point \(v_n\) is adjacent to every point in one of the parts of each \(T_i^c\).

By Theorem 3.5, if \(T\) is a tree with radius greater than two, Forb\((T)\) is not on-line \(\chi\)-bounded. However, Penrice[26] discovered that several radius two trees, more complicated than paths, were on-line \(\chi\)-bounded. After developing a large catalog of techniques for dealing with special cases, Kierstead, Penrice and Trotter have just proved:

Theorem 3.6. Kierstead, Penrice and Trotter[22]. For any tree \(T\), Forb\((T)\) is on-line \(\chi\)-bounded if and only if \(T\) has radius at most two.

The proof builds on the Kierstead-Penrice proof of the off-line case, but requires many new structural techniques to produce an on-line algorithm. Gyárfás pointed out that the subdivision \(SK_{1,3}\) of \(K_{1,3}\), shown below, is a radius two tree, which is not induced by any co-comparability graph. Thus, Schmerl’s question is answered with the following corollary.

![SK_{1,3}](image)

Corollary 3.7. The class of co-comparability graphs is on-line \(\chi\)-bounded.

It is worth noting that the proof of Theorem 3.6, even when restricted to \(SK_{1,3}\), has nothing to do with the proof of Theorem 3.1. It also yields much worse bounds. Thus, Problem 3.2 remains interesting.
4. First-fit χ-bounded classes.

In this section we consider classes of graphs Γ, for which $\phi_{PF}(k/\Gamma)$ is finite for all k. We say that Γ is First-Fit χ-bounded if there exists a function $g(k)$ such that for every $G \in \Gamma$, $\chi_{PF}(G^{<}) \leq g(\omega(G))$, for all on-line presentations $\Gamma^{<}$ of G. It follows immediately from Ramsey's theorem that $\text{Forb}(S)$ is First-Fit χ-bounded, for any star S. By Chvátal's theorem [2] on perfectly orderable graphs, $\text{Forb}(P_4)$ is First-Fit χ-bounded. Gyárfás and Lehel noted that (1) there is an on-line presentation B_t^Γ of B_t such that $\chi_{PF}(B_t^\Gamma) = t$ and (2) $B_t \in \text{Forb}(K_1 \cup K_1 \cup K_2)$. Thus we have:

Theorem 4.1. Gyárfás and Lehel [10]. If T is a tree such that $K_1 \cup K_1 \cup K_2$ is an induced subgraph of T, then $\text{Forb}(T)$ is not First-Fit χ-bounded.

The only trees in $\text{Forb}(K_1 \cup K_1 \cup K_2)$ are stars and subpaths of P_5. This led Gyárfás and Lehel to ask whether $\text{Forb}(P_5)$ is First-Fit χ-bounded. Kierstead, Penrice, and Trotter answered this question affirmatively:

Theorem 4.2. Kierstead, Penrice and Trotter [21]. The class $\text{Forb}(P_5)$ is First-Fit χ-bounded, and thus, for any tree T, $\text{Forb}(T)$ is First-Fit χ-bounded if and only if T does not contain $K_1 \cup K_1 \cup K_2$ as an induced subgraph.

The proof of Theorem 3.6 uses the following theorem, whose off-line version is also used to prove the off-line version of Theorem 3.6.

Theorem 4.3. Kierstead, Penrice and Trotter [22]. For every tree T and complete bipartite graph $K_{t,1}$, $\text{Forb}(T, K_{t,1})$ is First-Fit χ-bounded.

While this is an interesting and useful theorem, it does not tell us, if or why, $\chi_{PF}(G^{<})$ is large for some on-line presentation $G^{<}$ of a graph $G \in \text{Forb}(T)$. Let $P_{5,1}$ be the tree obtained by adding a leaf to the middle vertex of P_5, and let D_2 be the tree obtained by adding $k-1$ leaves to each of the second and third vertices of P_5. Recall that $\chi_{PF}(B_t^\Gamma) = t$, for obvious reasons. Thus, if $\chi_{PF}(G^{<})$ is huge for some $G \in \text{Forb}(T)$, the following satisfying theorem provides a certificate for the fact that $\chi_{PF}(G^{<})$ is large, in the special case that $T = P_{5,1}$ or D_2.

Theorem 4.4. Kierstead, Penrice and Trotter [22]. The classes $\text{Forb}(P_{5,1})$ and $\text{Forb}(D_2, B_4)$ are on-line χ-bounded.

The proofs of both statements use Ramsey theory. In particular, the proof of the first statement uses a so called "good" Ramsey theorem. The proof of the second part of Theorem 3.5 actually shows that $\text{Forb}(P_{5,1}, B_4)$ is not on-line χ-bounded. Thus, Theorem 4.4 cannot be extended to any tree of radius greater than two. Unfortunately, there is a worse counter example. Kierstead [13] showed (using vastly different language) that co-comparability graphs are not First-Fit χ-bounded. Since all co-comparability graphs are contained in $\text{Forb}(SK_3, B_4)$, $\text{Forb}(SK_3, B_4)$ is not First-Fit χ-bounded. However, the following may be true.

Conjecture 4.5. There exists a function $g(k)$ such that if $\chi_{PF}(G^{<}) > g(k)$, then G contains an induced bipartite subgraph H such that $\chi_{PF}(H^{<}) > k$.

There are other interesting classes of graphs which are First-Fit χ-bounded. Woodall [31] showed that the class of interval graphs is First-Fit χ-bounded, with a quadratic binding function. Woodall, and independently Chrobak and Slusarek [3], asked whether χ_{PF} was linear on this class.

Theorem 4.6. Kierstead [16] If G is an interval graph, then $\chi_{PF}(G^{<}) \leq 40\omega(G)$, for every on-line presentation $G^{<}$ of G.

Both Woodall and Chrobak/Slusarek had observed that there is a polynomial time approximation algorithm for $\phi_{PF}(k/\Gamma)$, whose ratio is at most 2. Theorem 4.6 shows that there is a constant performance ratio, and that this constant in Theorem 4.6 is at most 40. This result is a modified version of Theorem 4.6.

Theorem 4.7. Kierstead, Penrice and Trotter [21]. $\phi_{PF}(k/\Gamma) = 2k - 1$.

approximation algorithm for Dynamic Storage Allocation (DSA), whose performance ratio is at most $2\phi(k/\Gamma)/k$, where Γ is the class of interval graphs. Thus, Theorem 4.6 shows that there is a polynomial time approximation algorithm for DSA with a constant performance ratio of 80. Recently Kierstead and Qin[18] improved the constant in Theorem 4.6 to 25.8. Kierstead[17] presented an improved polynomial time approximation algorithm for DSA by replacing First-Fit in the previous algorithm by a modified version of the on-line algorithm used to prove Theorem 3.2.

Theorem 4.7. Kierstead[17] There is a polynomial time approximation algorithm for Dynamic Storage Allocation with a constant performance ratio of six.

The relationship between on-line algorithms and polynomial time approximation algorithms is one which should be explored further. In the case of Dynamic Storage Allocation, there are two natural, but possibly conflicting, orders in which one would like to consider the data. The first is by decreasing size of the given objects; the second is by the start times for the objects. Very roughly speaking, the algorithm compromises by using an on-line algorithm to color the storage intervals of the objects presented in decreasing order of size.

Since every tree is a comparability graph, Theorem 1.1 implies that the class of comparability graphs is not on-line χ-bounded, and, in particular, is not First-Fit χ-bounded. However, we do have the following theorem.

Theorem 4.8. Let T be the class of comparability graphs of interval orders. Then $\phi_{FF}(k/\Gamma) = 2k - 1 \leq \phi_A(k/\Gamma)$, for any on-line algorithm A.

REFERENCES

[22] ———, Radius two trees specify on-line χ-bounded classes, in preparation.
[28] Szegedy, personal communication.