1 Saddle-Node, Transcritical, Pitchfork Bifurcations

Here we summarize some theorems for “generic” saddle-node, transcritical and pitchfork bifurcations of
\[\dot{x} = f(x, \mu) \quad , \quad x, \mu \in \mathbb{R}. \]

Proofs use the implicit function theorem, near identity transformations and various other transformations. In all of the theorems below we assume that \(f \) has continuous (mixed) derivatives up to third order (fourth for pitchforks) for all \((\mu, x)\) near the bifurcation point \((\mu^*, x^*)\).

Saddle Node (Quadratic Tangency)

Theorem 1 If there is a pair \((\mu^*, x^*)\) for which
\[
\begin{align*}
 f(x^*, \mu^*) &= 0 \quad (1) \\
 f_x(x^*, \mu^*) &= 0 \quad (2) \\
 f_\mu(x^*, \mu^*) &\neq 0 \quad (3) \\
 f_{xx}(x^*, \mu^*) &\neq 0 \quad (4)
\end{align*}
\]

then \(\dot{x} = f(x, \mu) \) has a saddle-node bifurcation with quadratic tangency at \((\mu^*, x^*)\).

Transcritical (2-branch)

Theorem 2 If there is a pair \((\mu^*, x^*)\) for which
\[
\begin{align*}
 f(x^*, \mu^*) &= 0 \quad (5) \\
 f_x(x^*, \mu^*) &= 0 \quad (6) \\
 f_\mu(x^*, \mu^*) &= 0 \quad (7) \\
 f_{xx}(x^*, \mu^*) &\neq 0 \quad (8) \\
 f_{xxx}(x^*, \mu^*) &\neq 0 \quad (9)
\end{align*}
\]

then \(\dot{x} = f(x, \mu) \) has a transcritical bifurcation at \((\mu^*, x^*)\).

Pitchfork (Quadratic Tangency)

Theorem 3 If there is a pair \((\mu^*, x^*)\) for which
\[
\begin{align*}
 f(x^*, \mu^*) &= 0 \quad (10) \\
 f_x(x^*, \mu^*) &= 0 \quad (11) \\
 f_\mu(x^*, \mu^*) &= 0 \quad (12) \\
 f_{xx}(x^*, \mu^*) &= 0 \quad (13) \\
 f_{xx}(x^*, \mu^*) &\neq 0 \quad (14) \\
 f_{xxx}(x^*, \mu^*) &\neq 0 \quad (15)
\end{align*}
\]

then \(\dot{x} = f(x, \mu) \) has a pitchfork bifurcation with quadratic tangency at \((\mu^*, x^*)\).