their natural order. Thus we have complete independence. The equivalence of these axioms and those of [1] can be shown as follows.

Proof of Theorem P-2. Let a be the first element of the nonempty subset N of N.

Proof of Theorem P-4. Let G be a nonempty subset of N such that for every $x \in N$, $I(x) \subset G$ implies $x \in G$. Suppose $G \neq N$. Then $N-G$ is nonempty and, by B-1, has a first element b. Then $I(b) \subset G$ and by hypothesis $b \in G$, a contradiction.

Proof of Theorem B-1. By P-2, N is nonempty. Let W be a nonempty subset of N and suppose that W has no first element. Then for each $x \in W$, there exists $y \in W$ such that yRx. Now $N-W$ is not empty for otherwise $W=N$ and W would have a first element by P-2. Let $x \in N$ such that $I(x) \subset N-W$. Then $x \in N-W$, for if $x \in W$, then there exists some $y \in W$ such that yRx and hence $y \in N-W$. By P-4, $N-W=N$ and W is empty, a contradiction. Hence W has a first element.

References

2. R. A. Jacobson, Completely independent axioms for a seminatural system, this MAGAZINE, 41 (1968) 88–89.

A SHORT PROOF OF CRAMER’S RULE

STEPHEN M. ROBINSON, United States Army, University of Wisconsin, Madison

Many texts on linear algebra (e.g., [1] through [7]) prove Cramer’s rule by using the relationship $A^{-1} = \text{adj } A/\det A$ and comparing cofactor expansions. The following proof may provide more insight into what is actually happening when Cramer’s rule is used.

Let $Ax = b$, with A $n \times n$ and nonsingular. Let the columns of A be a_1, \ldots, a_n and those of the identity be e_1, \ldots, e_n. Define X_k by

$$X_k = [e_1, \ldots, e_{k-1}, x, e_{k+1}, \ldots, e_n].$$

Then

$$x_k = \det X_k = \det A^{-1}AX_k = \det AX_k/\det A$$

$$= \det [a_1, \ldots, a_{k-1}, b, a_{k+1}, \ldots, a_n]/\det A,$$

which is Cramer’s rule.

This proof makes it easier to see what we are doing when we use Cramer’s rule. We want to evaluate $\det X_k$ in order to find x_k. But X_k contains the unobservable vector x. We therefore take the determinant of the image of X_k under the transformation represented by A, and then, to compensate for the transformation, divide the result by $\det A$.
I am indebted to Dr. T. H. M. Crampton for helpful comments on this subject. The opinions expressed herein are those of the author, and do not necessarily reflect the position of the Department of the Army or the U. S. Government.

References

ON AN INTERESTING METRIC SPACE

R. SHANTARAM, SUNY at Stony Brook

In [1] Hildebrand and Milnes have defined on the euclidean plane the metric:

\[p_2(x, y) = \begin{cases}
0 & \text{if } x_1 = y_1 \text{ and } x_2 = y_2 \\
\frac{1}{2} & \text{if } x_1 = y_1 \text{ and } x_2 \neq y_2 \text{ or } x_1 \neq y_1 \text{ and } x_2 = y_2 \\
1 & \text{if } x_1 \neq y_1 \text{ and } x_2 \neq y_2
\end{cases} \tag{1} \]

where \(x = (x_1, x_2) \) and \(y = (y_1, y_2) \) are members of \(\mathbb{R}^2 \). The purpose of this note is twofold. First, to generalize this metric on \(\mathbb{R}^2 \) and extend the definition to \(\mathbb{R}^n \); this is done in Sections 1 and 2. Second, to introduce a metric which is rotation invariant but not translation invariant. This is done in Section 3.

1. Let \(a \) and \(b \) be positive real numbers such that \(b \leq 2a \leq 2b \). Define \(p_2^*: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R} \) as \(p_2^*(x, y) = 0, a, \) or \(b \) respectively according as exactly both, exactly one or exactly none of the coordinate of \(x \) and \(y \) are equal. Then the following result is easily proved.

Theorem 1. For each fixed value of \(a \) and \(b \) as specified above \(p_2^* \) is a metric on \(\mathbb{R}^2 \).

We remark that for \(a = \frac{1}{2} \) and \(b = 1 \) we obtain the metric in (1). The metric \(p_2^* \) gives rise to the following interesting neighborhoods of a point in \(\mathbb{R}^2 \). An \(\epsilon \)-neighborhood of \(x \in \mathbb{R}^2 \) is the singleton set \(\{x\} \) if \(0 < \epsilon \leq a \), the pair of straight lines thru \(x \) parallel to the coordinate axes if \(a < \epsilon \leq b \) and the whole plane if \(\epsilon > b \).

2. We now extend the definition of \(p_2 \) to the \(n \)-dimensional case.

Theorem 2. Let \(x, y \in \mathbb{R}^n \), \(n \geq 2 \). Define \(p_n^*(x, y) = 1 - (k/n) \) if exactly \(k \) of the coordinates of \(x \) are equal to the corresponding coordinates of \(y \) \((k = 0, 1, \ldots, n)\). Then \(p_n \) is a metric on \(\mathbb{R}^n \).